
imgaug Documentation
Release 0.3.0

Alexander Jung

Feb 03, 2020

Contents:

1 Installation 3
1.1 Installation in Anaconda . 3
1.2 Installation in pip . 3
1.3 Uninstall . 4

2 Examples: Basics 5
2.1 A standard use case . 5
2.2 A simple and common augmentation sequence . 5
2.3 Heavy Augmentations . 6

3 Examples: Keypoints 11
3.1 Notebook . 11
3.2 A simple example . 11

4 Examples: Bounding Boxes 13
4.1 Notebook . 13
4.2 A simple example . 13
4.3 Dealing with bounding boxes outside of the image . 14
4.4 Shifting/Moving Bounding Boxes . 17
4.5 Projection of BBs Onto Rescaled Images . 17
4.6 Computing Intersections, Unions and IoUs . 19

5 Examples: Heatmaps 23
5.1 Notebook . 23
5.2 A simple example . 24
5.3 Multiple sub-heatmaps per heatmaps object . 25
5.4 Accessing the heatmap array . 27
5.5 Resizing heatmaps . 28
5.6 Padding heatmaps . 31

6 Examples: Segmentation Maps and Masks 33
6.1 Notebook . 33
6.2 A simple example . 34
6.3 Using boolean masks . 35
6.4 Accessing the segmentation map array . 35
6.5 Resizing and padding . 38

i

7 Stochastic Parameters 39
7.1 Introduction . 39
7.2 Continuous Probability Distributions . 40
7.3 Discrete Probability Distributions . 48
7.4 Arithmetic . 51
7.5 Special Parameters . 54
7.6 Noise Parameters . 60

8 Blending/Overlaying images 61
8.1 Introduction . 61
8.2 Imagewise Constant Alphas Values . 62
8.3 BlendAlphaSimplexNoise . 66
8.4 FrequencyNoiseAlpha . 68
8.5 IterativeNoiseAggregator . 71
8.6 Sigmoid . 72

9 Overview of Augmenters 75
9.1 augmenters.meta . 75
9.2 augmenters.arithmetic . 87
9.3 augmenters.artistic . 122
9.4 augmenters.blend . 122
9.5 augmenters.blur . 148
9.6 augmenters.collections . 157
9.7 augmenters.color . 161
9.8 augmenters.contrast . 183
9.9 augmenters.convolutional . 196
9.10 augmenters.debug . 201
9.11 augmenters.edges . 201
9.12 augmenters.flip . 205
9.13 augmenters.geometric . 206
9.14 augmenters.imgcorruptlike . 227
9.15 augmenters.pillike . 251
9.16 augmenters.pooling . 266
9.17 augmenters.segmentation . 274
9.18 augmenters.size . 283
9.19 augmenters.weather . 297

10 Performance 305
10.1 Results Overview . 305
10.2 Images . 306
10.3 Heatmaps . 314
10.4 Keypoints and Bounding Boxes . 322

11 dtype support 327
11.1 Legend . 327
11.2 imgaug helper functions . 328
11.3 imgaug.augmenters.meta . 334
11.4 imgaug.augmenters.arithmetic . 334
11.5 imgaug.augmenters.blend . 334
11.6 imgaug.augmenters.blur . 334
11.7 imgaug.augmenters.collections . 334
11.8 imgaug.augmenters.color . 334
11.9 imgaug.augmenters.contrast . 334
11.10 imgaug.augmenters.convolutional . 334
11.11 imgaug.augmenters.debug . 334

ii

11.12 imgaug.augmenters.edges . 334
11.13 imgaug.augmenters.flip . 334
11.14 imgaug.augmenters.geometric . 338
11.15 imgaug.augmenters.imgcorruptlike . 338
11.16 imgaug.augmenters.pillike . 338
11.17 imgaug.augmenters.segmentation . 338
11.18 imgaug.augmenters.size . 338
11.19 imgaug.augmenters.weather . 338

12 Jupyter Notebooks 341

13 API 343
13.1 imgaug . 343
13.2 imgaug.parameters . 362
13.3 imgaug.multicore . 389
13.4 imgaug.dtypes . 393
13.5 imgaug.random . 394
13.6 imgaug.validation . 408
13.7 imgaug.augmentables.base . 409
13.8 imgaug.augmentables.batches . 409
13.9 imgaug.augmentables.bbs . 416
13.10 imgaug.augmentables.heatmaps . 434
13.11 imgaug.augmentables.kps . 439
13.12 imgaug.augmentables.lines . 452
13.13 imgaug.augmentables.normalization . 471
13.14 imgaug.augmentables.polys . 472
13.15 imgaug.augmentables.segmaps . 491
13.16 imgaug.augmentables.utils . 494
13.17 imgaug.augmenters.arithmetic . 497
13.18 imgaug.augmenters.artistic . 568
13.19 imgaug.augmenters.base . 572
13.20 imgaug.augmenters.blend . 572
13.21 imgaug.augmenters.blur . 626
13.22 imgaug.augmenters.collections . 645
13.23 imgaug.augmenters.color . 648
13.24 imgaug.augmenters.contrast . 703
13.25 imgaug.augmenters.convolutional . 729
13.26 imgaug.augmenters.debug . 741
13.27 imgaug.augmenters.edges . 745
13.28 imgaug.augmenters.flip . 750
13.29 imgaug.augmenters.geometric . 756
13.30 imgaug.augmenters.imgcorruptlike . 810
13.31 imgaug.augmenters.meta . 855
13.32 imgaug.augmenters.pillike . 912
13.33 imgaug.augmenters.pooling . 962
13.34 imgaug.augmenters.segmentation . 974
13.35 imgaug.augmenters.size . 998
13.36 imgaug.augmenters.weather . 1065

14 Indices and tables 1093

Python Module Index 1095

Index 1097

iii

iv

imgaug Documentation, Release 0.3.0

imgaug is a library for image augmentation in machine learning experiments. It supports a wide range of augmentation
techniques, allows to easily combine these and to execute them in random order or on multiple CPU cores, has a simple
yet powerful stochastic interface and can not only augment images, but also keypoints/landmarks, bounding boxes,
heatmaps and segmentation maps.

Fig. 1: Example augmentations of a single input image.

Contents: 1

imgaug Documentation, Release 0.3.0

2 Contents:

CHAPTER 1

Installation

The library uses python, which must be installed. Python 2.7, 3.4, 3.5, 3.6, 3.7 and 3.8 are supported.

The below sections explain how to install the library in anaconda and pip. If you don’t know what anaconda (aka
conda) is, simply use pip instead.

1.1 Installation in Anaconda

To install in anaconda simply perform the following commands

conda config --add channels conda-forge
conda install imgaug

Note that you may also use the pip-based installation commands described below. They work with and without
anaconda.

To also be able to use the augmenters in imgaug.augmenters.imgcorruptlike, you have to manually install
the imagecorruptions package:

pip install imagecorruptions

1.2 Installation in pip

To install the library via pip, simply execute:

pip install imgaug

This installs the latest version from pypi.

If you encounter any problems with Shapely, try the following:

3

imgaug Documentation, Release 0.3.0

pip install six numpy scipy Pillow matplotlib scikit-image opencv-python imageio
pip install --no-dependencies imgaug

The first command installs manually all dependencies except Shapely, the second only the library. Note that Shapely
is required for some operations, mainly when operating with line strings or polygons.

The version installed above is the latest official release from pypi. That release often lags behind the latest version
from github by a few months. To instead install the very latest version of imgaug use

pip install git+https://github.com/aleju/imgaug.git

Independent of whether you install from pypi or github, in order to be able to use the augmenters in imgaug.
augmenters.imgcorruptlike, you have to manually install the imagecorruptions package:

pip install imagecorruptions

1.3 Uninstall

To deinstall the library use

conda remove imgaug

on anaconda and

pip uninstall imgaug

otherwise.

4 Chapter 1. Installation

CHAPTER 2

Examples: Basics

2.1 A standard use case

The following example shows a standard use case. An augmentation sequence (crop + horizontal flips + gaussian blur)
is defined once at the start of the script. Then many batches are loaded and augmented before being used for training.

from imgaug import augmenters as iaa

seq = iaa.Sequential([
iaa.Crop(px=(0, 16)), # crop images from each side by 0 to 16px (randomly chosen)
iaa.Fliplr(0.5), # horizontally flip 50% of the images
iaa.GaussianBlur(sigma=(0, 3.0)) # blur images with a sigma of 0 to 3.0

])

for batch_idx in range(1000):
'images' should be either a 4D numpy array of shape (N, height, width, channels)
or a list of 3D numpy arrays, each having shape (height, width, channels).
Grayscale images must have shape (height, width, 1) each.
All images must have numpy's dtype uint8. Values are expected to be in
range 0-255.
images = load_batch(batch_idx)
images_aug = seq(images=images)
train_on_images(images_aug)

2.2 A simple and common augmentation sequence

The following example shows an augmentation sequence that might be useful for many common experiments. It
applies crops and affine transformations to images, flips some of the images horizontally, adds a bit of noise and blur
and also changes the contrast as well as brightness.

5

imgaug Documentation, Release 0.3.0

import numpy as np
import imgaug as ia
import imgaug.augmenters as iaa

ia.seed(1)

Example batch of images.
The array has shape (32, 64, 64, 3) and dtype uint8.
images = np.array(

[ia.quokka(size=(64, 64)) for _ in range(32)],
dtype=np.uint8

)

seq = iaa.Sequential([
iaa.Fliplr(0.5), # horizontal flips
iaa.Crop(percent=(0, 0.1)), # random crops
Small gaussian blur with random sigma between 0 and 0.5.
But we only blur about 50% of all images.
iaa.Sometimes(

0.5,
iaa.GaussianBlur(sigma=(0, 0.5))

),
Strengthen or weaken the contrast in each image.
iaa.LinearContrast((0.75, 1.5)),
Add gaussian noise.
For 50% of all images, we sample the noise once per pixel.
For the other 50% of all images, we sample the noise per pixel AND
channel. This can change the color (not only brightness) of the
pixels.
iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05*255), per_channel=0.5),
Make some images brighter and some darker.
In 20% of all cases, we sample the multiplier once per channel,
which can end up changing the color of the images.
iaa.Multiply((0.8, 1.2), per_channel=0.2),
Apply affine transformations to each image.
Scale/zoom them, translate/move them, rotate them and shear them.
iaa.Affine(

scale={"x": (0.8, 1.2), "y": (0.8, 1.2)},
translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)},
rotate=(-25, 25),
shear=(-8, 8)

)
], random_order=True) # apply augmenters in random order

images_aug = seq(images=images)

2.3 Heavy Augmentations

The following example shows a large augmentation sequence containing many different augmenters, leading to sig-
nificant changes in the augmented images. Depending on the use case, the sequence might be too strong. Occa-
sionally it can also break images by changing them too much. To weaken the effects you can lower the value of
iaa.SomeOf((0, 5), ...) to e.g. (0, 3) or decrease the probability of some augmenters to be applied by
decreasing in sometimes = lambda aug: iaa.Sometimes(0.5, aug) the value 0.5 to e.g. 0.3.

6 Chapter 2. Examples: Basics

imgaug Documentation, Release 0.3.0

Fig. 1: Example results of the above simple augmentation sequence.

import numpy as np
import imgaug as ia
import imgaug.augmenters as iaa

ia.seed(1)

Example batch of images.
The array has shape (32, 64, 64, 3) and dtype uint8.
images = np.array(

[ia.quokka(size=(64, 64)) for _ in range(32)],
dtype=np.uint8

)

Sometimes(0.5, ...) applies the given augmenter in 50% of all cases,
e.g. Sometimes(0.5, GaussianBlur(0.3)) would blur roughly every second
image.
sometimes = lambda aug: iaa.Sometimes(0.5, aug)

Define our sequence of augmentation steps that will be applied to every image.
seq = iaa.Sequential(

[
#
Apply the following augmenters to most images.
#
iaa.Fliplr(0.5), # horizontally flip 50% of all images
iaa.Flipud(0.2), # vertically flip 20% of all images

crop some of the images by 0-10% of their height/width
sometimes(iaa.Crop(percent=(0, 0.1))),

Apply affine transformations to some of the images

(continues on next page)

2.3. Heavy Augmentations 7

imgaug Documentation, Release 0.3.0

(continued from previous page)

- scale to 80-120% of image height/width (each axis independently)
- translate by -20 to +20 relative to height/width (per axis)
- rotate by -45 to +45 degrees
- shear by -16 to +16 degrees
- order: use nearest neighbour or bilinear interpolation (fast)
- mode: use any available mode to fill newly created pixels
see API or scikit-image for which modes are available
- cval: if the mode is constant, then use a random brightness
for the newly created pixels (e.g. sometimes black,
sometimes white)
sometimes(iaa.Affine(

scale={"x": (0.8, 1.2), "y": (0.8, 1.2)},
translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)},
rotate=(-45, 45),
shear=(-16, 16),
order=[0, 1],
cval=(0, 255),
mode=ia.ALL

)),

#
Execute 0 to 5 of the following (less important) augmenters per
image. Don't execute all of them, as that would often be way too
strong.
#
iaa.SomeOf((0, 5),

[
Convert some images into their superpixel representation,
sample between 20 and 200 superpixels per image, but do
not replace all superpixels with their average, only
some of them (p_replace).
sometimes(

iaa.Superpixels(
p_replace=(0, 1.0),
n_segments=(20, 200)

)
),

Blur each image with varying strength using
gaussian blur (sigma between 0 and 3.0),
average/uniform blur (kernel size between 2x2 and 7x7)
median blur (kernel size between 3x3 and 11x11).
iaa.OneOf([

iaa.GaussianBlur((0, 3.0)),
iaa.AverageBlur(k=(2, 7)),
iaa.MedianBlur(k=(3, 11)),

]),

Sharpen each image, overlay the result with the original
image using an alpha between 0 (no sharpening) and 1
(full sharpening effect).
iaa.Sharpen(alpha=(0, 1.0), lightness=(0.75, 1.5)),

Same as sharpen, but for an embossing effect.
iaa.Emboss(alpha=(0, 1.0), strength=(0, 2.0)),

Search in some images either for all edges or for
(continues on next page)

8 Chapter 2. Examples: Basics

imgaug Documentation, Release 0.3.0

(continued from previous page)

directed edges. These edges are then marked in a black
and white image and overlayed with the original image
using an alpha of 0 to 0.7.
sometimes(iaa.OneOf([

iaa.EdgeDetect(alpha=(0, 0.7)),
iaa.DirectedEdgeDetect(

alpha=(0, 0.7), direction=(0.0, 1.0)
),

])),

Add gaussian noise to some images.
In 50% of these cases, the noise is randomly sampled per
channel and pixel.
In the other 50% of all cases it is sampled once per
pixel (i.e. brightness change).
iaa.AdditiveGaussianNoise(

loc=0, scale=(0.0, 0.05*255), per_channel=0.5
),

Either drop randomly 1 to 10% of all pixels (i.e. set
them to black) or drop them on an image with 2-5% percent
of the original size, leading to large dropped
rectangles.
iaa.OneOf([

iaa.Dropout((0.01, 0.1), per_channel=0.5),
iaa.CoarseDropout(

(0.03, 0.15), size_percent=(0.02, 0.05),
per_channel=0.2

),
]),

Invert each image's channel with 5% probability.
This sets each pixel value v to 255-v.
iaa.Invert(0.05, per_channel=True), # invert color channels

Add a value of -10 to 10 to each pixel.
iaa.Add((-10, 10), per_channel=0.5),

Change brightness of images (50-150% of original value).
iaa.Multiply((0.5, 1.5), per_channel=0.5),

Improve or worsen the contrast of images.
iaa.LinearContrast((0.5, 2.0), per_channel=0.5),

Convert each image to grayscale and then overlay the
result with the original with random alpha. I.e. remove
colors with varying strengths.
iaa.Grayscale(alpha=(0.0, 1.0)),

In some images move pixels locally around (with random
strengths).
sometimes(

iaa.ElasticTransformation(alpha=(0.5, 3.5), sigma=0.25)
),

In some images distort local areas with varying strength.
sometimes(iaa.PiecewiseAffine(scale=(0.01, 0.05)))

(continues on next page)

2.3. Heavy Augmentations 9

imgaug Documentation, Release 0.3.0

(continued from previous page)

],
do all of the above augmentations in random order
random_order=True

)
],
do all of the above augmentations in random order
random_order=True

)

images_aug = seq(images=images)

Fig. 2: Example results of the above heavy augmentation sequence.

10 Chapter 2. Examples: Basics

CHAPTER 3

Examples: Keypoints

imgaug can handle not only images, but also keypoints/landmarks on these. E.g. if an image is rotated during aug-
mentation, the library can also rotate all landmarks correspondingly.

3.1 Notebook

A jupyter notebook for keypoint augmentation is available at Jupyter Notebooks. The notebooks are usually more up
to date and contain more examples than the ReadTheDocs documentation.

3.2 A simple example

The following example loads an image and places four keypoints on it. The image is then augmented to be brighter,
slightly rotated and scaled. These augmentations are also applied to the keypoints. The image is then shown before
and after augmentation (with keypoints drawn on it).

import imgaug as ia
import imgaug.augmenters as iaa
from imgaug.augmentables import Keypoint, KeypointsOnImage

ia.seed(1)

image = ia.quokka(size=(256, 256))
kps = KeypointsOnImage([

Keypoint(x=65, y=100),
Keypoint(x=75, y=200),
Keypoint(x=100, y=100),
Keypoint(x=200, y=80)

], shape=image.shape)

seq = iaa.Sequential([
(continues on next page)

11

imgaug Documentation, Release 0.3.0

(continued from previous page)

iaa.Multiply((1.2, 1.5)), # change brightness, doesn't affect keypoints
iaa.Affine(

rotate=10,
scale=(0.5, 0.7)

) # rotate by exactly 10deg and scale to 50-70%, affects keypoints
])

Augment keypoints and images.
image_aug, kps_aug = seq(image=image, keypoints=kps)

print coordinates before/after augmentation (see below)
use after.x_int and after.y_int to get rounded integer coordinates
for i in range(len(kps.keypoints)):

before = kps.keypoints[i]
after = kps_aug.keypoints[i]
print("Keypoint %d: (%.8f, %.8f) -> (%.8f, %.8f)" % (

i, before.x, before.y, after.x, after.y)
)

image with keypoints before/after augmentation (shown below)
image_before = kps.draw_on_image(image, size=7)
image_after = kps_aug.draw_on_image(image_aug, size=7)

Console output of the example:

Keypoint 0: (65.00000000, 100.00000000) -> (97.86113503, 107.69632182)
Keypoint 1: (75.00000000, 200.00000000) -> (93.93710117, 160.01366917)
Keypoint 2: (100.00000000, 100.00000000) -> (115.85492750, 110.86911292)
Keypoint 3: (200.00000000, 80.00000000) -> (169.07878659, 109.65206321)

Fig. 1: Image with keypoints, before (left) and after (right) augmentation. Keypoints are shown in green and drawn in
after the augmentation process.

12 Chapter 3. Examples: Keypoints

CHAPTER 4

Examples: Bounding Boxes

imgaug offers support for bounding boxes (aka rectangles, regions of interest). E.g. if an image is rotated during
augmentation, the library can also rotate all bounding boxes on it correspondingly.

Features of the library’s bounding box support:

• Represent bounding boxes as objects (imgaug.augmentables.bbs.BoundingBox).

• Augment bounding boxes.

• Draw bounding boxes on images.

• Move/shift bounding boxes on images, project them onto other images (e.g. onto the same image after resizing),
compute their intersections/unions and IoU values.

4.1 Notebook

A jupyter notebook for bounding box augmentation is available at Jupyter Notebooks. The notebooks are usually more
up to date and contain more examples than the ReadTheDocs documentation.

4.2 A simple example

The following example loads an image and places two bounding boxes on it. The image is then augmented to be
brighter, slightly rotated and scaled. These augmentations are also applied to the bounding boxes. The image is then
shown before and after augmentation (with bounding boxes drawn on it).

import imgaug as ia
import imgaug.augmenters as iaa
from imgaug.augmentables.bbs import BoundingBox, BoundingBoxesOnImage

ia.seed(1)

(continues on next page)

13

imgaug Documentation, Release 0.3.0

(continued from previous page)

image = ia.quokka(size=(256, 256))
bbs = BoundingBoxesOnImage([

BoundingBox(x1=65, y1=100, x2=200, y2=150),
BoundingBox(x1=150, y1=80, x2=200, y2=130)

], shape=image.shape)

seq = iaa.Sequential([
iaa.Multiply((1.2, 1.5)), # change brightness, doesn't affect BBs
iaa.Affine(

translate_px={"x": 40, "y": 60},
scale=(0.5, 0.7)

) # translate by 40/60px on x/y axis, and scale to 50-70%, affects BBs
])

Augment BBs and images.
image_aug, bbs_aug = seq(image=image, bounding_boxes=bbs)

print coordinates before/after augmentation (see below)
use .x1_int, .y_int, ... to get integer coordinates
for i in range(len(bbs.bounding_boxes)):

before = bbs.bounding_boxes[i]
after = bbs_aug.bounding_boxes[i]
print("BB %d: (%.4f, %.4f, %.4f, %.4f) -> (%.4f, %.4f, %.4f, %.4f)" % (

i,
before.x1, before.y1, before.x2, before.y2,
after.x1, after.y1, after.x2, after.y2)

)

image with BBs before/after augmentation (shown below)
image_before = bbs.draw_on_image(image, size=2)
image_after = bbs_aug.draw_on_image(image_aug, size=2, color=[0, 0, 255])

Console output of the example:

BB 0: (65.0000, 100.0000, 200.0000, 150.0000) -> (130.7524, 171.3311, 210.1272, 200.
→˓7291)
BB 1: (150.0000, 80.0000, 200.0000, 130.0000) -> (180.7291, 159.5718, 210.1272, 188.
→˓9699)

Note that the bounding box augmentation works by augmenting each box’s edge coordinates and then drawing a
bounding box around these augmented coordinates. Each of these new bounding boxes is therefore axis-aligned. This
can sometimes lead to oversized new bounding boxes, especially in the case of rotation. The following image shows
the result of the same code as in the example above, but Affine was replaced by Affine(rotate=45):

4.3 Dealing with bounding boxes outside of the image

When augmenting images and their respective bounding boxes, the boxes can end up fully or partially outside of the
image plane. By default, the library still returns these boxes, even though that may not be desired. The following
example shows how to (a) remove bounding boxes that are fully/partially outside of the image and (b) how to clip
bounding boxes that are partially outside of the image so that their are fully inside.

import numpy as np
import imgaug as ia

(continues on next page)

14 Chapter 4. Examples: Bounding Boxes

imgaug Documentation, Release 0.3.0

Fig. 1: Image with bounding boxes, before (left) and after (right) augmentation. Bounding boxes are shown in green
(before augmentation) and blue (after augmentation).

Fig. 2: Image with bounding boxes, before (left) and after (right) augmentation. The image was augmentated by
rotating it by 45 degrees. The axis-aligned bounding box around the augmented keypoints ends up being oversized.

4.3. Dealing with bounding boxes outside of the image 15

imgaug Documentation, Release 0.3.0

(continued from previous page)

import imgaug.augmenters as iaa
from imgaug.augmentables.bbs import BoundingBox, BoundingBoxesOnImage

ia.seed(1)

GREEN = [0, 255, 0]
ORANGE = [255, 140, 0]
RED = [255, 0, 0]

Pad image with a 1px white and (BY-1)px black border
def pad(image, by):

image_border1 = ia.pad(image, top=1, right=1, bottom=1, left=1,
mode="constant", cval=255)

image_border2 = ia.pad(image_border1, top=by-1, right=by-1,
bottom=by-1, left=by-1,
mode="constant", cval=0)

return image_border2

Draw BBs on an image
and before doing that, extend the image plane by BORDER pixels.
Mark BBs inside the image plane with green color, those partially inside
with orange and those fully outside with red.
def draw_bbs(image, bbs, border):

image_border = pad(image, border)
for bb in bbs.bounding_boxes:

if bb.is_fully_within_image(image.shape):
color = GREEN

elif bb.is_partly_within_image(image.shape):
color = ORANGE

else:
color = RED

image_border = bb.shift(left=border, top=border)\
.draw_on_image(image_border, size=2, color=color)

return image_border

Define example image with three small square BBs next to each other.
Augment these BBs by shifting them to the right.
image = ia.quokka(size=(256, 256))
bbs = BoundingBoxesOnImage([

BoundingBox(x1=25, x2=75, y1=25, y2=75),
BoundingBox(x1=100, x2=150, y1=25, y2=75),
BoundingBox(x1=175, x2=225, y1=25, y2=75)

], shape=image.shape)

seq = iaa.Affine(translate_px={"x": 120})
image_aug, bbs_aug = seq(image=image, bounding_boxes=bbs)

Draw the BBs (a) in their original form, (b) after augmentation,
(c) after augmentation and removing those fully outside the image,
(d) after augmentation and removing those fully outside the image and
clipping those partially inside the image so that they are fully inside.
image_before = draw_bbs(image, bbs, 100)
image_after1 = draw_bbs(image_aug, bbs_aug, 100)
image_after2 = draw_bbs(image_aug, bbs_aug.remove_out_of_image(), 100)
image_after3 = draw_bbs(image_aug, bbs_aug.remove_out_of_image().clip_out_of_image(),
→˓100) (continues on next page)

16 Chapter 4. Examples: Bounding Boxes

imgaug Documentation, Release 0.3.0

(continued from previous page)

4.4 Shifting/Moving Bounding Boxes

The function shift(top=<int>, right=<int>, bottom=<int>, left=<int>) can be used to change the x/y position of all
or specific bounding boxes.

import imgaug as ia
from imgaug.augmentables.bbs import BoundingBox, BoundingBoxesOnImage

ia.seed(1)

Define image and two bounding boxes
image = ia.quokka(size=(256, 256))
bbs = BoundingBoxesOnImage([

BoundingBox(x1=25, x2=75, y1=25, y2=75),
BoundingBox(x1=100, x2=150, y1=25, y2=75)

], shape=image.shape)

Move both BBs 25px to the right and the second BB 25px down
bbs_shifted = bbs.shift(left=25)
bbs_shifted.bounding_boxes[1] = bbs_shifted.bounding_boxes[1].shift(top=25)

Draw images before/after moving BBs
image = bbs.draw_on_image(image, color=[0, 255, 0], size=2, alpha=0.75)
image = bbs_shifted.draw_on_image(image, color=[0, 0, 255], size=2, alpha=0.75)

4.5 Projection of BBs Onto Rescaled Images

Bounding boxes can easily be projected onto rescaled versions of the same image using the function .on(image). This
changes the coordinates of the bounding boxes. E.g. if the top left coordinate of the bounding box was before at
x=10% and y=15%, it will still be at x/y 10%/15% on the new image, though the absolute pixel values will change
depending on the height/width of the new image.

import imgaug as ia
from imgaug.augmentables.bbs import BoundingBox, BoundingBoxesOnImage

ia.seed(1)

Define image with two bounding boxes
image = ia.quokka(size=(256, 256))
bbs = BoundingBoxesOnImage([

BoundingBox(x1=25, x2=75, y1=25, y2=75),
BoundingBox(x1=100, x2=150, y1=25, y2=75)

], shape=image.shape)

Rescale image and bounding boxes
image_rescaled = ia.imresize_single_image(image, (512, 512))
bbs_rescaled = bbs.on(image_rescaled)

(continues on next page)

4.4. Shifting/Moving Bounding Boxes 17

imgaug Documentation, Release 0.3.0

Fig. 3: Results of the above example code. Top left: Original/unaugmented image with bounding boxes (here visual-
ized with an additional black border around the image). Right, top: Image after augmentation (translation 120px to
the right). One bounding box is now fully outside of the image area (red), one is partially outside of it (orange). Right,
middle: After using .remove_out_of_image() the BB that was fully outside of the image area was removed. Right,
center: After using .remove_out_of_image() and .clip_out_of_image(), one BB was removed and the one partially
outside of of image area was clipped to be fully inside it.

18 Chapter 4. Examples: Bounding Boxes

imgaug Documentation, Release 0.3.0

Fig. 4: Using shift() to move bounding boxes around (green: original BBs, blue: shifted/moved BBs).

(continued from previous page)

Draw image before/after rescaling and with rescaled bounding boxes
image_bbs = bbs.draw_on_image(image, size=2)
image_rescaled_bbs = bbs_rescaled.draw_on_image(image_rescaled, size=2)

4.6 Computing Intersections, Unions and IoUs

Computing intersections, unions and especially IoU values (intersection over union) is common for many machine
learning experiments. The library offers easy functions for that.

import numpy as np
import imgaug as ia
from imgaug.augmentables.bbs import BoundingBox

ia.seed(1)

Define image with two bounding boxes.
image = ia.quokka(size=(256, 256))
bb1 = BoundingBox(x1=50, x2=100, y1=25, y2=75)
bb2 = BoundingBox(x1=75, x2=125, y1=50, y2=100)

Compute intersection, union and IoU value
Intersection and union are both bounding boxes. They are here
decreased/increased in size purely for better visualization.
bb_inters = bb1.intersection(bb2).extend(all_sides=-1)

(continues on next page)

4.6. Computing Intersections, Unions and IoUs 19

imgaug Documentation, Release 0.3.0

Fig. 5: Using on() to project bounding boxes from one image to the other, here onto an image of 2x the original size.
New coordinates are determined based on their relative positions on the old image.

(continued from previous page)

bb_union = bb1.union(bb2).extend(all_sides=2)
iou = bb1.iou(bb2)

Draw bounding boxes, intersection, union and IoU value on image.
image_bbs = np.copy(image)
image_bbs = bb1.draw_on_image(image_bbs, size=2, color=[0, 255, 0])
image_bbs = bb2.draw_on_image(image_bbs, size=2, color=[0, 255, 0])
image_bbs = bb_inters.draw_on_image(image_bbs, size=2, color=[255, 0, 0])
image_bbs = bb_union.draw_on_image(image_bbs, size=2, color=[0, 0, 255])
image_bbs = ia.draw_text(

image_bbs, text="IoU=%.2f" % (iou,),
x=bb_union.x2+10, y=bb_union.y1+bb_union.height//2,
color=[255, 255, 255], size=13

)

20 Chapter 4. Examples: Bounding Boxes

imgaug Documentation, Release 0.3.0

Fig. 6: Two bounding boxes on an image (green), their intersection (red, slightly shrunk), their union (blue, slightly
extended) and their IoU value (white).

4.6. Computing Intersections, Unions and IoUs 21

imgaug Documentation, Release 0.3.0

22 Chapter 4. Examples: Bounding Boxes

CHAPTER 5

Examples: Heatmaps

imgaug offers support for heatmap-like data. This can be used e.g. for depth map or keypoint/landmark localization
maps. Heatmaps can be augmented correspondingly to images, e.g. if an image is rotated by 45°, the corresponding
heatmap for that image will also be rotated by 45°.

Note:

• Heatmaps have to be bounded within value ranges, e.g. 0.0 to 1.0 for keypoint localization maps or something
like 0.0 to 200.0 (meters) for depth maps. Choosing arbitrarily low/high min/max values for unbounded
heatmaps is not recommended as it could lead to numerical inaccuracies.

• All augmentation functions for heatmaps are implemented under the assumption of augmenting ground truth
data. As such, heatmaps will be affected by augmentations that change the geometry of images (e.g. affine
transformations, cropping, resizing), but not by other augmentations (e.g. gaussian noise, saturation changes,
grayscaling, dropout, . . .).

Features of the library’s heatmap support:

• Represent heatmaps as objects (imgaug.augmentables.heatmaps.HeatmapsOnImage).

• Augment heatmaps (only geometry-affecting augmentations, e.g. affine transformations, cropping, . . .).

• Use different resolutions for heatmaps than for images (e.g. 32x32 heatmaps for 256x256 images).

• Draw heatmaps – on their own or on images (HeatmapsOnImage.draw(), HeatmapsOnImage.
draw_on_image()).

• Resize, average pool or max pool heatmaps (HeatmapsOnImage.scale(), HeatmapsOnImage.
avg_pool(), HeatmapsOnImage.max_pool()).

• Pad heatmaps by pixel amounts or to desired aspect ratios (HeatmapsOnImage.pad(),
HeatmapsOnImage.pad_to_aspect_ratio()).

5.1 Notebook

A jupyter notebook for heatmap augmentation is available at Jupyter Notebooks. The notebooks are usually more up
to date and contain more examples than the ReadTheDocs documentation.

23

imgaug Documentation, Release 0.3.0

5.2 A simple example

The following example loads a standard image and a generates a corresponding heatmap. The heatmap is supposed
to be a depth map, i.e. is supposed to resemble the depth of objects in the image, where higher values indicate that
objects are further away. (For simplicity we just use a simple gradient as a depth map with a cross in the center, so
there is no real correspondence between the image and the depth values.)

This example shows:

• Creating heatmaps via HeatmapsOnImage(heatmap_array, shape=image_shape).

• Using value ranges outside of simple 0.0 to 1.0 (here 0.0 to 50.0) by setting min_value and max_value
in the HeatmapsOnImage contructor.

• Resizing heatmaps, here via HeatmapsOnImage.avg_pool(kernel_size) (i.e. average pooling).

• Augmenting heatmaps via Augmenter.__call__(), which is equivalent to Augmenter.augment().

• Drawing heatmaps as overlays over images HeatmapsOnImage.draw_on_image(image).

• Drawing heatmaps on their own via HeatmapsOnImage.draw() in jet color map or via
HeatmapsOnImage.draw(cmap=None) as intensity maps.

import imageio
import numpy as np
import imgaug as ia
import imgaug.augmenters as iaa
from imgaug.augmentables.heatmaps import HeatmapsOnImage

ia.seed(1)

Load an example image (uint8, 128x128x3).
image = ia.quokka(size=(128, 128), extract="square")

Create an example depth map (float32, 128x128).
Here, we use a simple gradient that has low values (around 0.0)
towards the left of the image and high values (around 50.0)
towards the right. This is obviously a very unrealistic depth
map, but makes the example easier.
depth = np.linspace(0, 50, 128).astype(np.float32) # 128 values from 0.0 to 50.0
depth = np.tile(depth.reshape(1, 128), (128, 1)) # change to a horizontal gradient

We add a cross to the center of the depth map, so that we can more
easily see the effects of augmentations.
depth[64-2:64+2, 16:128-16] = 0.75 * 50.0 # line from left to right
depth[16:128-16, 64-2:64+2] = 1.0 * 50.0 # line from top to bottom

Convert our numpy array depth map to a heatmap object.
We have to add the shape of the underlying image, as that is necessary
for some augmentations.
depth = HeatmapsOnImage(

depth, shape=image.shape, min_value=0.0, max_value=50.0)

To save some computation time, we want our models to perform downscaling
and hence need the ground truth depth maps to be at a resolution of
64x64 instead of the 128x128 of the input image.
Here, we use simple average pooling to perform the downscaling.
depth = depth.avg_pool(2)

(continues on next page)

24 Chapter 5. Examples: Heatmaps

imgaug Documentation, Release 0.3.0

(continued from previous page)

Define our augmentation pipeline.
seq = iaa.Sequential([

iaa.Dropout([0.05, 0.2]), # drop 5% or 20% of all pixels
iaa.Sharpen((0.0, 1.0)), # sharpen the image
iaa.Affine(rotate=(-45, 45)), # rotate by -45 to 45 degrees (affects heatmaps)
iaa.ElasticTransformation(alpha=50, sigma=5) # apply water effect (affects

→˓heatmaps)
], random_order=True)

Augment images and heatmaps.
images_aug = []
heatmaps_aug = []
for _ in range(5):

images_aug_i, heatmaps_aug_i = seq(image=image, heatmaps=depth)
images_aug.append(images_aug_i)
heatmaps_aug.append(heatmaps_aug_i)

We want to generate an image of original input images and heatmaps
before/after augmentation.
It is supposed to have five columns:
(1) original image,
(2) augmented image,
(3) augmented heatmap on top of augmented image,
(4) augmented heatmap on its own in jet color map,
(5) augmented heatmap on its own in intensity colormap.
We now generate the cells of these columns.
#
Note that we add a [0] after each heatmap draw command. That's because
the heatmaps object can contain many sub-heatmaps and hence we draw
command returns a list of drawn sub-heatmaps.
We only used one sub-heatmap, so our lists always have one entry.
cells = []
for image_aug, heatmap_aug in zip(images_aug, heatmaps_aug):

cells.append(image) # column 1
cells.append(image_aug) # column 2
cells.append(heatmap_aug.draw_on_image(image_aug)[0]) # column 3
cells.append(heatmap_aug.draw(size=image_aug.shape[:2])[0]) # column 4
cells.append(heatmap_aug.draw(size=image_aug.shape[:2], cmap=None)[0]) # column 5

Convert cells to grid image and save.
grid_image = ia.draw_grid(cells, cols=5)
imageio.imwrite("example_heatmaps.jpg", grid_image)

5.3 Multiple sub-heatmaps per heatmaps object

The above example augmented a single heatmap with shape (H, W) for the example image. If you want to augment
more heatmaps per image, you can simply extend the heatmap array’s shape to (H, W, C), where C is the number
of heatmaps. The following example instantiates one heatmap object containing three sub-heatmaps and draws them
onto the image. Heatmap augmentation would be done in the exactly same way as in the previous example.

import imageio
import numpy as np
import imgaug as ia
from imgaug.augmentables.heatmaps import HeatmapsOnImage

(continues on next page)

5.3. Multiple sub-heatmaps per heatmaps object 25

imgaug Documentation, Release 0.3.0

Fig. 1: Results of the above example code. Columns show: (1) Original image, (2) augmented image, (3) augmented
heatmap overlayed with augmented image, (4) augmented heatmap alone in jet color map, (5) augmented heatmap
alone as intensity map.

26 Chapter 5. Examples: Heatmaps

imgaug Documentation, Release 0.3.0

(continued from previous page)

Load an image and generate a heatmap array with three sub-heatmaps.
Each sub-heatmap contains just three horizontal lines, with one of them
having a higher value (1.0) than the other two (0.2).
image = ia.quokka(size=(128, 128), extract="square")
heatmap = np.zeros((128, 128, 3), dtype=np.float32)
for i in range(3):

heatmap[1*30-5:1*30+5, 10:-10, i] = 1.0 if i == 0 else 0.5
heatmap[2*30-5:2*30+5, 10:-10, i] = 1.0 if i == 1 else 0.5
heatmap[3*30-5:3*30+5, 10:-10, i] = 1.0 if i == 2 else 0.5

heatmap = HeatmapsOnImage(heatmap, shape=image.shape)

Draw image and the three sub-heatmaps on it.
We draw four columns: (1) image, (2-4) heatmaps one to three drawn on
top of the image.
subheatmaps_drawn = heatmap.draw_on_image(image)
cells = [image, subheatmaps_drawn[0], subheatmaps_drawn[1],

subheatmaps_drawn[2]]
grid_image = np.hstack(cells) # Horizontally stack the images
imageio.imwrite("example_multiple_heatmaps.jpg", grid_image)

Fig. 2: Results of the above example code. It shows the original image with three heatmaps. The three heatmaps were
combined in one HeatmapsOnImage object.

5.4 Accessing the heatmap array

After augmentation you probably want to access the heatmap’s numpy array. This is done using the function
HeatmapsOnImage.get_arr(). That functions output shape will match your original heatmap array’s shape,
i.e. either (H, W) or (H, W, C). The below code shows an example, where that function’s result is changed and
then used to instantiate a new HeatmapsOnImage object.

Alternatively you could also change the heatmap object’s internal array, saved as HeatmapsOnImage.arr_0to1.
As the name indicates, it is always normalized to the range 0.0 to 1.0, while get_arr() reverses that normaliza-
tion. It has also always shape (H, W, C), with C>=1.

import imageio
import numpy as np
import imgaug as ia
from imgaug.augmentables.heatmaps import HeatmapsOnImage

Load an image and generate a heatmap array containing one horizontal line.

(continues on next page)

5.4. Accessing the heatmap array 27

imgaug Documentation, Release 0.3.0

(continued from previous page)

image = ia.quokka(size=(128, 128), extract="square")
heatmap = np.zeros((128, 128, 1), dtype=np.float32)
heatmap[64-4:64+4, 10:-10, 0] = 1.0
heatmap1 = HeatmapsOnImage(heatmap, shape=image.shape)

Extract the heatmap array from the heatmap object, change it and create
a second heatmap.
arr = heatmap1.get_arr()
arr[10:-10, 64-4:64+4] = 0.5
heatmap2 = HeatmapsOnImage(arr, shape=image.shape)

Draw image and heatmaps before/after changing the array.
We draw three columns:
(1) original image,
(2) heatmap drawn on image,
(3) heatmap drawn on image, with some changes made to the heatmap array.
cells = [image,

heatmap1.draw_on_image(image)[0],
heatmap2.draw_on_image(image)[0]]

grid_image = np.hstack(cells) # Horizontally stack the images
imageio.imwrite("example_heatmaps_arr.jpg", grid_image)

Fig. 3: Results of the above example code. It shows the original image, a corresponding heatmap and again the same
heatmap after its array was read out and changed.

5.5 Resizing heatmaps

When working with heatmaps it is common that the size of the input images and the heatmap sizes don’t match or
are supposed to not match (e.g. because predicted network output are of low resolution). HeatmapsOnImage of-
fers several functions to deal with such situations: HeatmapsOnImage.avg_pool(kernel_size) applies
average pooling to images, HeatmapsOnImage.max_pool(kernel_size) analogously max pooling and
HeatmapsOnImage.resize(size, [interpolation]) performs resizing. For the pooling functions the
kernel size is expected to be a single integer or a tuple of two/three entries (size along each dimension). For resize,
the size is expected to be a (height, width) tuple and interpolation can be one of the strings nearest
(nearest neighbour interpolation), linear, cubic (default) or area.

The below code shows an example. It instantiates a simple 128x128 heatmap with two horizontal lines (one of which
is blurred) and a small square in the center. It then applies average pooling, max pooling and resizing to heatmap sizes
64x64, 32x32 and 16x16. Then, an output image is generated with six rows: The first three show the results
of average/max pooling and resizing, while the rows three to six show the same results after again resizing them to
128x128 using nearest neighbour upscaling.

28 Chapter 5. Examples: Heatmaps

imgaug Documentation, Release 0.3.0

import imageio
import numpy as np
import imgaug as ia
import imgaug.augmenters as iaa
from imgaug.augmentables.heatmaps import HeatmapsOnImage

def pad_by(image, amount):
return ia.pad(image,

top=amount, right=amount, bottom=amount, left=amount)

def draw_heatmaps(heatmaps, upscale=False):
drawn = []
for heatmap in heatmaps:

if upscale:
drawn.append(

heatmap.resize((128, 128), interpolation="nearest")
.draw()[0]

)
else:

size = heatmap.get_arr().shape[0]
pad_amount = (128-size)//2
drawn.append(pad_by(heatmap.draw()[0], pad_amount))

return drawn

Generate an example heatmap with two horizontal lines (first one blurry,
second not) and a small square.
heatmap = np.zeros((128, 128, 1), dtype=np.float32)
heatmap[32-4:32+4, 10:-10, 0] = 1.0
heatmap = iaa.GaussianBlur(3.0).augment_image(heatmap)
heatmap[96-4:96+4, 10:-10, 0] = 1.0
heatmap[64-2:64+2, 64-2:64+2, 0] = 1.0
heatmap = HeatmapsOnImage(heatmap, shape=(128, 128, 1))

Scale the heatmaps using average pooling, max pooling and resizing with
default interpolation (cubic).
avg_pooled = [heatmap, heatmap.avg_pool(2), heatmap.avg_pool(4),

heatmap.avg_pool(8)]
max_pooled = [heatmap, heatmap.max_pool(2), heatmap.max_pool(4),

heatmap.max_pool(8)]
resized = [heatmap, heatmap.resize((64, 64)), heatmap.resize((32, 32)),

heatmap.resize((16, 16))]

Draw an image of all scaled heatmaps.
cells = draw_heatmaps(avg_pooled)\

+ draw_heatmaps(max_pooled)\
+ draw_heatmaps(resized)\
+ draw_heatmaps(avg_pooled, upscale=True)\
+ draw_heatmaps(max_pooled, upscale=True)\
+ draw_heatmaps(resized, upscale=True)

grid_image = ia.draw_grid(cells, cols=4)
imageio.imwrite("example_heatmaps_scaling.jpg", grid_image)

5.5. Resizing heatmaps 29

imgaug Documentation, Release 0.3.0

Fig. 4: Results of the above example code. It shows six rows: (Rows 1-3) scaling via average pooling, max pooling and
(cubic) resizing to 64x64 (column 2), 32x32 (column 3) and 16x16 (column 4) and then zero-padding to 128x128.
(Rows 4-6) Doing the same again, but not padding to 128x128 but instead resizing using nearest neighbour upscaling.

30 Chapter 5. Examples: Heatmaps

imgaug Documentation, Release 0.3.0

5.6 Padding heatmaps

Another common operation is padding of images and heatmaps, especially to squared sizes. This
is done for images using imgaug.pad(image, [top], [right], [bottom], [left],
[mode], [cval]) and imgaug.pad_to_aspect_ratio(image, aspect_ratio, [mode],
[cval], [return_pad_amounts]). For heatmaps it is done using HeatmapsOnImage.
pad([top], [right], [bottom], [left], [mode], [cval]) and HeatmapsOnImage.
pad_to_aspect_ratio(aspect_ratio, [mode], [cval], [return_pad_amounts]). In
both cases, pad() expects pixel amounts (i.e. integers) and pad_to_aspect_ratio() the target aspect ratio,
given as a float denoting ratio = width / height (i.e. a value of 1.0would lead to a squared image/heatmap,
while 2.0 would lead to a fairly wide image/heatmap).

The below code shows an example for padding. It starts with a squared sized image and heatmap, cuts both so that
they are more wide than high and then zero-pads both back to squared size.

import imageio
import numpy as np
import imgaug as ia
from imgaug.augmentables.heatmaps import HeatmapsOnImage

Load example image and generate example heatmap with one horizontal line
image = ia.quokka((128, 128), extract="square")
heatmap = np.zeros((128, 128, 1), dtype=np.float32)
heatmap[64-4:64+4, 10:-10, 0] = 1.0

Cut image and heatmap so that they are no longer squared
image = image[32:-32, :, :]
heatmap = heatmap[32:-32, :, :]

heatmap = HeatmapsOnImage(heatmap, shape=(128, 128, 1))

Pad images and heatmaps by pixel amounts or to aspect ratios
We pad both back to squared size of 128x128
images_padded = [

ia.pad(image, top=32, bottom=32),
ia.pad_to_aspect_ratio(image, 1.0)

]
heatmaps_padded = [

heatmap.pad(top=32, bottom=32),
heatmap.pad_to_aspect_ratio(1.0)

]

Draw an image of all padded images and heatmaps
cells = [

images_padded[0],
heatmaps_padded[0].draw_on_image(images_padded[0])[0],
images_padded[1],
heatmaps_padded[1].draw_on_image(images_padded[1])[0]

]

grid_image = ia.draw_grid(cells, cols=2)
imageio.imwrite("example_heatmaps_padding.jpg", grid_image)

5.6. Padding heatmaps 31

imgaug Documentation, Release 0.3.0

Fig. 5: Results of the above example code. It shows an input image and a heatmap that were both first
cut to 64x128 and then padded back to squared size of 128x128. First row uses pad(), second uses
pad_to_aspect_ratio().

32 Chapter 5. Examples: Heatmaps

CHAPTER 6

Examples: Segmentation Maps and Masks

imgaug offers support for segmentation map data, such as semantic segmentation maps, instance segmentation maps
or ordinary masks. Segmentation maps can be augmented correspondingly to images. E.g. if an image is rotated by
45°, the corresponding segmentation map for that image will also be rotated by 45°.

Note: All augmentation functions for segmentation maps are implemented under the assumption of augmenting
ground truth data. As such, segmentation maps will be affected by augmentations that change the geometry of im-
ages (e.g. affine transformations, cropping, resizing), but not by other augmentations (e.g. gaussian noise, saturation
changes, grayscaling, dropout, . . .).

Features of the library’s segmentation map support:

• Represent segmentation maps as objects (imgaug.augmentables.segmaps.
SegmentationMapsOnImage).

• Support integer maps (integer dtypes, usually int32) and boolean masks (dtype numpy.bool_).

• Augment segmentation maps (only geometry-affecting augmentations, e.g. affine transformations, cropping,
. . .).

• Use different resolutions for segmentation maps and images (e.g. 32x32 segmentation maps and 256x256 for
the corresponding images).

• Draw segmentation maps – on their own or on images (SegmentationMapsOnImage.draw(),
SegmentationMapsOnImage.draw_on_image()).

• Resize segmentation maps (SegmentationMapsOnImage.resize()).

• Pad segmentation maps by pixel amounts or to desired aspect ratios (SegmentationMapsOnImage.
pad(), SegmentationMapsOnImage.pad_to_aspect_ratio()).

6.1 Notebook

A jupyter notebook for segmentation map augmentation is available at Jupyter Notebooks. The notebooks are usually
more up to date and contain more examples than the ReadTheDocs documentation.

33

imgaug Documentation, Release 0.3.0

6.2 A simple example

The following example loads a standard image and defines a corresponding int32 segmentation map. The image and
segmentation map are augmented in the same way and the results are visualized.

import imageio
import numpy as np
import imgaug as ia
import imgaug.augmenters as iaa
from imgaug.augmentables.segmaps import SegmentationMapsOnImage

ia.seed(1)

Load an example image (uint8, 128x128x3).
image = ia.quokka(size=(128, 128), extract="square")

Define an example segmentation map (int32, 128x128).
Here, we arbitrarily place some squares on the image.
Class 0 is our intended background class.
segmap = np.zeros((128, 128, 1), dtype=np.int32)
segmap[28:71, 35:85, 0] = 1
segmap[10:25, 30:45, 0] = 2
segmap[10:25, 70:85, 0] = 3
segmap[10:110, 5:10, 0] = 4
segmap[118:123, 10:110, 0] = 5
segmap = SegmentationMapsOnImage(segmap, shape=image.shape)

Define our augmentation pipeline.
seq = iaa.Sequential([

iaa.Dropout([0.05, 0.2]), # drop 5% or 20% of all pixels
iaa.Sharpen((0.0, 1.0)), # sharpen the image
iaa.Affine(rotate=(-45, 45)), # rotate by -45 to 45 degrees (affects segmaps)
iaa.ElasticTransformation(alpha=50, sigma=5) # apply water effect (affects

→˓segmaps)
], random_order=True)

Augment images and segmaps.
images_aug = []
segmaps_aug = []
for _ in range(5):

images_aug_i, segmaps_aug_i = seq(image=image, segmentation_maps=segmap)
images_aug.append(images_aug_i)
segmaps_aug.append(segmaps_aug_i)

We want to generate an image containing the original input image and
segmentation maps before/after augmentation. (Both multiple times for
multiple augmentations.)
#
The whole image is supposed to have five columns:
(1) original image,
(2) original image with segmap,
(3) augmented image,
(4) augmented segmap on augmented image,
(5) augmented segmap on its own in.
#
We now generate the cells of these columns.
#

(continues on next page)

34 Chapter 6. Examples: Segmentation Maps and Masks

imgaug Documentation, Release 0.3.0

(continued from previous page)

Note that draw_on_image() and draw() both return lists of drawn
images. Assuming that the segmentation map array has shape (H,W,C),
the list contains C items.
cells = []
for image_aug, segmap_aug in zip(images_aug, segmaps_aug):

cells.append(image) # column 1
cells.append(segmap.draw_on_image(image)[0]) # column 2
cells.append(image_aug) # column 3
cells.append(segmap_aug.draw_on_image(image_aug)[0]) # column 4
cells.append(segmap_aug.draw(size=image_aug.shape[:2])[0]) # column 5

Convert cells to a grid image and save.
grid_image = ia.draw_grid(cells, cols=5)
imageio.imwrite("example_segmaps.jpg", grid_image)

6.3 Using boolean masks

In order to augment masks, you can simply use boolean arrays. Everything else is identical to int32 maps. The
below code shows an example and is very similar to the previous code for int32 maps. It noteably changes np.
zeros((128, 128, 1), dtype=np.int32) to np.zeros((128, 128, 1), dtype=bool).

import imageio
import numpy as np
import imgaug as ia
from imgaug.augmentables.segmaps import SegmentationMapsOnImage

Load an example image (uint8, 128x128x3).
image = ia.quokka(size=(128, 128), extract="square")

Create an example mask (bool, 128x128).
Here, we arbitrarily place a square on the image.
segmap = np.zeros((128, 128, 1), dtype=bool)
segmap[28:71, 35:85, 0] = True
segmap = SegmentationMapsOnImage(segmap, shape=image.shape)

Draw three columns: (1) original image,
(2) original image with mask on top, (3) only mask
cells = [

image,
segmap.draw_on_image(image)[0],
segmap.draw(size=image.shape[:2])[0]

]

Convert cells to a grid image and save.
grid_image = ia.draw_grid(cells, cols=3)
imageio.imwrite("example_segmaps_bool.jpg", grid_image)

6.4 Accessing the segmentation map array

After augmentation it is often desired to re-access the segmentation map array. This can be done using
SegmentationMapsOnImage.get_arr(), which returns a segmentation map array with the same shape and
dtype as was originally provided as arr to SegmentationMapsOnImage(arr, ...).

6.3. Using boolean masks 35

imgaug Documentation, Release 0.3.0

Fig. 1: Results of the above example code. Columns show: (1) Original image, (2) original segmentation map drawn
on original image, (3) augmented image, (4) augmented segmentation map drawn on augmented image, (5) augmented
segmentation map drawn on its own.

36 Chapter 6. Examples: Segmentation Maps and Masks

imgaug Documentation, Release 0.3.0

Fig. 2: Results of the above example code. Columns show: (1) Original image, (2) boolean segmentation map (i.e.
mask) drawn on image, (3) boolean segmentation map drawn on its own.

The below code shows an example that accesses and changes the array.

import imageio
import numpy as np
import imgaug as ia
from imgaug.augmentables.segmaps import SegmentationMapsOnImage

Load an example image (uint8, 128x128x3).
image = ia.quokka(size=(128, 128), extract="square")

Create an example segmentation map (int32, 128x128).
Here, we arbitrarily place some squares on the image.
Class 0 is the background class.
segmap = np.zeros((128, 128, 1), dtype=np.int32)
segmap[28:71, 35:85, 0] = 1
segmap[10:25, 30:45, 0] = 2
segmap[10:25, 70:85, 0] = 3
segmap[10:110, 5:10, 0] = 4
segmap[118:123, 10:110, 0] = 5
segmap1 = SegmentationMapsOnImage(segmap, shape=image.shape)

Read out the segmentation map's array, change it and create a new
segmentation map
arr = segmap1.get_arr()
arr[10:110, 5:10, 0] = 5
segmap2 = ia.SegmentationMapsOnImage(arr, shape=image.shape)

Draw three columns: (1) original image, (2) original image with
unaltered segmentation map on top, (3) original image with altered
segmentation map on top
cells = [

image,
segmap1.draw_on_image(image)[0],
segmap2.draw_on_image(image)[0]

]

Convert cells to grid image and save.
grid_image = ia.draw_grid(cells, cols=3)
imageio.imwrite("example_segmaps_array.jpg", grid_image)

6.4. Accessing the segmentation map array 37

imgaug Documentation, Release 0.3.0

Fig. 3: Results of the above example code. Columns show: (1) Original image, (2) original segmentation map drawn
on original image, (3) segmentation map with modified array drawn on image.

6.5 Resizing and padding

Segmentation maps can easily be resized and padded. The methods are identical to the ones used for heatmaps
(see :doc:examples_heatmaps), though segmentation maps do not offer resizing via average or max pooling.
The resize() method also defaults to nearest neighbour interpolation (instead of cubic interpolation) and it is
recommended to not change that.

The functions for resizing and padding are:

• SegmentationMapsOnImage.resize(sizes, interpolation="nearest"): Resizes to
sizes given as a tuple (height, width). Interpolation can be nearest, linear, cubic and area,
but only nearest is actually recommended.

• SegmentationMapsOnImage.pad(top=0, right=0, bottom=0, left=0,
mode="constant", cval=0): Pads the segmentation map by given pixel amounts. Uses by de-
fault constant value padding with value 0, i.e. zero-padding. Possible padding modes are the same as
for numpy.pad(), i.e. constant, edge, linear_ramp, maximum, mean, median, minimum,
reflect, symmetric and wrap.

• SegmentationMapsOnImage.pad_to_aspect_ratio(aspect_ratio, mode="constant",
cval=0, return_pad_amounts=False): Same as pad(), but pads an image towards a desired aspect
ratio (ratio = width / height). E.g. use 1.0 for squared segmentation maps or 2.0 for maps that are
twice as wide as they are high.

38 Chapter 6. Examples: Segmentation Maps and Masks

CHAPTER 7

Stochastic Parameters

7.1 Introduction

When augmenting images during experiments, usually one wants to augment each image in different ways. E.g. when
rotating images, not every image is supposed to be rotated by 10 degrees. Instead, only some are supposed to be
rotated by 10 degrees, while others should be rotated by 17 degrees or 5 degrees or -12 degrees - and so on. This can
be achieved using random functions, but reimplementing these, making sure that they generate the expected values
and getting them to work with determinism is cumbersome. To avoid all of this work, the library uses Stochastic
Parameters. These are usually abstract representations of probability distributions, e.g. the normal distribution N(0,
1.0) or the uniform range [0.0, 10.0]. Basically all augmenters accept these stochastic parameters, making it easy to
control value ranges. They are all adapted to work with determinism out of the box.

The below code shows their usage:

from imgaug import augmenters as iaa
from imgaug import parameters as iap

seq = iaa.Sequential([
iaa.GaussianBlur(

sigma=iap.Uniform(0.0, 1.0)
),
iaa.ContrastNormalization(

iap.Choice(
[1.0, 1.5, 3.0],
p=[0.5, 0.3, 0.2]

)
),
iaa.Affine(

rotate=iap.Normal(0.0, 30),
translate_px=iap.RandomSign(iap.Poisson(3))

),
iaa.AddElementwise(

iap.Discretize(
(iap.Beta(0.5, 0.5) * 2 - 1.0) * 64

(continues on next page)

39

imgaug Documentation, Release 0.3.0

(continued from previous page)

)
),
iaa.Multiply(

iap.Positive(iap.Normal(0.0, 0.1)) + 1.0
)

])

The example does the following:

• Blur each image by sigma, where sigma is sampled from the uniform range [0.0, 1.0). Example values:
0.053, 0.414, 0.389, 0.277, 0.981.

• Increase the contrast either to 100% (50% chance of being chosen) or by 150% (30% chance of being
chosen) or 300% (20% chance of being chosen).

• Rotate each image by a random amount of degrees, where the degree is sampled from the normal distribu-
tion N(0, 30). Most of the values will be in the range -60 to 60.

• Translate each image by n pixels, where n is sampled from a poisson distribution with alpha=3 (pick should
be around x=3). As we cant translate by a fraction of a pixel, we pick a discrete distribution here, which
poisson is. However, we do not just want to translate towards the right/top (only positive values). So we
randomly flip the sign sometimes to get negative pixel amounts too.

• Add to each pixel a random value, sampled from the beta distribution Beta(0.5, 0.5). This distribution has
its peaks around 0.0 and 1.0. We multiply this with 2 and subtract 1 to get it into the range [-1, 1]. Then we
multiply by 64 to get the range [-64, 64]. As we beta distribution is continuous, we convert it to a discrete
distribution. The result is that a lot of pixel intensities are shifted by -64 or 64 (or a value very close to
these two). Some other pixel intensities are kept (mostly) at their old values.

• We use Multiply to make each image brighter. The brightness increase is sampled from a normal distribu-
tion, converted to have only positive values. So most values are expected to be in the range 0.0 to 0.2. We
add 1.0 to set the brightness to 1.0 (100%) to 1.2 (120%).

7.2 Continuous Probability Distributions

The following continuous probability distributions are available:

• Normal(loc, scale): The popular normal distribution with mean loc and standard deviation scale. Example:

from imgaug import parameters as iap
params = [

iap.Normal(0, 1),
iap.Normal(5, 3),
iap.Normal(iap.Choice([-3, 3]), 1),
iap.Normal(iap.Uniform(-3, 3), 1)

]
iap.show_distributions_grid(params)

• Laplace(loc, scale): Similarly shaped to a normal distribution. Has its peak at loc and width scale. Example:

from imgaug import parameters as iap
params = [

iap.Laplace(0, 1),
iap.Laplace(5, 3),
iap.Laplace(iap.Choice([-3, 3]), 1),
iap.Laplace(iap.Uniform(-3, 3), 1)

(continues on next page)

40 Chapter 7. Stochastic Parameters

imgaug Documentation, Release 0.3.0

7.2. Continuous Probability Distributions 41

imgaug Documentation, Release 0.3.0

42 Chapter 7. Stochastic Parameters

imgaug Documentation, Release 0.3.0

(continued from previous page)

]
iap.show_distributions_grid(params)

• ChiSquare(df): The chi-square (“X^2”) distribution with df degrees of freedom. Roughly similar to a con-
tinuous version of the poisson distribution. Has its peak at df and no negative values, only positive ones.
Example:

from imgaug import parameters as iap
params = [

iap.ChiSquare(1),
iap.ChiSquare(3),
iap.ChiSquare(iap.Choice([1, 5])),

(continues on next page)

7.2. Continuous Probability Distributions 43

imgaug Documentation, Release 0.3.0

(continued from previous page)

iap.RandomSign(iap.ChiSquare(3))
]
iap.show_distributions_grid(params)

• Weibull(a): Weibull distribution with shape a. Example:

from imgaug import parameters as iap
params = [

iap.Weibull(0.5),
iap.Weibull(1),
iap.Weibull(1.5),
iap.Weibull((0.5, 1.5))

]
(continues on next page)

44 Chapter 7. Stochastic Parameters

imgaug Documentation, Release 0.3.0

(continued from previous page)

iap.show_distributions_grid(params)

• Uniform(a, b): Uniform distribution in the range [a, b). Example:

from imgaug import parameters as iap
params = [

iap.Uniform(0, 1),
iap.Uniform(iap.Normal(-3, 1), iap.Normal(3, 1)),
iap.Uniform([-1, 0], 1),
iap.Uniform((-1, 0), 1)

]
iap.show_distributions_grid(params)

7.2. Continuous Probability Distributions 45

imgaug Documentation, Release 0.3.0

46 Chapter 7. Stochastic Parameters

imgaug Documentation, Release 0.3.0

• Beta(alpha, beta): Beta distribution with parameters alpha and beta. Example:

from imgaug import parameters as iap
params = [

iap.Beta(0.5, 0.5),
iap.Beta(2.0, 2.0),
iap.Beta(1.0, 0.5),
iap.Beta(0.5, 1.0)

]
iap.show_distributions_grid(params)

7.2. Continuous Probability Distributions 47

imgaug Documentation, Release 0.3.0

7.3 Discrete Probability Distributions

The following discrete probability distributions are available:

• Binomial(p): The common binomial distribution with probability p. Useful to simulate coinflips. Example:

from imgaug import parameters as iap
params = [

iap.Binomial(0.5),
iap.Binomial(0.9)

]
iap.show_distributions_grid(params)

• DiscreteUniform(a, b): The discrete uniform distribution in the range [a..b]. Example:

from imgaug import parameters as iap
params = [

iap.DiscreteUniform(0, 10),
iap.DiscreteUniform(-10, 10),
iap.DiscreteUniform([-10, -9, -8, -7], 10),
iap.DiscreteUniform((-10, -7), 10)

]
iap.show_distributions_grid(params)

• Poisson(lam): Poisson distribution with shape lam. Generates no negative values. Example:

from imgaug import parameters as iap
params = [

iap.Poisson(1),
iap.Poisson(2.5),
iap.Poisson((1, 2.5)),
iap.RandomSign(iap.Poisson(2.5))

]
iap.show_distributions_grid(params)

48 Chapter 7. Stochastic Parameters

imgaug Documentation, Release 0.3.0

7.3. Discrete Probability Distributions 49

imgaug Documentation, Release 0.3.0

50 Chapter 7. Stochastic Parameters

imgaug Documentation, Release 0.3.0

7.4 Arithmetic

The library supports arithmetic operations on stochastic parameters. This allows to modify values sampled from
distributions or combine several distributions with each other.

• Add(param, val, elementwise): Add val to the values sampled from param. The shortcut is +, e.g. Uniform(. . .)
+ 1. val can be a stochastic parameter itself. Usually, only one value is sampled from val per sampling run and
added to all samples generated by param. Alternatively, elementwise can be set to True in order to generate as
many samples from val as from param and add them elementwise. Note that Add merely adds to the results of
param and does not combine probability density functions (see e.g. example image 3 and 4). Example:

from imgaug import parameters as iap
params = [

iap.Uniform(0, 1) + 1, # identical to: Add(Uniform(0, 1), 1)
iap.Add(iap.Uniform(0, 1), iap.Choice([0, 1], p=[0.7, 0.3])),
iap.Normal(0, 1) + iap.Uniform(-5.5, -5) + iap.Uniform(5, 5.5),
iap.Normal(0, 1) + iap.Uniform(-7, 5) + iap.Poisson(3),
iap.Add(iap.Normal(-3, 1), iap.Normal(3, 1)),
iap.Add(iap.Normal(-3, 1), iap.Normal(3, 1), elementwise=True)

]
iap.show_distributions_grid(

params,
rows=2,
sample_sizes=[# (iterations, samples per iteration)

(1000, 1000), (1000, 1000), (1000, 1000),
(1000, 1000), (1, 100000), (1, 100000)

]
)

7.4. Arithmetic 51

imgaug Documentation, Release 0.3.0

• Subtract(param, val, elementwise): Same as Add, but subtracts val from the results of param. The shortcut is -,
e.g. Uniform(. . .) - 1.

• Multiply(param, val, elementwise): Same as Add, but multiplies val with the results of param. The shortcut is
*, e.g. Uniform(. . .) * 2. Example:

from imgaug import parameters as iap
params = [

iap.Uniform(0, 1) * 2, # identical to: Multiply(Uniform(0, 1), 2)
iap.Multiply(iap.Uniform(0, 1), iap.Choice([0, 1], p=[0.7, 0.3])),
(iap.Normal(0, 1) * iap.Uniform(-5.5, -5)) * iap.Uniform(5, 5.5),
(iap.Normal(0, 1) * iap.Uniform(-7, 5)) * iap.Poisson(3),
iap.Multiply(iap.Normal(-3, 1), iap.Normal(3, 1)),
iap.Multiply(iap.Normal(-3, 1), iap.Normal(3, 1), elementwise=True)

]
iap.show_distributions_grid(

params,
rows=2,
sample_sizes=[# (iterations, samples per iteration)

(1000, 1000), (1000, 1000), (1000, 1000),
(1000, 1000), (1, 100000), (1, 100000)

]
)

• Divide(param, val, elementwise): Same as Multiply, but divides by val. The shortcut is /, e.g. Uniform(. . .) / 2.
Division by zero is automatically prevented (zeros are replaced by ones). Example:

from imgaug import parameters as iap

(continues on next page)

52 Chapter 7. Stochastic Parameters

imgaug Documentation, Release 0.3.0

(continued from previous page)

params = [
iap.Uniform(0, 1) / 2, # identical to: Divide(Uniform(0, 1), 2)
iap.Divide(iap.Uniform(0, 1), iap.Choice([0, 2], p=[0.7, 0.3])),
(iap.Normal(0, 1) / iap.Uniform(-5.5, -5)) / iap.Uniform(5, 5.5),
(iap.Normal(0, 1) * iap.Uniform(-7, 5)) / iap.Poisson(3),
iap.Divide(iap.Normal(-3, 1), iap.Normal(3, 1)),
iap.Divide(iap.Normal(-3, 1), iap.Normal(3, 1), elementwise=True)

]
iap.show_distributions_grid(

params,
rows=2,
sample_sizes=[# (iterations, samples per iteration)

(1000, 1000), (1000, 1000), (1000, 1000),
(1000, 1000), (1, 100000), (1, 100000)

]
)

• Power(param, val, elementwise): Same as Add, but raises sampled values to the exponent val. The shortcut is
**. Example:

from imgaug import parameters as iap
params = [

iap.Uniform(0, 1) ** 2, # identical to: Power(Uniform(0, 1), 2)
iap.Clip(iap.Uniform(-1, 1) ** iap.Normal(0, 1), -4, 4)

]
iap.show_distributions_grid(params, rows=1)

7.4. Arithmetic 53

imgaug Documentation, Release 0.3.0

7.5 Special Parameters

• Deterministic(v): A constant. Upon sampling, this always returns v.

• Choice(values, replace=True, p=None): Upon sampling, this parameter picks randomly elements from a list
values. If replace is set to True (default), the picking happens with replacement. By default, all elements have
the same probability of being picked. This can be modified using p. Note that values may also contain strings
and other stochastic parameters. In the latter case, each picked parameter will be replaced by a sample from
that parameter. This allows merging of probability mass functions, but is a rather slow process. All elements in
values should have the same datatype (except for stochastic parameters). Example:

from imgaug import parameters as iap
params = [

iap.Choice([0, 1, 2]),
iap.Choice([0, 1, 2], p=[0.15, 0.5, 0.35]),
iap.Choice([iap.Normal(-3, 1), iap.Normal(3, 1)]),
iap.Choice([iap.Normal(-3, 1), iap.Poisson(3)])

]
iap.show_distributions_grid(params)

• Clip(param, minval=None, maxval=None): Clips the values sampled from param to the range [minval, maxval].
minval and maxval may be None. In that case, only minimum or maximum clipping is applied (depending on
what is None). Example:

from imgaug import parameters as iap
params = [

iap.Clip(iap.Normal(0, 1), -2, 2),
iap.Clip(iap.Normal(0, 1), -2, None)

]
iap.show_distributions_grid(params, rows=1)

• Discretize(param): Converts a continuous parameter param into a discrete one (using rounding). Discrete
parameters are not changed. Example:

54 Chapter 7. Stochastic Parameters

imgaug Documentation, Release 0.3.0

7.5. Special Parameters 55

imgaug Documentation, Release 0.3.0

from imgaug import parameters as iap
params = [

iap.Discretize(iap.Normal(0, 1)),
iap.Discretize(iap.ChiSquare(3))

]
iap.show_distributions_grid(params, rows=1)

• Absolute(param): Applies an absolute function to each value sampled from param, turning them to positive
ones. Example:

from imgaug import parameters as iap

(continues on next page)

56 Chapter 7. Stochastic Parameters

imgaug Documentation, Release 0.3.0

(continued from previous page)

params = [
iap.Absolute(iap.Normal(0, 1)),
iap.Absolute(iap.Laplace(0, 1))

]
iap.show_distributions_grid(params, rows=1)

• RandomSign(param, p_positive=0.5): Randomly flips the signs of values sampled from param. Optionally, the
probability of flipping a value’s sign towards positive can be set. Example:

from imgaug import parameters as iap
params = [

iap.ChiSquare(3),
iap.RandomSign(iap.ChiSquare(3)),
iap.RandomSign(iap.ChiSquare(3), p_positive=0.75),
iap.RandomSign(iap.ChiSquare(3), p_positive=0.9)

]
iap.show_distributions_grid(params)

• ForceSign(param, positive, mode=”invert”, reroll_count_max=2): Converts all values sampled from param
to positive or negative ones. Signs of positive/negative values may simply be flipped (mode=”invert”) or re-
sampled from param (mode=”reroll”). When rerolling, the number of iterations is limited to reroll_count_max
(afterwards mode=”invert” is used). Example:

from imgaug import parameters as iap
params = [

iap.ForceSign(iap.Normal(0, 1), positive=True),
iap.ChiSquare(3) - 3.0,
iap.ForceSign(iap.ChiSquare(3) - 3.0, positive=True, mode="invert"),
iap.ForceSign(iap.ChiSquare(3) - 3.0, positive=True, mode="reroll")

]
iap.show_distributions_grid(params)

• Positive(other_param, mode=”invert”, reroll_count_max=2): Shortcut for ForceSign with positive=True. E.g.
Positive(Normal(0, 1)) restricts a normal distribution to only positive values.

7.5. Special Parameters 57

imgaug Documentation, Release 0.3.0

58 Chapter 7. Stochastic Parameters

imgaug Documentation, Release 0.3.0

7.5. Special Parameters 59

imgaug Documentation, Release 0.3.0

• Negative(other_param, mode=”invert”, reroll_count_max=2): Shortcut for ForceSign with positive=False.
E.g. Negative(Normal(0, 1)) restricts a normal distribution to only negative values.

• FromLowerResolution(other_param, size_percent=None, size_px=None, method=”nearest”, min_size=1): In-
tended for 2d-sampling processes, e.g. for masks. Samples these in a lower resolution space. E.g. instead of
sampling a mask at 100x100, this allows to sample it at 10x10 and then upsample to 100x100. One advantage is,
that this can be faster. Another possible use is, that the upsampling may result in large, correlated blobs (linear
interpolation) or rectangles (nearest neighbour interpolation).

7.6 Noise Parameters

TODO

60 Chapter 7. Stochastic Parameters

CHAPTER 8

Blending/Overlaying images

8.1 Introduction

Most augmenters in the library affect images in uniform ways per image. Sometimes one might not want that and
instead desires more localized effects (e.g. change the color of some image regions, while keeping the others un-
changed) or wants to keep a fraction of the old image (e.g. blur the image and mix in a bit of the unblurred image).
Blending augmenters are intended for these use cases. They either mix two images using a constant alpha factor or
using a pixel-wise mask. Below image shows examples.

First row
iaa.BlendAlpha(

(0.0, 1.0),
foreground=iaa.MedianBlur(11),
per_channel=True

)

Second row
iaa.BlendAlphaSimplexNoise(

foreground=iaa.EdgeDetect(1.0),
per_channel=False

)

Third row
iaa.BlendAlphaSimplexNoise(

foreground=iaa.EdgeDetect(1.0),
background=iaa.LinearContrast((0.5, 2.0)),
per_channel=0.5

)

Forth row
iaa.BlendAlphaFrequencyNoise(

foreground=iaa.Affine(
rotate=(-10, 10),
translate_px={"x": (-4, 4), "y": (-4, 4)}

(continues on next page)

61

imgaug Documentation, Release 0.3.0

(continued from previous page)

),
background=iaa.AddToHueAndSaturation((-40, 40)),
per_channel=0.5

)

Fifth row
iaa.BlendAlphaSimplexNoise(

foreground=iaa.BlendAlphaSimplexNoise(
foreground=iaa.EdgeDetect(1.0),
background=iaa.LinearContrast((0.5, 2.0)),
per_channel=True

),
background=iaa.BlendAlphaFrequencyNoise(

exponent=(-2.5, -1.0),
foreground=iaa.Affine(

rotate=(-10, 10),
translate_px={"x": (-4, 4), "y": (-4, 4)}

),
background=iaa.AddToHueAndSaturation((-40, 40)),
per_channel=True

),
per_channel=True,
aggregation_method="max",
sigmoid=False

)

8.2 Imagewise Constant Alphas Values

The augmenter imgaug.augmenters.blend.BlendAlpha allows to mix the results of two augmentation
branches using an alpha factor that is constant throughout the whole image, i.e. it follows roughly I_blend =
alpha * I_fg + (1 - alpha) * I_bg per image, where I_fg is the image from the foreground branch
and I_bg is the image from the background branch. Often, the first branch will be an augmented version of the image
and the second branch will be the identity function, leading to a blend of augmented and unaugmented image. The
background branch can also contain non-identity augmenters, leading to a blend of two distinct augmentation effects.

imgaug.augmenters.blend.BlendAlpha is already built into some augmenters as a parameter, e.g. into
imgaug.augmenters.convolutional.EdgeDetect.

The below example code generates images that are a blend between imgaug.augmenters.convolutional.
Sharpen and imgaug.augmenters.arithmetic.CoarseDropout. Notice how the sharpening does not
affect the black rectangles from dropout, as the two augmenters are both applied to the original images and merely
blended.

import imgaug as ia
from imgaug import augmenters as iaa

ia.seed(1)

Example batch of images.
The array has shape (8, 128, 128, 3) and dtype uint8.
images = np.array(

[ia.quokka(size=(128, 128)) for _ in range(8)],
dtype=np.uint8

)

(continues on next page)

62 Chapter 8. Blending/Overlaying images

imgaug Documentation, Release 0.3.0

Fig. 1: Various effects of combining alpha-augmenters with other augmenters. First row shows
imgaug.augmenters.blend.BlendAlpha with imgaug.augmenters.blur.MedianBlur,
second imgaug.augmenters.blend.BlendAlphaSimplexNoise with imgaug.augmenters.
convolutional.EdgeDetect, third imgaug.augmenters.blend.BlendAlphaSimplexNoise
with imgaug.augmenters.convolutional.EdgeDetect and imgaug.augmenters.contrast.
ContrastNormalization, third shows imgaug.augmenters.blend.BlendAlphaFrequencyNoise
with imgaug.augmenters.geometric.Affine and imgaug.augmenters.color.
AddToHueAndSaturation and forth row shows a mixture imgaug.augmenters.blend.
BlendAlphaSimplexNoise and imgaug.augmenters.blend.BlendAlphaFrequencyNoise.

8.2. Imagewise Constant Alphas Values 63

imgaug Documentation, Release 0.3.0

(continued from previous page)

seq = iaa.BlendAlpha(
factor=(0.2, 0.8),
foreground=iaa.Sharpen(1.0, lightness=2),
background=iaa.CoarseDropout(p=0.1, size_px=8)

)

images_aug = seq(images=images)

Fig. 2: Mixing imgaug.augmenters.convolutional.Sharpen and imgaug.augmenters.
arithmetic.CoarseDropout via imgaug.augmenters.blend.BlendAlpha. The resulting effect
is very different from executing them in sequence.

Similar to other augmenters, imgaug.augmenters.blend.BlendAlpha supports a per_channel mode, in
which it samples blending strengths for each channel independently. As a result, some channels may show more
from the foreground (or background) branch’s outputs than other channels. This can lead to visible color effects. The
following example is the same as the one above, only per_channel was activated.

iaa.BlendAlpha(..., per_channel=True)

imgaug.augmenters.blend.BlendAlpha can also be used with augmenters that change the position of pix-
els, leading to “ghost” images. (This should not be done when also augmenting keypoints, as their position becomes
unclear.)

seq = iaa.BlendAlpha(
factor=(0.2, 0.8),
foreground=iaa.Affine(rotate=(-20, 20)),
per_channel=True

)

64 Chapter 8. Blending/Overlaying images

imgaug Documentation, Release 0.3.0

Fig. 3: Mixing imgaug.augmenters.convolutional.Sharpen and imgaug.augmenters.
arithmetic.CoarseDropout via imgaug.augmenters.blend.BlendAlpha and per_channel
set to True.

Fig. 4: Mixing original images with their rotated version. Some channels are more visibly rotated than others.

8.2. Imagewise Constant Alphas Values 65

imgaug Documentation, Release 0.3.0

8.3 BlendAlphaSimplexNoise

imgaug.augmenters.blend.BlendAlpha uses a constant blending factor per image (or per channel). This
limits its possibilities. Often, a more localized factor is desired to create unusual patterns. imgaug.augmenters.
blend.BlendAlphaSimplexNoise is an augmenter that does that. It generates continuous masks follow-
ing simplex noise and uses them to perform local blending. The following example shows a combination of
imgaug.augmenters.blend.BlendAlphaSimplexNoise and imgaug.augmenters.arithmetic.
Multiply (with per_channel=True) that creates blobs of various colors in the image.

import imgaug as ia
from imgaug import augmenters as iaa

ia.seed(1)

Example batch of images.
The array has shape (8, 128, 128, 3) and dtype uint8.
images = np.array(

[ia.quokka(size=(128, 128)) for _ in range(8)],
dtype=np.uint8

)

seq = iaa.SimplexNoiseAlpha(
foreground=iaa.Multiply(iap.Choice([0.5, 1.5]), per_channel=True)

)

images_aug = seq(images=images)

Fig. 5: Mixing original images with their versions modified by imgaug.augmenters.arithmetic.
Multiply (with per_channel set to True). Simplex noise masks are used for the blending process, leading
to blobby patterns.

imgaug.augmenters.blend.BlendAlphaSimplexNoise also supports per_channel=True, lead-
ing to unique noise masks sampled per channel. The following example shows the combination of
imgaug.augmenters.blend.BlendAlphaSimplexNoise (with per_channel=True) and imgaug.

66 Chapter 8. Blending/Overlaying images

imgaug Documentation, Release 0.3.0

augmenters.convolutional.EdgeDetect. Even though imgaug.augmenters.convolutional.
EdgeDetect usually generates black and white images (white=edges, black=everything else), here the combination
leads to strong color effects as the channel-wise noise masks only blend EdgeDetect’s result for some channels.

seq = iaa.BlendAlphaSimplexNoise(
foreground=iaa.EdgeDetect(1.0),
per_channel=True

)

Fig. 6: Blending images via simplex noise can lead to unexpected but diverse patterns when per_channel is set to
True. Here, a mixture of original images with EdgeDetect(1.0) is used.

imgaug.augmenters.blend.BlendAlphaSimplexNoise uses continuous noise masks (2d arrays with val-
ues in the range [0.0, 1.0]) to blend images. The below image shows examples of 64x64 noise masks generated
by imgaug.augmenters.blend.BlendAlphaSimplexNoise with default settings. Values close to 1.
0 (white) indicate that pixel colors will be taken from the first image source, while 0.0 (black) values indicate
that pixel colors will be taken from the second image source. (Often only one image source will be given in the
form of augmenters and the second will fall back to the original images fed into imgaug.augmenters.blend.
BlendAlphaSimplexNoise.)

Fig. 7: Examples of noise masks generated by imgaug.augmenters.blend.BlendAlphaSimplexNoise
using default settings.

imgaug.augmenters.blend.BlendAlphaSimplexNoise generates its noise masks in low resolution im-
ages and then upscales the masks to the size of the input images. During upscaling it usually uses nearest neighbour
interpolation (nearest), linear interpolation (linear) or cubic interpolation (cubic). Nearest neighbour interpo-
lation leads to noise maps with rectangular blobs. The below example shows noise maps generated when only using
nearest neighbour interpolation.

8.3. BlendAlphaSimplexNoise 67

imgaug Documentation, Release 0.3.0

seq = iaa.BlendAlphaSimplexNoise(
...,
upscale_method="nearest"

)

Fig. 8: Examples of noise masks generated by imgaug.augmenters.blend.BlendAlphaSimplexNoise
when restricting the upscaling method to nearest.

Similarly, the following example shows noise maps generated when only using linear interpolation.

seq = iaa.BlendAlphaSimplexNoise(
...,
upscale_method="linear"

)

Fig. 9: Examples of noise masks generated by imgaug.augmenters.blend.BlendAlphaSimplexNoise
when restricting the upscaling method to linear.

8.4 FrequencyNoiseAlpha

imgaug.augmenters.blend.BlendAlphaFrequencyNoise is mostly identical to imgaug.
augmenters.blend.BlendAlphaSimplexNoise. In contrast to imgaug.augmenters.blend.
BlendAlphaSimplexNoise it uses a different sampling process to generate the blend masks. The process is
based on starting with random frequencies, weighting them with a random exponent and then transforming from
frequency domain to spatial domain. When using a low exponent value this leads to large, smooth blobs. Slightly
higher exponents lead to cloudy patterns. High exponent values lead to recurring, small patterns. The below example
shows the usage of imgaug.augmenters.blend.BlendAlphaFrequencyNoise.

import imgaug as ia
from imgaug import augmenters as iaa
from imgaug import parameters as iap

ia.seed(1)

Example batch of images.
The array has shape (8, 64, 64, 3) and dtype uint8.
images = np.array(

[ia.quokka(size=(128, 128)) for _ in range(8)],
dtype=np.uint8

)

seq = iaa.BlendAlphaFrequencyNoise(
foreground=iaa.Multiply(iap.Choice([0.5, 1.5]), per_channel=True)

)

images_aug = seq.augment_images(images)

68 Chapter 8. Blending/Overlaying images

imgaug Documentation, Release 0.3.0

Fig. 10: Mixing original images with their versions modified by imgaug.augmenters.arithmetic.
Multiply (with per_channel set to True). Frequency noise masks are used for the blending process, leading
to blobby patterns.

Similarly to simplex noise, imgaug.augmenters.blend.BlendAlphaFrequencyNoise also supports
per_channel=True, leading to different noise maps per image channel.

seq = iaa.BlendAlphaFrequencyNoise(
foreground=iaa.EdgeDetect(1.0),
per_channel=True

)

The below image shows random example noise masks generated by imgaug.augmenters.blend.
BlendAlphaFrequencyNoise with default settings.

The following image shows the effects of varying exponent between -4.0 and 4.0. To show these effects more
clearly, a few features of imgaug.augmenters.blend.BlendAlphaFrequencyNoise were deactivated
(e.g. multiple iterations). In the code, E is the value of the exponent (e.g. E=-2.0).

seq = iaa.BlendAlphaFrequencyNoise(
exponent=E,
foreground=iaa.Multiply(iap.Choice([0.5, 1.5]), per_channel=True),
size_px_max=32,
upscale_method="linear",
iterations=1,
sigmoid=False

)

Similarly to imgaug.augmenters.blend.BlendAlphaSimplexNoise, imgaug.augmenters.
blend.BlendAlphaFrequencyNoise also generates the noise masks as low resolution versions and then
upscales them to the full image size. The following images show the usage of nearest neighbour interpolation
(upscale_method="nearest") and linear interpolation (upscale_method="linear").

8.4. FrequencyNoiseAlpha 69

imgaug Documentation, Release 0.3.0

Fig. 11: Blending images via frequency noise can lead to unexpected but diverse patterns when per_channel is set
to True. Here, a mixture of original images with imgaug.augmenters.convolutional.EdgeDetect(1.
0) is used.

Fig. 12: Examples of noise masks generated by imgaug.augmenters.blend.FrequencyNoiseAlpha using
default settings.

Fig. 13: Examples of noise masks generated by imgaug.augmenters.blend.
BlendAlphaFrequencyNoise using default settings with varying exponents.

70 Chapter 8. Blending/Overlaying images

imgaug Documentation, Release 0.3.0

Fig. 14: Examples of noise masks generated by imgaug.augmenters.blend.
BlendAlphaFrequencyNoise when restricting the upscaling method to nearest.

Fig. 15: Examples of noise masks generated by imgaug.augmenters.blend.
BlendAlphaFrequencyNoise when restricting the upscaling method to linear.

8.5 IterativeNoiseAggregator

Both imgaug.augmenters.blend.BlendAlphaSimplexNoise and imgaug.augmenters.blend.
BlendAlphaFrequencyNoise wrap around imgaug.parameters.IterativeNoiseAggregator, a
component to generate noise masks in multiple iterations. It has parameters for the number of iterations (1 to N)
and for the aggregation methods, which controls how the noise masks from the different iterations are to be combined.
Valid aggregation methods are "min", "avg" and "max", where min takes the minimum over all iteration’s masks,
max the maxmimum and avg the average. As a result, masks generated with method min tend to be close to 0.0
(mostly black values), those generated with max close to 1.0 and avg converges towards 0.5. (0.0 means that the
results of the second image dominate the final image, so in many cases the original images before the augmenter). The
following image shows the effects of changing the number of iterations when combining imgaug.parameters.
FrequencyNoise with imgaug.parameters.IterativeNoiseAggregator.

This is how the iterations would be changed for BlendAlphaFrequencyNoise.
(Same for BlendAlphaSimplexNoise.)
seq = iaa.BlendAlphaFrequencyNoise(

...,
iterations=N

)

The following image shows the effects of changing the aggregation mode (with varying iterations).

This is how the iterations and aggregation method would be changed for
BlendAlphaFrequencyNoise. (Same for BlendAlphaSimplexNoise.)
seq = iaa.BlendAlphaFrequencyNoise(

(continues on next page)

8.5. IterativeNoiseAggregator 71

imgaug Documentation, Release 0.3.0

Fig. 16: Examples of varying the number of iterations in imgaug.parameters.
IterativeNoiseAggregator (here in combination with imgaug.parameters.FrequencyNoise).

(continued from previous page)

...,
iterations=N,
aggregation_method=M

)

Fig. 17: Examples of varying the aggregation method and iterations in imgaug.parameters.
IterativeNoiseAggregator (here in combination with imgaug.parameters.FrequencyNoise).

8.6 Sigmoid

Generated noise masks can often end up having many values around 0.5, especially when running imgaug.
parameters.IterativeNoiseAggregator with many iterations and aggregation method avg. This can
be undesired. imgaug.parameters.Sigmoid is a method to compensate that. It applies a sigmoid func-
tion to the noise masks, forcing the values to mostly lie close to 0.0 or 1.0 and only rarely in between. This
can lead to blobs of values close to 1.0 (“use only colors from images coming from source A”), surrounded
by blobs with values close to 0.0 (“use only colors from images coming from source B”). This is simi-
lar to taking either from one image source (per pixel) or the other, but usually not both. Sigmoid is inte-

72 Chapter 8. Blending/Overlaying images

imgaug Documentation, Release 0.3.0

grated into both class:imgaug.augmenters.blend.BlendAlphaSimplexNoise and imgaug.augmenters.blend.
BlendAlphaFrequencyNoise. It can be dynamically activated/deactivated and has a threshold parameter that
controls how aggressive and pushes the noise values towards 1.0.

This is how the Sigmoid would be activated/deactivated for
BlendAlphaFrequencyNoise (same for BlendAlphaSimplexNoise). P is the
probability of the Sigmoid being activated (can be True/False), T is the
threshold (sane values are usually around -10 to +10, can be a
tuple, e.g. sigmoid_thresh=(-10, 10), to indicate a uniform range).
seq = iaa.BlendAlphaFrequencyNoise(

...,
sigmoid=P,
sigmoid_thresh=T

)

The below image shows the effects of applying imgaug.parameters.Sigmoid to noise masks generated by
imgaug.parameters.FrequencyNoise.

Fig. 18: Examples of noise maps without and with activated imgaug.parameters.Sigmoid (noise maps here
from imgaug.parameters.FrequencyNoise).

The below image shows the effects of varying the sigmoid’s threshold. Lower values place the threshold further to the
“left” (lower x values), leading to more x-values being above the threshold values, leading to more 1.0s in the noise
masks.

Fig. 19: Examples of varying the imgaug.parameters.Sigmoid threshold from -10.0 to 10.0.

8.6. Sigmoid 73

imgaug Documentation, Release 0.3.0

74 Chapter 8. Blending/Overlaying images

CHAPTER 9

Overview of Augmenters

9.1 augmenters.meta

9.1.1 Sequential

List augmenter that may contain other augmenters to apply in sequence or random order.

API link: Sequential

Example. Apply in predefined order:

import imgaug.augmenters as iaa
aug = iaa.Sequential([

iaa.Affine(translate_px={"x":-40}),
iaa.AdditiveGaussianNoise(scale=0.1*255)

])

Example. Apply in random order (note that the order is sampled once per batch and then the same for all images
within the batch):

aug = iaa.Sequential([
iaa.Affine(translate_px={"x":-40}),
iaa.AdditiveGaussianNoise(scale=0.1*255)

], random_order=True)

9.1.2 SomeOf

List augmenter that applies only some of its children to images.

API link: SomeOf

Example. Apply two of four given augmenters:

75

imgaug Documentation, Release 0.3.0

import imgaug.augmenters as iaa
aug = iaa.SomeOf(2, [

iaa.Affine(rotate=45),
iaa.AdditiveGaussianNoise(scale=0.2*255),
iaa.Add(50, per_channel=True),
iaa.Sharpen(alpha=0.5)

])

Example. Apply 0 to <max> given augmenters (where <max> is automatically replaced with the number of children):

aug = iaa.SomeOf((0, None), [
iaa.Affine(rotate=45),
iaa.AdditiveGaussianNoise(scale=0.2*255),
iaa.Add(50, per_channel=True),
iaa.Sharpen(alpha=0.5)

])

Example. Pick two of four given augmenters and apply them in random order:

aug = iaa.SomeOf(2, [
iaa.Affine(rotate=45),
iaa.AdditiveGaussianNoise(scale=0.2*255),
iaa.Add(50, per_channel=True),
iaa.Sharpen(alpha=0.5)

], random_order=True)

9.1.3 OneOf

Augmenter that always executes exactly one of its children.

API link: OneOf()

Example. Apply one of four augmenters to each image:

76 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

9.1. augmenters.meta 77

imgaug Documentation, Release 0.3.0

78 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

import imgaug.augmenters as iaa
aug = iaa.OneOf([

iaa.Affine(rotate=45),
iaa.AdditiveGaussianNoise(scale=0.2*255),
iaa.Add(50, per_channel=True),
iaa.Sharpen(alpha=0.5)

])

9.1.4 Sometimes

Augment only p percent of all images with one or more augmenters.

9.1. augmenters.meta 79

imgaug Documentation, Release 0.3.0

API link: Sometimes

Example. Apply gaussian blur to about 50% of all images:

import imgaug.augmenters as iaa
aug = iaa.Sometimes(0.5, iaa.GaussianBlur(sigma=2.0))

Example. Apply gaussian blur to about 50% of all images. Apply a mixture of affine rotations and sharpening to the
other 50%.

aug = iaa.Sometimes(
0.5,
iaa.GaussianBlur(sigma=2.0),
iaa.Sequential([iaa.Affine(rotate=45), iaa.Sharpen(alpha=1.0)])

)

9.1.5 WithChannels

Apply child augmenters to specific channels.

API link: WithChannels

Example. Increase each pixel’s R-value (redness) by 10 to 100:

import imgaug.augmenters as iaa
aug = iaa.WithChannels(0, iaa.Add((10, 100)))

Example. Rotate each image’s red channel by 0 to 45 degrees:

aug = iaa.WithChannels(0, iaa.Affine(rotate=(0, 45)))

80 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

9.1. augmenters.meta 81

imgaug Documentation, Release 0.3.0

9.1.6 Identity

Augmenter that does not change the input data.

This augmenter is useful e.g. during validation/testing as it allows to re-use the training code without actually per-
forming any augmentation.

API link: Identity

Example. Create an augmenter that does not change inputs:

import imgaug.augmenters as iaa
aug = iaa.Identity()

9.1.7 Noop

Alias for augmenter Identity.

It is recommended to now use Identity. Noop might be deprecated in the future.

API link: Noop

Example. Create an augmenter that does nothing:

import imgaug.augmenters as iaa
aug = iaa.Noop()

9.1.8 Lambda

Augmenter that calls a lambda function for each batch of input image.

API link: Lambda

Example. Replace in every image each fourth row with black pixels:

import imgaug.augmenters as iaa

def img_func(images, random_state, parents, hooks):
for img in images:

img[::4] = 0
return images

def keypoint_func(keypoints_on_images, random_state, parents, hooks):
return keypoints_on_images

aug = iaa.Lambda(img_func, keypoint_func)

82 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

9.1. augmenters.meta 83

imgaug Documentation, Release 0.3.0

9.1.9 AssertLambda

Augmenter that runs an assert on each batch of input images using a lambda function as condition.

API link: AssertLambda

TODO examples

9.1.10 AssertShape

Augmenter to make assumptions about the shape of input image(s) and keypoints.

API link: AssertShape

Example. Check if each image in a batch has shape 32x32x3, otherwise raise an exception:

import imgaug.augmenters as iaa
seq = iaa.Sequential([

iaa.AssertShape((None, 32, 32, 3)),
iaa.Fliplr(0.5) # only executed if shape matches

])

Example. Check if each image in a batch has a height in the range 32<=x<64, a width of exactly 64 and either 1 or
3 channels:

seq = iaa.Sequential([
iaa.AssertShape((None, (32, 64), 32, [1, 3])),
iaa.Fliplr(0.5)

])

9.1.11 ChannelShuffle

Randomize the order of channels in input images.

API link: ChannelShuffle

Example. Shuffle all channels of 35% of all images:

import imgaug.augmenters as iaa
aug = iaa.ChannelShuffle(0.35)

84 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

Example. Shuffle only channels 0 and 1 of 35% of all images. As the new channel orders 0, 1 and 1, 0 are
both valid outcomes of the shuffling, it means that for 0.35 * 0.5 = 0.175 or 17.5% of all images the order of
channels 0 and 1 is inverted.

aug = iaa.ChannelShuffle(0.35, channels=[0, 1])

9.1.12 RemoveCBAsByOutOfImageFraction

Remove coordinate-based augmentables exceeding an out of image fraction.

This augmenter inspects all coordinate-based augmentables (e.g. bounding boxes, line strings) within a given batch
and removes any such augmentable which’s out of image fraction is exactly a given value or greater than that. The out
of image fraction denotes the fraction of the augmentable’s area that is outside of the image, e.g. for a bounding box
that has half of its area outside of the image it would be 0.5.

API link: RemoveCBAsByOutOfImageFraction

Example. Translate all inputs by -100 to 100 pixels on the x-axis, then remove any coordinate-based augmentable
(e.g. bounding boxes) which has at least 50% of its area outside of the image plane:

import imgaug.augmenters as iaa
aug = iaa.Sequential([

iaa.Affine(translate_px={"x": (-100, 100)}),
iaa.RemoveCBAsByOutOfImageFraction(0.5)

])

Example. Create a bounding box on an example image, then translate the image so that 50% of the bounding box’s
area is outside of the image and compare the effects and using RemoveCBAsByOutOfImageFraction with not
using it.

import imgaug as ia
import imgaug.augmenters as iaa
image = ia.quokka_square((100, 100))
bb = ia.BoundingBox(x1=50-25, y1=0, x2=50+25, y2=100)
bbsoi = ia.BoundingBoxesOnImage([bb], shape=image.shape)
aug_without = iaa.Affine(translate_px={"x": 51})
aug_with = iaa.Sequential([

iaa.Affine(translate_px={"x": 51}),
iaa.RemoveCBAsByOutOfImageFraction(0.5)

(continues on next page)

9.1. augmenters.meta 85

imgaug Documentation, Release 0.3.0

(continued from previous page)

])

image_without, bbsoi_without = aug_without(
image=image, bounding_boxes=bbsoi)

image_with, bbsoi_with = aug_with(
image=image, bounding_boxes=bbsoi)

assert len(bbsoi_without.bounding_boxes) == 1
assert len(bbsoi_with.bounding_boxes) == 0

9.1.13 ClipCBAsToImagePlanes

Clip coordinate-based augmentables to areas within the image plane.

This augmenter inspects all coordinate-based augmentables (e.g. bounding boxes, line strings) within a given batch
and from each of them parts that are outside of the image plane. Parts within the image plane will be retained. This
may e.g. shrink down bounding boxes. For keypoints, it removes any single points outside of the image plane. Any
augmentable that is completely outside of the image plane will be removed.

API link: ClipCBAsToImagePlanes

Example. Translate input data on the x-axis by -100 to 100 pixels, then cut all coordinate-based augmentables (e.g.
bounding boxes) down to areas that are within the image planes of their corresponding images:

86 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

import imgaug.augmenters as iaa
aug = iaa.Sequential([

iaa.Affine(translate_px={"x": (-100, 100)}),
iaa.ClipCBAsToImagePlanes()

])

9.2 augmenters.arithmetic

9.2.1 Add

Add a value to all pixels in an image.

API link: Add

Example. Add random values between -40 and 40 to images, with each value being sampled once per image and then
being the same for all pixels:

import imgaug.augmenters as iaa
aug = iaa.Add((-40, 40))

Example. Add random values between -40 and 40 to images. In 50% of all images the values differ per channel (3
sampled value). In the other 50% of all images the value is the same for all channels:

aug = iaa.Add((-40, 40), per_channel=0.5)

9.2.2 AddElementwise

Add values to the pixels of images with possibly different values for neighbouring pixels.

API link: AddElementwise

Example. Add random values between -40 and 40 to images, with each value being sampled per pixel:

9.2. augmenters.arithmetic 87

imgaug Documentation, Release 0.3.0

88 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

import imgaug.augmenters as iaa
aug = iaa.AddElementwise((-40, 40))

Example. Add random values between -40 and 40 to images. In 50% of all images the values differ per channel (3
sampled values per pixel). In the other 50% of all images the value is the same for all channels per pixel:

aug = iaa.AddElementwise((-40, 40), per_channel=0.5)

9.2.3 AdditiveGaussianNoise

Add noise sampled from gaussian distributions elementwise to images.

API link: AdditiveGaussianNoise()

9.2. augmenters.arithmetic 89

imgaug Documentation, Release 0.3.0

90 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

Example. Add gaussian noise to an image, sampled once per pixel from a normal distribution N(0, s), where s is
sampled per image and varies between 0 and 0.2*255:

import imgaug.augmenters as iaa
aug = iaa.AdditiveGaussianNoise(scale=(0, 0.2*255))

Example. Add gaussian noise to an image, sampled once per pixel from a normal distribution N(0, 0.05*255):

aug = iaa.AdditiveGaussianNoise(scale=0.2*255)

Example. Add gaussian noise to an image, sampled channelwise from N(0, 0.2*255) (i.e. three independent
samples per pixel):

aug = iaa.AdditiveGaussianNoise(scale=0.2*255, per_channel=True)

9.2.4 AdditiveLaplaceNoise

Add noise sampled from laplace distributions elementwise to images.

The laplace distribution is similar to the gaussian distribution, but puts more weight on the long tail. Hence, this noise
will add more outliers (very high/low values). It is somewhere between gaussian noise and salt and pepper noise.

API link: AdditiveLaplaceNoise()

Example. Add laplace noise to an image, sampled once per pixel from Laplace(0, s), where s is sampled per
image and varies between 0 and 0.2*255:

import imgaug.augmenters as iaa
aug = iaa.AdditiveLaplaceNoise(scale=(0, 0.2*255))

Example. Add laplace noise to an image, sampled once per pixel from Laplace(0, 0.2*255):

aug = iaa.AdditiveLaplaceNoise(scale=0.2*255)

9.2. augmenters.arithmetic 91

imgaug Documentation, Release 0.3.0

92 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

9.2. augmenters.arithmetic 93

imgaug Documentation, Release 0.3.0

Example. Add laplace noise to an image, sampled channelwise from Laplace(0, 0.2*255) (i.e. three indepen-
dent samples per pixel):

aug = iaa.AdditiveLaplaceNoise(scale=0.2*255, per_channel=True)

9.2.5 AdditivePoissonNoise

Add noise sampled from poisson distributions elementwise to images.

Poisson noise is comparable to gaussian noise, as e.g. generated via AdditiveGaussianNoise. As poisson
distributions produce only positive numbers, the sign of the sampled values are here randomly flipped.

Values of around 20.0 for lam lead to visible noise (for uint8). Values of around 40.0 for lam lead to very
visible noise (for uint8). It is recommended to usually set per_channel to True.

API link: AdditivePoissonNoise()

Example. Add poisson noise to an image, sampled once per pixel from Poisson(lam), where lam is sampled per
image and varies between 0 and 40:

import imgaug.augmenters as iaa
aug = iaa.AdditivePoissonNoise(scale=(0, 40))

Example. Add poisson noise to an image, sampled once per pixel from Poisson(40):

aug = iaa.AdditivePoissonNoise(40)

Example. Add poisson noise to an image, sampled channelwise from Poisson(40) (i.e. three independent samples
per pixel):

aug = iaa.AdditivePoissonNoise(scale=40, per_channel=True)

94 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

9.2. augmenters.arithmetic 95

imgaug Documentation, Release 0.3.0

96 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

9.2.6 Multiply

Multiply all pixels in an image with a specific value, thereby making the image darker or brighter.

API link: Multiply

Example. Multiply each image with a random value between 0.5 and 1.5:

import imgaug.augmenters as iaa
aug = iaa.Multiply((0.5, 1.5))

Example. Multiply 50% of all images with a random value between 0.5 and 1.5 and multiply the remaining 50%
channel-wise, i.e. sample one multiplier independently per channel:

aug = iaa.Multiply((0.5, 1.5), per_channel=0.5)

9.2.7 MultiplyElementwise

Multiply values of pixels with possibly different values for neighbouring pixels, making each pixel darker or brighter.

API link: MultiplyElementwise

Example. Multiply each pixel with a random value between 0.5 and 1.5:

import imgaug.augmenters as iaa
aug = iaa.MultiplyElementwise((0.5, 1.5))

Example. Multiply in 50% of all images each pixel with random values between 0.5 and 1.5 and multiply in the
remaining 50% of all images the pixels channel-wise, i.e. sample one multiplier independently per channel and pixel:

aug = iaa.MultiplyElementwise((0.5, 1.5), per_channel=0.5)

9.2. augmenters.arithmetic 97

imgaug Documentation, Release 0.3.0

98 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

9.2. augmenters.arithmetic 99

imgaug Documentation, Release 0.3.0

100 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

9.2. augmenters.arithmetic 101

imgaug Documentation, Release 0.3.0

9.2.8 Cutout

Fill one or more rectangular areas in an image using a fill mode.

See paper “Improved Regularization of Convolutional Neural Networks with Cutout” by DeVries and Taylor.

In contrast to the paper, this implementation also supports replacing image sub-areas with gaussian noise, random
intensities or random RGB colors. It also supports non-squared areas. While the paper uses absolute pixel values for
the size and position, this implementation uses relative values, which seems more appropriate for mixed-size datasets.
The position parameter furthermore allows more flexibility, e.g. gaussian distributions around the center.

Note: This augmenter affects only image data. Other datatypes (e.g. segmentation map pixels or keypoints within
the filled areas) are not affected.

Note: Gaussian fill mode will assume that float input images contain values in the interval [0.0, 1.0] and hence
sample values from a gaussian within that interval, i.e. from N(0.5, std=0.5/3).

API link: MultiplyElementwise

Example. Fill per image two random areas, by default with grayish pixels:

import imgaug.augmenters as iaa
aug = iaa.Cutout(nb_iterations=2)

Example. Fill per image between one and five areas, each having 20% of the corresponding size of the height and
width (for non-square images this results in non-square areas to be filled).

aug = iaa.Cutout(nb_iterations=(1, 5), size=0.2, squared=False)

Example. Fill all areas with white pixels:

aug = iaa.Cutout(fill_mode="constant", cval=255)

102 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

9.2. augmenters.arithmetic 103

imgaug Documentation, Release 0.3.0

Example. Fill 50% of all areas with a random intensity value between 0 and 256. Fill the other 50% of all areas with
random colors.

aug = iaa.Cutout(fill_mode="constant", cval=(0, 255),
fill_per_channel=0.5)

Example. Fill areas with gaussian channelwise noise (i.e. usually RGB).

aug = iaa.Cutout(fill_mode="gaussian", fill_per_channel=True)

104 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

9.2.9 Dropout

Augmenter that sets a certain fraction of pixels in images to zero.

API link: Dropout()

Example. Sample per image a value p from the range 0<=p<=0.2 and then drop p percent of all pixels in the image
(i.e. convert them to black pixels):

import imgaug.augmenters as iaa
aug = iaa.Dropout(p=(0, 0.2))

Example. Sample per image a value p from the range 0<=p<=0.2 and then drop p percent of all pixels in the image
(i.e. convert them to black pixels), but do this independently per channel in 50% of all images:

aug = iaa.Dropout(p=(0, 0.2), per_channel=0.5)

9.2.10 CoarseDropout

Augmenter that sets rectangular areas within images to zero.

API link: CoarseDropout()

Example. Drop 2% of all pixels by converting them to black pixels, but do that on a lower-resolution version of the
image that has 50% of the original size, leading to 2x2 squares being dropped:

import imgaug.augmenters as iaa
aug = iaa.CoarseDropout(0.02, size_percent=0.5)

Example. Drop 0 to 5% of all pixels by converting them to black pixels, but do that on a lower-resolution version of
the image that has 5% to 50% of the original size, leading to large rectangular areas being dropped:

import imgaug.augmenters as iaa
aug = iaa.CoarseDropout((0.0, 0.05), size_percent=(0.02, 0.25))

9.2. augmenters.arithmetic 105

imgaug Documentation, Release 0.3.0

106 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

Example. Drop 2% of all pixels by converting them to black pixels, but do that on a lower-resolution version of the
image that has 50% of the original size, leading to 2x2 squares being dropped. Also do this in 50% of all images
channel-wise, so that only the information of some channels in set to 0 while others remain untouched:

aug = iaa.CoarseDropout(0.02, size_percent=0.15, per_channel=0.5)

9.2.11 Dropout2D

Drop random channels from images.

For image data, dropped channels will be filled with zeros.

9.2. augmenters.arithmetic 107

imgaug Documentation, Release 0.3.0

Note: This augmenter may also set the arrays of heatmaps and segmentation maps to zero and remove all coordinate-
based data (e.g. it removes all bounding boxes on images that were filled with zeros). It does so if and only if all
channels of an image are dropped. If nb_keep_channels >= 1 then that never happens.

API link: Dropout2d()

Example. Create a dropout augmenter that drops on average half of all image channels. Dropped channels will be
filled with zeros. At least one channel is kept unaltered in each image (default setting).

import imgaug.augmenters as iaa
aug = iaa.Dropout2d(p=0.5)

Example. Create a dropout augmenter that drops on average half of all image channels and may drop all channels in

108 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

an image (i.e. images may contain nothing but zeros):

import imgaug.augmenters as iaa
aug = iaa.Dropout2d(p=0.5, nb_keep_channels=0)

9.2.12 TotalDropout

Drop all channels of a defined fraction of all images.

For image data, all components of dropped images will be filled with zeros.

Note: This augmenter also sets the arrays of heatmaps and segmentation maps to zero and removes all coordinate-

9.2. augmenters.arithmetic 109

imgaug Documentation, Release 0.3.0

based data (e.g. it removes all bounding boxes on images that were filled with zeros).

API link: TotalDropout()

Example. Create an augmenter that sets all components of all images to zero:

import imgaug.augmenters as iaa
aug = iaa.TotalDropout(1.0)

Example. Create an augmenter that sets all components of 50% of all images to zero:

aug = iaa.TotalDropout(0.5)

9.2.13 ReplaceElementwise

Replace pixels in an image with new values.

API link: ReplaceElementwise

Example. Replace 10% of all pixels with either the value 0 or the value 255:

110 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

import imgaug.augmenters as iaa
aug = ReplaceElementwise(0.1, [0, 255])

Example. For 50% of all images, replace 10% of all pixels with either the value 0 or the value 255 (same as in the
previous example). For the other 50% of all images, replace channelwise 10% of all pixels with either the value 0 or
the value 255. So, it will be very rare for each pixel to have all channels replaced by 255 or 0.

aug = ReplaceElementwise(0.1, [0, 255], per_channel=0.5)

Example. Replace 10% of all pixels by gaussian noise centered around 128. Both the replacement mask and the
gaussian noise are sampled for 50% of all images.

9.2. augmenters.arithmetic 111

imgaug Documentation, Release 0.3.0

import imgaug.parameters as iap
aug = ReplaceElementwise(0.1, iap.Normal(128, 0.4*128), per_channel=0.5)

Example. Replace 10% of all pixels by gaussian noise centered around 128. Sample the replacement mask at a lower
resolution (8x8 pixels) and upscale it to the image size, resulting in coarse areas being replaced by gaussian noise.

aug = ReplaceElementwise(
iap.FromLowerResolution(iap.Binomial(0.1), size_px=8),
iap.Normal(128, 0.4*128),
per_channel=0.5)

112 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

9.2.14 ImpulseNoise

Add impulse noise to images.

This is identical to SaltAndPepper, except that per_channel is always set to True.

API link: ImpulseNoise()

Example. Replace 10% of all pixels with impulse noise:

import imgaug.augmenters as iaa
aug = iaa.ImpulseNoise(0.1)

9.2.15 SaltAndPepper

Replace pixels in images with salt/pepper noise (white/black-ish colors).

API link: SaltAndPepper()

Example. Replace 10% of all pixels with salt and pepper noise:

import imgaug.augmenters as iaa
aug = iaa.SaltAndPepper(0.1)

Example. Replace channelwise 10% of all pixels with salt and pepper noise:

aug = iaa.SaltAndPepper(0.1, per_channel=True)

9.2.16 CoarseSaltAndPepper

Replace rectangular areas in images with white/black-ish pixel noise.

API link: CoarseSaltAndPepper()

9.2. augmenters.arithmetic 113

imgaug Documentation, Release 0.3.0

114 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

Example. Mark 5% of all pixels in a mask to be replaced by salt/pepper noise. The mask has 1% to 10% the size of
the input image. The mask is then upscaled to the input image size, leading to large rectangular areas being marked as
to be replaced. These areas are then replaced in the input image by salt/pepper noise.

import imgaug.augmenters as iaa
aug = iaa.CoarseSaltAndPepper(0.05, size_percent=(0.01, 0.1))

Example. Same as in the previous example, but the replacement mask before upscaling has a size between 4x4 and
16x16 pixels (the axis sizes are sampled independently, i.e. the mask may be rectangular).

aug = iaa.CoarseSaltAndPepper(0.05, size_px=(4, 16))

Example. Same as in the first example, but mask and replacement are each sampled independently per image channel.

9.2. augmenters.arithmetic 115

imgaug Documentation, Release 0.3.0

aug = iaa.CoarseSaltAndPepper(
0.05, size_percent=(0.01, 0.1), per_channel=True)

9.2.17 Salt

Replace pixels in images with salt noise, i.e. white-ish pixels.

This augmenter is similar to SaltAndPepper, but adds no pepper noise to images.

API link: Salt()

Example. Replace 10% of all pixels with salt noise (white-ish colors):

import imgaug.augmenters as iaa
aug = iaa.Salt(0.1)

Example. Similar to SaltAndPepper, this augmenter also supports the per_channel argument, which is
skipped here for brevity.

9.2.18 CoarseSalt

Replace rectangular areas in images with white-ish pixel noise.

This augmenter is similar to CoarseSaltAndPepper, but adds no pepper noise to images.

API link: CoarseSalt()

Example. Mark 5% of all pixels in a mask to be replaced by salt noise. The mask has 1% to 10% the size of the input
image. The mask is then upscaled to the input image size, leading to large rectangular areas being marked as to be
replaced. These areas are then replaced in the input image by salt noise.

import imgaug.augmenters as iaa
aug = iaa.CoarseSalt(0.05, size_percent=(0.01, 0.1))

116 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

9.2. augmenters.arithmetic 117

imgaug Documentation, Release 0.3.0

Similar to CoarseSaltAndPepper, this augmenter also supports the per_channel argument, which is skipped
here for brevity

9.2.19 Pepper

Replace pixels in images with pepper noise, i.e. black-ish pixels.

This augmenter is similar to SaltAndPepper, but adds no salt noise to images.

This augmenter is similar to Dropout, but slower and the black pixels are not uniformly black.

API link: Pepper()

Example. Replace 10% of all pixels with pepper noise (black-ish colors):

import imgaug.augmenters as iaa
aug = iaa.Pepper(0.1)

Similar to SaltAndPepper, this augmenter also supports the per_channel argument, which is skipped here for
brevity.

9.2.20 CoarsePepper

Replace rectangular areas in images with black-ish pixel noise.

This augmenter is similar to CoarseSaltAndPepper, but adds no salt noise to images.

API link: CoarsePepper()

Example. Mark 5% of all pixels in a mask to be replaced by pepper noise. The mask has 1% to 10% the size of the
input image. The mask is then upscaled to the input image size, leading to large rectangular areas being marked as to
be replaced. These areas are then replaced in the input image by pepper noise.

import imgaug.augmenters as iaa
aug = iaa.CoarsePepper(0.05, size_percent=(0.01, 0.1))

118 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

Similar to CoarseSaltAndPepper, this augmenter also supports the per_channel argument, which is skipped
here for brevity

9.2.21 Invert

Augmenter that inverts all values in images, i.e. sets a pixel from value v to 255-v.

API link: Invert

Example. Invert in 50% of all images all pixels:

import imgaug.augmenters as iaa
aug = iaa.Invert(0.5)

Example. For 50% of all images, invert all pixels in these images with 25% probability (per image). In the remaining
50% of all images, invert 25% of all channels:

aug = iaa.Invert(0.25, per_channel=0.5)

9.2. augmenters.arithmetic 119

imgaug Documentation, Release 0.3.0

9.2.22 Solarize

Invert all values above a threshold in images.

This is the same as Invert, but sets a default threshold around 128 (+/- 64, decided per image) and default in-
vert_above_threshold to True (i.e. only values above the threshold will be inverted).

API link: Solarize

Example. Invert the colors in 50 percent of all images for pixels with a value between 32 and 128 or more. The
threshold is sampled once per image. The thresholding operation happens per channel.

import imgaug.augmenters as iaa
aug = iaa.Solarize(0.5, threshold=(32, 128))

9.2.23 JpegCompression

Degrade the quality of images by JPEG-compressing them.

API link: JpegCompression

Example. Remove high frequency components in images via JPEG compression with a compression strength between
80 and 95 (randomly and uniformly sampled per image). This corresponds to a (very low) quality setting of 5 to 20.

import imgaug.augmenters as iaa
aug = iaa.JpegCompression(compression=(70, 99))

120 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

9.2. augmenters.arithmetic 121

imgaug Documentation, Release 0.3.0

9.3 augmenters.artistic

9.3.1 Cartoon

Convert the style of images to a more cartoonish one.

This augmenter was primarily designed for images with a size of 200 to 800 pixels. Smaller or larger images may
cause issues.

Note that the quality of the results can currently not compete with learned style transfer, let alone human-made images.
A lack of detected edges or also too many detected edges are probably the most significant drawbacks.

API link: Cartoon

Example. Create an example image, then apply a cartoon filter to it:

import imgaug.augmenters as iaa
aug = iaa.Cartoon()

Example. Create a non-stochastic cartoon augmenter that produces decent-looking images:

aug = iaa.Cartoon(blur_ksize=3, segmentation_size=1.0,
saturation=2.0, edge_prevalence=1.0)

9.4 augmenters.blend

Note: It is not recommended to use blending augmenter with child augmenters that change the geometry of images
(e.g. horizontal flips, affine transformations) if you also want to augment coordinates (e.g. keypoints, bounding boxes,
polygons, . . .), as it is not clear which of the two coordinate results (first or second branch) should be used as the

122 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

coordinates after augmentation. Currently, all blending augmenters try to use the augmented coordinates of the branch
that makes up most of the augmented image.

9.4.1 BlendAlpha

Alpha-blend two image sources using an alpha/opacity value.

The two image sources can be imagined as branches. If a source is not given, it is automatically the same as the input.
Let FG be the foreground branch and BG be the background branch. Then the result images are defined as factor *
FG + (1-factor) * BG, where factor is an overlay factor.

API link: BlendAlpha

Example. Convert each image to pure grayscale and alpha-blend the result with the original image using an alpha of
50%, thereby removing about 50% of all color. This is equivalent to iaa.Grayscale(0.5).

import imgaug.augmenters as iaa
aug = iaa.BlendAlpha(0.5, iaa.Grayscale(1.0))

Example. Same as in the previous example, but the alpha factor is sampled uniformly from the interval [0.0, 1.0]
once per image, thereby removing a random fraction of all colors. This is equivalent to iaa.Grayscale((0.0,
1.0)).

aug = iaa.BlendAlpha((0.0, 1.0), iaa.Grayscale(1.0))

Example. First, rotate each image by a random degree sampled uniformly from the interval [-20, 20]. Then,
alpha-blend that new image with the original one using a random factor sampled uniformly from the interval [0.0,
1.0]. For 50% of all images, the blending happens channel-wise and the factor is sampled independently per channel
(per_channel=0.5). As a result, e.g. the red channel may look visibly rotated (factor near 1.0), while the green
and blue channels may not look rotated (factors near 0.0).

9.4. augmenters.blend 123

imgaug Documentation, Release 0.3.0

124 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

aug = iaa.BlendAlpha(
(0.0, 1.0),
iaa.Affine(rotate=(-20, 20)),
per_channel=0.5)

Example. Apply two branches of augmenters – A and B – independently to input images and alpha-blend the results
of these branches using a factor f. Branch A increases image pixel intensities by 100 and B multiplies the pixel
intensities by 0.2. f is sampled uniformly from the interval [0.0, 1.0] per image. The resulting images contain
a bit of A and a bit of B.

aug = iaa.BlendAlpha(
(0.0, 1.0),
foreground=iaa.Add(100),
background=iaa.Multiply(0.2))

Example. Apply median blur to each image and alpha-blend the result with the original image using an alpha factor
of either exactly 0.25 or exactly 0.75 (sampled once per image).

aug = iaa.BlendAlpha([0.25, 0.75], iaa.MedianBlur(13))

9.4.2 BlendAlphaMask

Alpha-blend two image sources using non-binary masks generated per image.

This augmenter queries for each image a mask generator to generate a (H,W) or (H,W,C) channelwise mask [0.0,
1.0], where H is the image height and W the width. The mask will then be used to alpha-blend pixel- and possibly
channel-wise between a foreground branch of augmenters and a background branch. (Both branches default to the
identity operation if not provided.)

See also BlendAlpha.

API link: BlendAlphaMask

Example. Create an augmenter that sometimes adds clouds at the bottom and sometimes at the top of the image:

9.4. augmenters.blend 125

imgaug Documentation, Release 0.3.0

126 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

import imgaug.augmenters as iaa
aug = iaa.BlendAlphaMask(

iaa.InvertMaskGen(0.5, iaa.VerticalLinearGradientMaskGen()),
iaa.Clouds()

)

9.4.3 BlendAlphaElementwise

Alpha-blend two image sources using alpha/opacity values sampled per pixel.

This is the same as BlendAlpha, except that the opacity factor is sampled once per pixel instead of once per image
(or a few times per image, if BlendAlpha.per_channel is set to True).

See BlendAlpha for more details.

This class is a wrapper around BlendAlphaMask.

API link: BlendAlphaElementwise

Example. Convert each image to pure grayscale and alpha-blend the result with the original image using an alpha of
50% for all pixels, thereby removing about 50% of all color. This is equivalent to iaa.Grayscale(0.5). This is
also equivalent to iaa.Alpha(0.5, iaa.Grayscale(1.0)), as the opacity has a fixed value of 0.5 and is
hence identical for all pixels.

import imgaug.augmenters as iaa
aug = iaa.BlendAlphaElementwise(0.5, iaa.Grayscale(1.0))

Example. Same as in the previous example, but here with hue-shift instead of grayscaling and additionally the alpha
factor is sampled uniformly from the interval [0.0, 1.0] once per pixel, thereby shifting the hue by a random
fraction for each pixel.

aug = iaa.BlendAlphaElementwise((0, 1.0), iaa.AddToHue(100))

Example. First, rotate each image by a random degree sampled uniformly from the interval [-20, 20]. Then,
alpha-blend that new image with the original one using a random factor sampled uniformly from the interval [0.0,

9.4. augmenters.blend 127

imgaug Documentation, Release 0.3.0

128 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

1.0] per pixel. For 50% of all images, the blending happens channel-wise and the factor is sampled independently
per pixel and channel (per_channel=0.5). As a result, e.g. the red channel may look visibly rotated (factor near
1.0), while the green and blue channels may not look rotated (factors near 0.0).

aug = iaa.BlendAlphaElementwise(
(0.0, 1.0),
iaa.Affine(rotate=(-20, 20)),
per_channel=0.5)

Example. Apply two branches of augmenters – A and B – independently to input images and alpha-blend the results
of these branches using a factor f. Branch A increases image pixel intensities by 100 and B multiplies the pixel
intensities by 0.2. f is sampled uniformly from the interval [0.0, 1.0] per pixel. The resulting images contain a
bit of A and a bit of B.

aug = iaa.BlendAlphaElementwise(
(0.0, 1.0),
foreground=iaa.Add(100),
background=iaa.Multiply(0.2))

Example. Apply median blur to each image and alpha-blend the result with the original image using an alpha factor
of either exactly 0.25 or exactly 0.75 (sampled once per pixel).

aug = iaa.BlendAlphaElementwise([0.25, 0.75], iaa.MedianBlur(13))

9.4.4 BlendAlphaSimplexNoise

Alpha-blend two image sources using simplex noise alpha masks.

The alpha masks are sampled using a simplex noise method, roughly creating connected blobs of 1s surrounded by 0s.
If nearest neighbour upsampling is used, these blobs can be rectangular with sharp edges.

API link: BlendAlphaSimplexNoise

Example. Detect per image all edges, mark them in a black and white image and then alpha-blend the result with the
original image using simplex noise masks.

9.4. augmenters.blend 129

imgaug Documentation, Release 0.3.0

130 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

import imgaug.augmenters as iaa
aug = iaa.BlendAlphaSimplexNoise(iaa.EdgeDetect(1.0))

Example. Same as in the previous example, but using only nearest neighbour upscaling to scale the simplex noise
masks to the final image sizes, i.e. no nearest linear upsampling is used. This leads to rectangles with sharp edges.

aug = iaa.BlendAlphaSimplexNoise(
iaa.EdgeDetect(1.0),
upscale_method="nearest")

Example. Same as in the previous example, but using only linear upscaling to scale the simplex noise masks to the
final image sizes, i.e. no nearest neighbour upsampling is used. This leads to rectangles with smooth edges.

9.4. augmenters.blend 131

imgaug Documentation, Release 0.3.0

aug = iaa.BlendAlphaSimplexNoise(
iaa.EdgeDetect(1.0),
upscale_method="linear")

Example. Same as in the first example, but using a threshold for the sigmoid function that is further to the right. This
is more conservative, i.e. the generated noise masks will be mostly black (values around 0.0), which means that
most of the original images (parameter/branch second) will be kept, rather than using the results of the augmentation
(parameter/branch first).

import imgaug.parameters as iap
aug = iaa.BlendAlphaSimplexNoise(

iaa.EdgeDetect(1.0),
sigmoid_thresh=iap.Normal(10.0, 5.0))

9.4.5 BlendAlphaFrequencyNoise

Alpha-blend two image sources using frequency noise masks.

The alpha masks are sampled using frequency noise of varying scales, which can sometimes create large connected
blobs of 1 s surrounded by 0 s and other times results in smaller patterns. If nearest neighbour upsampling is used,
these blobs can be rectangular with sharp edges.

API link: BlendAlphaFrequencyNoise

Example. Detect per image all edges, mark them in a black and white image and then alpha-blend the result with the
original image using frequency noise masks.

import imgaug.augmenters as iaa
aug = iaa.BlendAlphaFrequencyNoise(first=iaa.EdgeDetect(1.0))

Example. Same as the first example, but using only linear upscaling to scale the frequency noise masks to the final
image sizes, i.e. no nearest neighbour upsampling is used. This results in smooth edges.

132 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

9.4. augmenters.blend 133

imgaug Documentation, Release 0.3.0

aug = iaa.BlendAlphaFrequencyNoise(
first=iaa.EdgeDetect(1.0),
upscale_method="nearest")

Example. Same as the first example, but using only linear upscaling to scale the frequency noise masks to the final
image sizes, i.e. no nearest neighbour upsampling is used. This results in smooth edges.

aug = iaa.BlendAlphaFrequencyNoise(
first=iaa.EdgeDetect(1.0),
upscale_method="linear")

Example. Same as in the previous example, but with the exponent set to a constant -2 and the sigmoid deactivated,
resulting in cloud-like patterns without sharp edges.

134 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

aug = iaa.BlendAlphaFrequencyNoise(
first=iaa.EdgeDetect(1.0),
upscale_method="linear",
exponent=-2,
sigmoid=False)

Example. Same as the first example, but using a threshold for the sigmoid function that is further to the right. This
is more conservative, i.e. the generated noise masks will be mostly black (values around 0.0), which means that
most of the original images (parameter/branch second) will be kept, rather than using the results of the augmentation
(parameter/branch first).

import imgaug.parameters as iap
aug = iaa.BlendAlphaFrequencyNoise(

first=iaa.EdgeDetect(1.0),
sigmoid_thresh=iap.Normal(10.0, 5.0))

9.4.6 BlendAlphaSomeColors

Blend images from two branches using colorwise masks.

This class generates masks that “mark” a few colors and replace the pixels within these colors with the results of the
foreground branch. The remaining pixels are replaced with the results of the background branch (usually the identity
function). That allows to e.g. selectively grayscale a few colors, while keeping other colors unchanged.

This class is a thin wrapper around BlendAlphaMask together with SomeColorsMaskGen.

API link: BlendAlphaSomeColors

Example. Create an augmenter that turns randomly removes some colors in images by grayscaling them:

import imgaug.augmenters as iaa
aug = iaa.BlendAlphaSomeColors(iaa.Grayscale(1.0))

Example. Create an augmenter that removes some colors in images by replacing them with black pixels:

9.4. augmenters.blend 135

imgaug Documentation, Release 0.3.0

136 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

aug = iaa.BlendAlphaSomeColors(iaa.TotalDropout(1.0))

Example. Create an augmenter that desaturates some colors and increases the saturation of the remaining ones:

aug = iaa.BlendAlphaSomeColors(
iaa.MultiplySaturation(0.5), iaa.MultiplySaturation(1.5))

Example. Create an augmenter that applies average pooling to some colors. Each color tune is either selected (alpha
of 1.0) or not selected (0.0). There is no gradual change between similar colors.

aug = iaa.BlendAlphaSomeColors(
iaa.AveragePooling(7), alpha=[0.0, 1.0], smoothness=0.0)

Example. Create an augmenter that applies average pooling to some colors. Choose on average half of all colors in
images for the blending operation.

aug = iaa.BlendAlphaSomeColors(
iaa.AveragePooling(7), nb_bins=2, smoothness=0.0)

Example. Create an augmenter that applies average pooling to some colors with input images being in BGR colorspace

aug = iaa.BlendAlphaSomeColors(
iaa.AveragePooling(7), from_colorspace="BGR")

9.4. augmenters.blend 137

imgaug Documentation, Release 0.3.0

138 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

9.4.7 BlendAlphaHorizontalLinearGradient

Blend images from two branches along a horizontal linear gradient.

This class generates a horizontal linear gradient mask (i.e. usually a mask with low values on the left and high values
on the right) and alphas-blends between foreground and background branch using that mask.

This class is a thin wrapper around BlendAlphaMask together with HorizontalLinearGradientMaskGen.

API link: BlendAlphaHorizontalLinearGradient

Example. Create an augmenter that removes more color towards the right of the image:

import imgaug.augmenters as iaa
aug = iaa.BlendAlphaHorizontalLinearGradient(iaa.AddToHue((-100, 100)))

Example. Create an augmenter that replaces pixels towards the right with darker and darker values. However it always
keeps at least 20% (1.0 - max_value) of the original pixel value on the far right and always replaces at least 20%
on the far left (min_value=0.2).

aug = iaa.BlendAlphaHorizontalLinearGradient(
iaa.TotalDropout(1.0),
min_value=0.2, max_value=0.8)

Example. Create an augmenter that blends with an average-pooled image according to a horizontal gradient that starts
at a random x-coordinate and reaches its maximum at another random x-coordinate. Due to that randomness, the
gradient may increase towards the left or right.

aug = iaa.BlendAlphaHorizontalLinearGradient(
iaa.AveragePooling(11),
start_at=(0.0, 1.0), end_at=(0.0, 1.0))

9.4.8 BlendAlphaVerticalLinearGradient

Blend images from two branches along a vertical linear gradient.

9.4. augmenters.blend 139

imgaug Documentation, Release 0.3.0

140 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

This class generates a vertical linear gradient mask (i.e. usually a mask with low values on the left and high values on
the right) and alphas-blends between foreground and background branch using that mask.

This class is a thin wrapper around BlendAlphaMask together with VerticalLinearGradientMaskGen.

API link: BlendAlphaVerticalLinearGradient

Example. Create an augmenter that removes more color towards the bottom of the image:

import imgaug.augmenters as iaa
aug = iaa.BlendAlphaVerticalLinearGradient(iaa.AddToHue((-100, 100)))

Example. Create an augmenter that replaces pixels towards the bottom with darker and darker values. However it
always keeps at least 20% (1.0 - max_value) of the original pixel value on the far bottom and always replaces at
least 20% on the far top (min_value=0.2).

aug = iaa.BlendAlphaVerticalLinearGradient(
iaa.TotalDropout(1.0),
min_value=0.2, max_value=0.8)

Example. Create an augmenter that blends with an average-pooled image according to a vertical gradient that starts at
a random y-coordinate and reaches its maximum at another random y-coordinate. Due to that randomness, the gradient
may increase towards the bottom or top.

aug = iaa.BlendAlphaVerticalLinearGradient(
iaa.AveragePooling(11),
start_at=(0.0, 1.0), end_at=(0.0, 1.0))

Example. Create an augmenter that draws clouds in roughly the top quarter of the image:

aug = iaa.BlendAlphaVerticalLinearGradient(
iaa.Clouds(),
start_at=(0.15, 0.35), end_at=0.0)

9.4. augmenters.blend 141

imgaug Documentation, Release 0.3.0

142 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

9.4.9 BlendAlphaRegularGrid

Blend images from two branches according to a regular grid.

This class generates for each image a mask that splits the image into a grid-like pattern of H rows and W columns. Each
cell is then filled with an alpha value, sampled randomly per cell.

The difference to AlphaBlendCheckerboard is that this class samples random alpha values per grid cell, while
in the checkerboard the alpha values follow a fixed pattern.

This class is a thin wrapper around BlendAlphaMask together with RegularGridMaskGen.

API link: BlendAlphaRegularGrid

Example. Create an augmenter that places a HxW grid on each image, where H (rows) is randomly and uniformly
sampled from the interval [4, 6] and W is analogously sampled from the interval [1, 4]. Roughly half of the
cells in the grid are filled with 0.0, the remaining ones are unaltered. Which cells exactly are “dropped” is randomly
decided per image. The resulting effect is similar to CoarseDropout.

import imgaug.augmenters as iaa
aug = iaa.BlendAlphaRegularGrid(nb_rows=(4, 6), nb_cols=(1, 4),

foreground=iaa.Multiply(0.0))

Example. Create an augmenter that always placed 2x2 cells on each image and sets about 1/3 of them to zero
(foreground branch) and the remaining 2/3 to a pixelated version (background branch).

aug = iaa.BlendAlphaRegularGrid(nb_rows=2, nb_cols=2,
foreground=iaa.Multiply(0.0),
background=iaa.AveragePooling(8),
alpha=[0.0, 0.0, 1.0])

9.4.10 BlendAlphaCheckerboard

Blend images from two branches according to a checkerboard pattern.

9.4. augmenters.blend 143

imgaug Documentation, Release 0.3.0

144 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

This class generates for each image a mask following a checkboard layout of H rows and W columns. Each cell is then
filled with either 1.0 or 0.0. The cell at the top-left is always 1.0. Its right and bottom neighbour cells are 0.0.
The 4-neighbours of any cell always have a value opposite to the cell’s value (0.0 vs. 1.0).

This class is a thin wrapper around BlendAlphaMask together with CheckerboardMaskGen.

API link: BlendAlphaCheckerboard

Example. Create an augmenter that places a HxW grid on each image, where H (rows) is always 2 and W is randomly
and uniformly sampled from the interval [1, 4]. Half of the cells in the grid are grayscaled, the other half is
unaltered.

import imgaug.augmenters as iaa
aug = iaa.BlendAlphaCheckerboard(nb_rows=2, nb_cols=(1, 4),

foreground=iaa.AddToHue((-100, 100)))

9.4.11 BlendAlphaSegMapClassIds

Blend images from two branches based on segmentation map ids.

This class generates masks that are 1.0 at pixel locations covered by specific classes in segmentation maps.

This class is a thin wrapper around BlendAlphaMask together with SegMapClassIdsMaskGen.

Note: Segmentation maps can have multiple channels. If that is the case then for each position (x, y) it is sufficient
that any class id in any channel matches one of the desired class ids.

Note: This class will produce an AssertionError if there are no segmentation maps in a batch.

API link: BlendAlphaSegMapClassIds

Example. Create an augmenter that removes color wherever the segmentation maps contain the classes 1 or 3:

import imgaug.augmenters as iaa
aug = iaa.BlendAlphaSegMapClassIds(

[1, 3],
foreground=iaa.AddToHue((-100, 100)))

Example. Create an augmenter that randomly picks 2 classes from the list [1, 2, 3, 4] and blurs the image
content wherever these classes appear in the segmentation map. Note that as the sampling of class ids happens with
replacement, it is not guaranteed to sample two unique class ids.

aug = iaa.BlendAlphaSegMapClassIds(
[1, 2, 3, 4],
nb_sample_classes=2,
foreground=iaa.GaussianBlur(3.0))

Example. Create an augmenter that zeros for roughly every fifth image all image pixels that do not belong to class id
2 (note that the background branch was used, not the foreground branch). Example use case: Human body landmark
detection where both the landmarks/keypoints and the body segmentation map are known. Train the model to detect
landmarks and sometimes remove all non-body information to force the model to become more independent of the
background.

9.4. augmenters.blend 145

imgaug Documentation, Release 0.3.0

146 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

aug = iaa.Sometimes(0.2,
iaa.BlendAlphaSegMapClassIds(

2,
background=iaa.TotalDropout(1.0)))

9.4.12 BlendAlphaBoundingBoxes

Blend images from two branches based on areas enclosed in bounding boxes.

This class generates masks that are 1.0 within bounding boxes of given labels. A mask pixel will be set to 1.0 if at
least one bounding box covers the area and has one of the requested labels.

This class is a thin wrapper around BlendAlphaMask together with BoundingBoxesMaskGen.

Note: Avoid using augmenters as children that affect pixel locations (e.g. horizontal flips). See BlendAlphaMask
for details.

Note: This class will produce an AssertionError if there are no bounding boxes in a batch.

API link: BlendAlphaBoundingBoxes

Example. Create an augmenter that removes color within bounding boxes having the label person:

import imgaug.augmenters as iaa
aug = iaa.BlendAlphaBoundingBoxes("person",

foreground=iaa.Grayscale(1.0))

Example. Create an augmenter that randomizes the hue within bounding boxes that have the label person or car:

9.4. augmenters.blend 147

imgaug Documentation, Release 0.3.0

aug = iaa.BlendAlphaBoundingBoxes(["person", "car"],
foreground=iaa.AddToHue((-255, 255)))

Example. Create an augmenter that randomizes the hue within bounding boxes that have either the label
person or car. Only one label is picked per image. Note that the sampling happens with replacement, so if
nb_sample_classes would be >1, it could still lead to only one unique label being sampled.

aug = iaa.BlendAlphaBoundingBoxes(["person", "car"],
foreground=iaa.AddToHue((-255, 255)),
nb_sample_labels=1)

Example. Create an augmenter that zeros all pixels (Multiply(0.0)) that are not (background branch) within
bounding boxes of any (None) label. In other words, all pixels outside of bounding boxes become black. Note that
we don’t use TotalDropout here, because by default it will also remove all coordinate-based augmentables, which
will break the blending of such inputs.

aug = iaa.BlendAlphaBoundingBoxes(None,
background=iaa.Multiply(0.0))

9.5 augmenters.blur

9.5.1 GaussianBlur

Augmenter to blur images using gaussian kernels.

API link: GaussianBlur

Example. Blur each image with a gaussian kernel with a sigma of 3.0:

import imgaug.augmenters as iaa
aug = iaa.GaussianBlur(sigma=(0.0, 3.0))

9.5.2 AverageBlur

Blur an image by computing simple means over neighbourhoods.

API link: AverageBlur

Example. Blur each image using a mean over neihbourhoods that have a random size between 2x2 and 11x11:

import imgaug.augmenters as iaa
aug = iaa.AverageBlur(k=(2, 11))

148 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

9.5. augmenters.blur 149

imgaug Documentation, Release 0.3.0

150 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

Example. Blur each image using a mean over neihbourhoods that have random sizes, which can vary between 5 and
11 in height and 1 and 3 in width:

aug = iaa.AverageBlur(k=((5, 11), (1, 3)))

9.5.3 MedianBlur

Blur an image by computing median values over neighbourhoods.

API link: MedianBlur

Example. Blur each image using a median over neihbourhoods that have a random size between 3x3 and 11x11:

9.5. augmenters.blur 151

imgaug Documentation, Release 0.3.0

import imgaug.augmenters as iaa
aug = iaa.MedianBlur(k=(3, 11))

9.5.4 BilateralBlur

Blur/Denoise an image using a bilateral filter.

Bilateral filters blur homogenous and textured areas, while trying to preserve edges.

API link: BilateralBlur

Example. Blur all images using a bilateral filter with a max distance sampled uniformly from the interval [3, 10]
and wide ranges for sigma_color and sigma_space:

152 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

import imgaug.augmenters as iaa
aug = iaa.BilateralBlur(

d=(3, 10), sigma_color=(10, 250), sigma_space=(10, 250))

9.5.5 MotionBlur

Blur images in a way that fakes camera or object movements.

API link: MotionBlur

Example. Apply motion blur with a kernel size of 15x15 pixels to images:

9.5. augmenters.blur 153

imgaug Documentation, Release 0.3.0

import imgaug.augmenters as iaa
aug = iaa.MotionBlur(k=15)

Example. Apply motion blur with a kernel size of 15x15 pixels and a blur angle of either -45 or 45 degrees
(randomly picked per image):

aug = iaa.MotionBlur(k=15, angle=[-45, 45])

9.5.6 MeanShiftBlur

Apply a pyramidic mean shift filter to each image.

See also blur_mean_shift_() for details.

154 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

9.5. augmenters.blur 155

imgaug Documentation, Release 0.3.0

This augmenter expects input images of shape (H,W) or (H,W,1) or (H,W,3).

Note: This augmenter is quite slow.

API link: MeanShiftBlur

Example. Create a mean shift blur augmenter:

import imgaug.augmenters as iaa
aug = iaa.MeanShiftBlur()

156 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

9.6 augmenters.collections

9.6.1 RandAugment

Apply RandAugment to inputs as described in the corresponding paper.

See paper:

Cubuk et al.

RandAugment: Practical automated data augmentation with a reduced
search space

Note: The paper contains essentially no hyperparameters for the individual augmentation techniques. The hyper-
parameters used here come mostly from the official code repository, which however seems to only contain code for
CIFAR10 and SVHN, not for ImageNet. So some guesswork was involved and a few of the hyperparameters were
also taken from https://github.com/ildoonet/pytorch-randaugment/blob/master/RandAugment/augmentations.py .

This implementation deviates from the code repository for all PIL enhance operations. In the repository these use a fac-
tor of 0.1 + M*1.8/M_max, which would lead to a factor of 0.1 for the weakest M of M=0. For e.g. Brightness
that would result in a basically black image. This definition is fine for AutoAugment (from where the code and hyper-
parameters are copied), which optimizes each transformation’s M individually, but not for RandAugment, which uses
a single fixed M. We hence redefine these hyperparameters to 1.0 + S * M * 0.9/M_max, where S is randomly
either 1 or -1.

We also note that it is not entirely clear which transformations were used in the ImageNet experiments. The pa-
per lists some transformations in Figure 2, but names others in the text too (e.g. crops, flips, cutout). While Fig-
ure 2 lists the Identity function, this transformation seems to not appear in the repository (and in fact, the function
randaugment(N, M) doesn’t seem to exist in the repository either). So we also make a best guess here about what
transformations might have been used.

Warning: This augmenter only works with image data, not e.g. bounding boxes. The used PIL-based affine
transformations are not yet able to process non-image data. (This augmenter uses PIL-based affine transformations
to ensure that outputs are as similar as possible to the paper’s implementation.)

API link: RandAugment

Example. Create a RandAugment augmenter similar to the suggested hyperparameters in the paper:

import imgaug.augmenters as iaa
aug = iaa.RandAugment(n=2, m=9)

Example. Create a RandAugment augmenter with maximum magnitude/strength:

aug = iaa.RandAugment(m=30)

Example. Create a RandAugment augmenter that applies its transformations with a random magnitude between 0
(very weak) and 9 (recommended for ImageNet and ResNet-50). m is sampled per transformation:

aug = iaa.RandAugment(m=(0, 9))

Example. Create a RandAugment augmenter that applies 0 to 3 of its child transformations to images. Horizontal
flips (p=50%) and crops are always applied.

9.6. augmenters.collections 157

https://github.com/ildoonet/pytorch-randaugment/blob/master/RandAugment/augmentations.py

imgaug Documentation, Release 0.3.0

158 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

9.6. augmenters.collections 159

imgaug Documentation, Release 0.3.0

160 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

aug = iaa.RandAugment(n=(0, 3))

9.7 augmenters.color

9.7.1 WithColorspace

Apply child augmenters within a specific colorspace.

This augumenter takes a source colorspace A and a target colorspace B as well as children C. It changes images
from A to B, then applies the child augmenters C and finally changes the colorspace back from B to A. See also
ChangeColorspace() for more.

API link: WithColorspace

Example. Convert to HSV colorspace, add a value between 0 and 50 (uniformly sampled per image) to the Hue
channel, then convert back to the input colorspace (RGB).

import imgaug.augmenters as iaa
aug = iaa.WithColorspace(

to_colorspace="HSV",
from_colorspace="RGB",
children=iaa.WithChannels(

(continues on next page)

9.7. augmenters.color 161

imgaug Documentation, Release 0.3.0

(continued from previous page)

0,
iaa.Add((0, 50))

)
)

9.7.2 WithBrightnessChannels

Augmenter to apply child augmenters to brightness-related image channels.

This augmenter first converts an image to a random colorspace containing a brightness-related channel (e.g. V in
HSV), then extracts that channel and applies its child augmenters to this one channel. Afterwards, it reintegrates the
augmented channel into the full image and converts back to the input colorspace.

API link: WithBrightnessChannels

Example. Add -50 to 50 to the brightness-related channels of each image:

import imgaug.augmenters as iaa
aug = iaa.WithBrightnessChannels(iaa.Add((-50, 50)))

Example. Add -50 to 50 to the brightness-related channels of each image, but pick those brightness-related channels
only from Lab (L) and HSV (V) colorspaces.

aug = iaa.WithBrightnessChannels(
iaa.Add((-50, 50)), to_colorspace=[iaa.CSPACE_Lab, iaa.CSPACE_HSV])

Example. Add -50 to 50 to the brightness-related channels of each image, where the images are provided in BGR
colorspace instead of the standard RGB.

aug = iaa.WithBrightnessChannels(
iaa.Add((-50, 50)), from_colorspace=iaa.CSPACE_BGR)

162 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

9.7. augmenters.color 163

imgaug Documentation, Release 0.3.0

9.7.3 MultiplyAndAddToBrightness

Multiply and add to the brightness channels of input images.

This is a wrapper around WithBrightnessChannels and hence performs internally the same projection to ran-
dom colorspaces.

API link: MultiplyAndAddToBrightness

Example. Convert each image to a colorspace with a brightness-related channel, extract that channel, multiply it by a
factor between 0.5 and 1.5, add a value between -30 and 30 and convert back to the original colorspace.

import imgaug.augmenters as iaa
aug = iaa.MultiplyAndAddToBrightness(mul=(0.5, 1.5), add=(-30, 30))

9.7.4 MultiplyBrightness

Multiply the brightness channels of input images.

This is a wrapper around WithBrightnessChannels and hence performs internally the same projection to ran-
dom colorspaces.

API link: MultiplyBrightness

Example. Convert each image to a colorspace with a brightness-related channel, extract that channel, multiply it by a
factor between 0.5 and 1.5, and convert back to the original colorspace.

import imgaug.augmenters as iaa
aug = iaa.MultiplyBrightness((0.5, 1.5))

9.7.5 AddToBrightness

Add to the brightness channels of input images.

164 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

This is a wrapper around WithBrightnessChannels and hence performs internally the same projection to ran-
dom colorspaces.

API link: AddToBrightness

Example. Convert each image to a colorspace with a brightness-related channel, extract that channel, add between
-30 and 30 and convert back to the original colorspace:

import imgaug.augmenters as iaa
aug = iaa.AddToBrightness((-30, 30))

9.7. augmenters.color 165

imgaug Documentation, Release 0.3.0

9.7.6 WithHueAndSaturation

Apply child augmenters to hue and saturation channels.

This augumenter takes an image in a source colorspace, converts it to HSV, extracts the H (hue) and S (saturation)
channels, applies the provided child augmenters to these channels and finally converts back to the original colorspace.

The image array generated by this augmenter and provided to its children is in int16 (sic! only augmenters that can
handle int16 arrays can be children!). The hue channel is mapped to the value range [0, 255]. Before converting
back to the source colorspace, the saturation channel’s values are clipped to [0, 255]. A modulo operation is
applied to the hue channel’s values, followed by a mapping from [0, 255] to [0, 180] (and finally the colorspace
conversion).

API link: WithHueAndSaturation

Example. Create an augmenter that will add a random value between 0 and 50 (uniformly sampled per image) hue
channel in HSV colorspace. It automatically accounts for the hue being in angular representation, i.e. if the angle goes
beyond 360 degrees, it will start again at 0 degrees. The colorspace is finally converted back to RGB (default setting).

import imgaug.augmenters as iaa
aug = iaa.WithHueAndSaturation(

iaa.WithChannels(0, iaa.Add((0, 50)))
)

Example. Create an augmenter that adds a random value sampled uniformly from the range [-30, 10] to the hue
and multiplies the saturation by a random factor sampled uniformly from [0.5, 1.5]. It also modifies the contrast
of the saturation channel. After these steps, the HSV image is converted back to RGB.

aug = iaa.WithHueAndSaturation([
iaa.WithChannels(0, iaa.Add((-30, 10))),
iaa.WithChannels(1, [

iaa.Multiply((0.5, 1.5)),
iaa.LinearContrast((0.75, 1.25))

])
])

166 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

9.7.7 MultiplyHueAndSaturation

Multipy hue and saturation by random values.

The augmenter first transforms images to HSV colorspace, then multiplies the pixel values in the H and S channels
and afterwards converts back to RGB.

This augmenter is a wrapper around WithHueAndSaturation.

API link: MultiplyHueAndSaturation()

Example. Multiply hue and saturation by random values between 0.5 and 1.5 (independently per channel and the
same value for all pixels within that channel). The hue will be automatically projected to an angular representation.

import imgaug.augmenters as iaa
aug = iaa.MultiplyHueAndSaturation((0.5, 1.5), per_channel=True)

Example. Multiply only the hue by random values between 0.5 and 1.5.

aug = iaa.MultiplyHueAndSaturation(mul_hue=(0.5, 1.5))

Example. Multiply only the saturation by random values between 0.5 and 1.5.

aug = iaa.MultiplyHueAndSaturation(mul_saturation=(0.5, 1.5))

9.7.8 MultiplyHue

Multiply the hue of images by random values.

The augmenter first transforms images to HSV colorspace, then multiplies the pixel values in the H channel and
afterwards converts back to RGB.

This augmenter is a shortcut for MultiplyHueAndSaturation(mul_hue=...).

API link: MultiplyHue()

9.7. augmenters.color 167

imgaug Documentation, Release 0.3.0

168 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

Example. Multiply the hue channel of images using random values between 0.5 and 1.5:

import imgaug.augmenters as iaa
aug = iaa.MultiplyHue((0.5, 1.5))

9.7.9 MultiplySaturation

Multiply the saturation of images by random values.

The augmenter first transforms images to HSV colorspace, then multiplies the pixel values in the H channel and
afterwards converts back to RGB.

9.7. augmenters.color 169

imgaug Documentation, Release 0.3.0

This augmenter is a shortcut for MultiplyHueAndSaturation(mul_saturation=...).

API link: MultiplySaturation()

Example. Multiply the saturation channel of images using random values between 0.5 and 1.5:

import imgaug.augmenters as iaa
aug = iaa.MultiplySaturation((0.5, 1.5))

9.7.10 RemoveSaturation

Decrease the saturation of images by varying degrees.

This creates images looking similar to Grayscale.

This augmenter is the same as MultiplySaturation((0.0, 1.0)).

API link: RemoveSaturation()

Example. Create an augmenter that decreases saturation by varying degrees:

import imgaug.augmenters as iaa
aug = iaa.RemoveSaturation()

Example. Create an augmenter that removes all saturation from input images. This is similar to imgaug.
augmenters.color.Grayscale.

aug = iaa.RemoveSaturation(1.0)

Example. Create an augmenter that decreases saturation of images in BGR colorspace by varying degrees.

aug = iaa.RemoveSaturation(from_colorspace=iaa.CSPACE_BGR)

170 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

9.7. augmenters.color 171

imgaug Documentation, Release 0.3.0

9.7.11 AddToHueAndSaturation

Increases or decreases hue and saturation by random values.

The augmenter first transforms images to HSV colorspace, then adds random values to the H and S channels and
afterwards converts back to RGB.

This augmenter is faster than using WithHueAndSaturation in combination with Add.

API link: AddToHueAndSaturation

Example. Add random values between -50 and 50 to the hue and saturation (independently per channel and the
same value for all pixels within that channel):

import imgaug.augmenters as iaa
aug = iaa.AddToHueAndSaturation((-50, 50), per_channel=True)

9.7.12 AddToHue

Add random values to the hue of images.

The augmenter first transforms images to HSV colorspace, then adds random values to the H channel and afterwards
converts back to RGB.

If you want to change both the hue and the saturation, it is recommended to use AddToHueAndSaturation as
otherwise the image will be converted twice to HSV and back to RGB.

This augmenter is a shortcut for AddToHueAndSaturation(value_hue=...).

API link: AddToHue()

Example. Sample random values from the discrete uniform range [-50..50], convert them to angular representa-
tion and add them to the hue, i.e. to the H channel in HSV colorspace:

import imgaug.augmenters as iaa
aug = iaa.AddToHue((-50, 50))

172 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

9.7.13 AddToSaturation

Add random values to the saturation of images.

The augmenter first transforms images to HSV colorspace, then adds random values to the S channel and afterwards
converts back to RGB.

If you want to change both the hue and the saturation, it is recommended to use AddToHueAndSaturation as
otherwise the image will be converted twice to HSV and back to RGB.

This augmenter is a shortcut for AddToHueAndSaturation(value_saturation=...).

API link: AddToSaturation()

Example. Sample random values from the discrete uniform range [-50..50], and add them to the saturation, i.e.
to the S channel in HSV colorspace:

import imgaug.augmenters as iaa
aug = iaa.AddToSaturation((-50, 50))

9.7.14 ChangeColorspace

Augmenter to change the colorspace of images.

API link: ChangeColorspace

Example. The following example shows how to change the colorspace from RGB to HSV, then add 50-100 to the first
channel, then convert back to RGB. This increases the hue value of each image.

import imgaug.augmenters as iaa
aug = iaa.Sequential([

iaa.ChangeColorspace(from_colorspace="RGB", to_colorspace="HSV"),
iaa.WithChannels(0, iaa.Add((50, 100))),
iaa.ChangeColorspace(from_colorspace="HSV", to_colorspace="RGB")

])

9.7. augmenters.color 173

imgaug Documentation, Release 0.3.0

174 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

9.7.15 Grayscale

Augmenter to convert images to their grayscale versions.

API link: Grayscale

Example. Change images to grayscale and overlay them with the original image by varying strengths, effectively
removing 0 to 100% of the color:

import imgaug.augmenters as iaa
aug = iaa.Grayscale(alpha=(0.0, 1.0))

Example. Visualization of increasing alpha from 0.0 to 1.0 in eight steps:

9.7.16 ChangeColorTemperature

Change the temperature to a provided Kelvin value.

Low Kelvin values around 1000 to 4000 will result in red, yellow or orange images. Kelvin values around 10000
to 40000 will result in progressively darker blue tones.

API link: ChangeColorTemperature

Example. Create an augmenter that changes the color temperature of images to a random value between 1100 and
10000 Kelvin:

import imgaug.augmenters as iaa
aug = iaa.ChangeColorTemperature((1100, 10000))

9.7. augmenters.color 175

imgaug Documentation, Release 0.3.0

9.7.17 KMeansColorQuantization

Quantize colors using k-Means clustering.

This “collects” the colors from the input image, groups them into k clusters using k-Means clustering and replaces the
colors in the input image using the cluster centroids.

This is slower than UniformColorQuantization, but adapts dynamically to the color range in the input image.

Note: This augmenter expects input images to be either grayscale or to have 3 or 4 channels and use colorspace
from_colorspace. If images have 4 channels, it is assumed that the 4th channel is an alpha channel and it will not be
quantized.

API link: KMeansColorQuantization

Example. Create an augmenter to apply k-Means color quantization to images using a random amount of colors,
sampled uniformly from the interval [2..16]. It assumes the input image colorspace to be RGB and clusters colors
randomly in RGB or Lab colorspace.

import imgaug.augmenters as iaa
aug = iaa.KMeansColorQuantization()

176 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

Example. Create an augmenter that quantizes images to (up to) eight colors:

aug = iaa.KMeansColorQuantization(n_colors=8)

Example. Create an augmenter that quantizes images to (up to) n colors, where n is randomly and uniformly sampled
from the discrete interval [4..32]:

aug = iaa.KMeansColorQuantization(n_colors=(4, 16))

Example. Create an augmenter that quantizes input images that are in BGR colorspace. The quantization happens in
RGB or Lab colorspace, into which the images are temporarily converted.

9.7. augmenters.color 177

imgaug Documentation, Release 0.3.0

aug = iaa.KMeansColorQuantization(
from_colorspace=iaa.ChangeColorspace.BGR)

Example. Create an augmenter that quantizes images by clustering colors randomly in either RGB or HSV colorspace.
The assumed input colorspace of images is RGB.

aug = iaa.KMeansColorQuantization(
to_colorspace=[iaa.ChangeColorspace.RGB, iaa.ChangeColorspace.HSV])

178 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

9.7.18 UniformColorQuantization

Quantize colors into N bins with regular distance.

For uint8 images the equation is floor(v/q)*q + q/2 with q = 256/N, where v is a pixel intensity value
and N is the target number of colors after quantization.

This augmenter is faster than KMeansColorQuantization, but the set of possible output colors is constant (i.e.
independent of the input images). It may produce unsatisfying outputs for input images that are made up of very
similar colors.

Note: This augmenter expects input images to be either grayscale or to have 3 or 4 channels and use colorspace
from_colorspace. If images have 4 channels, it is assumed that the 4th channel is an alpha channel and it will not be
quantized.

API link: UniformColorQuantization

Example. Create an augmenter to apply uniform color quantization to images using a random amount of colors,
sampled uniformly from the discrete interval [2..16]:

import imgaug.augmenters as iaa
aug = iaa.UniformColorQuantization()

Example. Create an augmenter that quantizes images to (up to) eight colors:

aug = iaa.UniformColorQuantization(n_colors=8)

Example. Create an augmenter that quantizes images to (up to) n colors, where n is randomly and uniformly sampled
from the discrete interval [4..32]:

aug = iaa.UniformColorQuantization(n_colors=(4, 16))

Example. Create an augmenter that uniformly quantizes images in either RGB or HSV colorspace (randomly picked
per image). The input colorspace of all images has to be BGR.

9.7. augmenters.color 179

imgaug Documentation, Release 0.3.0

180 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

aug = iaa.UniformColorQuantization(
from_colorspace=iaa.ChangeColorspace.BGR,
to_colorspace=[iaa.ChangeColorspace.RGB, iaa.ChangeColorspace.HSV])

9.7.19 UniformColorQuantizationToNBits

Quantize images by setting 8-B bits of each component to zero.

This augmenter sets the 8-B highest frequency (rightmost) bits of each array component to zero. For B bits this is
equivalent to changing each component’s intensity value v to v' = v & (2**(8-B) - 1), e.g. for B=3 this
results in v' = c & ~(2**(3-1) - 1) = c & ~3 = c & ~0000 0011 = c & 1111 1100.

This augmenter behaves for B similarly to UniformColorQuantization(2**B), but quantizes each bin with
interval (a, b) to a instead of to a + (b-a)/2.

This augmenter is comparable to posterize().

Note: This augmenter expects input images to be either grayscale or to have 3 or 4 channels and use colorspace
from_colorspace. If images have 4 channels, it is assumed that the 4th channel is an alpha channel and it will not be
quantized.

API link: UniformColorQuantizationToNBits

Example. Create an augmenter to apply uniform color quantization to images using a random amount of bits to
remove, sampled uniformly from the discrete interval [1..8]:

import imgaug.augmenters as iaa
aug = iaa.UniformColorQuantizationToNBits()

Example. Create an augmenter that quantizes images by removing 8-B rightmost bits from each component, where
B is uniformly sampled from the discrete interval [2..8]:

9.7. augmenters.color 181

imgaug Documentation, Release 0.3.0

182 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

aug = iaa.UniformColorQuantizationToNBits(nb_bits=(2, 8))

Example. Create an augmenter that uniformly quantizes images in either RGB or HSV colorspace (randomly picked
per image). The input colorspace of all images has to be BGR:

aug = iaa.UniformColorQuantizationToNBits(
from_colorspace=iaa.CSPACE_BGR,
to_colorspace=[iaa.CSPACE_RGB, iaa.CSPACE_HSV])

9.7.20 Posterize

Alias for imgaug.augmenters.color.UniformColorQuantizationToNBits.

API link: Posterize

9.8 augmenters.contrast

9.8.1 GammaContrast

Adjust image contrast by scaling pixel values to 255*((v/255)**gamma).

9.8. augmenters.contrast 183

imgaug Documentation, Release 0.3.0

Values in the range gamma=(0.5, 2.0) seem to be sensible.

API link: GammaContrast()

Example. Modify the contrast of images according to 255*((v/255)**gamma), where v is a pixel value and
gamma is sampled uniformly from the interval [0.5, 2.0] (once per image):

import imgaug.augmenters as iaa
aug = iaa.GammaContrast((0.5, 2.0))

Example. Same as in the previous example, but gamma is sampled once per image and channel:

aug = iaa.GammaContrast((0.5, 2.0), per_channel=True)

184 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

9.8.2 SigmoidContrast

Adjust image contrast to 255*1/(1+exp(gain*(cutoff-I_ij/255))).

Values in the range gain=(5, 20) and cutoff=(0.25, 0.75) seem to be sensible.

API link: SigmoidContrast()

Example. Modify the contrast of images according to 255*1/(1+exp(gain*(cutoff-v/255))), where v
is a pixel value, gain is sampled uniformly from the interval [3, 10] (once per image) and cutoff is sampled
uniformly from the interval [0.4, 0.6] (also once per image).

import imgaug.augmenters as iaa
aug = iaa.SigmoidContrast(gain=(3, 10), cutoff=(0.4, 0.6))

Example. Same as in the previous example, but gain and cutoff are each sampled once per image and channel:

aug = iaa.SigmoidContrast(
gain=(3, 10), cutoff=(0.4, 0.6), per_channel=True)

9.8.3 LogContrast

Adjust image contrast by scaling pixels to 255*gain*log_2(1+v/255).

This augmenter is fairly similar to imgaug.augmenters.arithmetic.Multiply.

API link: LogContrast()

Example. Modify the contrast of images according to 255*gain*log_2(1+v/255), where v is a pixel value and
gain is sampled uniformly from the interval [0.6, 1.4] (once per image):

import imgaug.augmenters as iaa
aug = iaa.LogContrast(gain=(0.6, 1.4))

Example. Same as in the previous example, but gain is sampled once per image and channel:

9.8. augmenters.contrast 185

imgaug Documentation, Release 0.3.0

186 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

aug = iaa.LogContrast(gain=(0.6, 1.4), per_channel=True)

9.8.4 LinearContrast

Adjust contrast by scaling each pixel to 127 + alpha*(v-127).

API link: LinearContrast()

Example. Modify the contrast of images according to 127 + alpha*(v-127)‘, where v is a pixel value and alpha is
sampled uniformly from the interval [0.4, 1.6] (once per image):

import imgaug.augmenters as iaa
aug = iaa.LinearContrast((0.4, 1.6))

Example. Same as in the previous example, but alpha is sampled once per image and channel:

aug = iaa.LinearContrast((0.4, 1.6), per_channel=True)

9.8.5 AllChannelsCLAHE

Apply CLAHE to all channels of images in their original colorspaces.

CLAHE (Contrast Limited Adaptive Histogram Equalization) performs histogram equilization within image patches,
i.e. over local neighbourhoods.

In contrast to imgaug.augmenters.contrast.CLAHE, this augmenter operates directly on all channels of the
input images. It does not perform any colorspace transformations and does not focus on specific channels (e.g. L in
Lab colorspace).

API link: AllChannelsCLAHE

Example. Create an augmenter that applies CLAHE to all channels of input images:

9.8. augmenters.contrast 187

imgaug Documentation, Release 0.3.0

188 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

import imgaug.augmenters as iaa
aug = iaa.AllChannelsCLAHE()

Example. Same as in the previous example, but the clip_limit used by CLAHE is uniformly sampled per image from
the interval [1, 10]. Some images will therefore have stronger contrast than others (i.e. higher clip limit values).

aug = iaa.AllChannelsCLAHE(clip_limit=(1, 10))

Example. Same as in the previous example, but the clip_limit is sampled per image and channel, leading to different
levels of contrast for each channel:

9.8. augmenters.contrast 189

imgaug Documentation, Release 0.3.0

aug = iaa.AllChannelsCLAHE(clip_limit=(1, 10), per_channel=True)

9.8.6 CLAHE

Apply CLAHE to L/V/L channels in HLS/HSV/Lab colorspaces.

This augmenter applies CLAHE (Contrast Limited Adaptive Histogram Equalization) to images, a form of histogram
equalization that normalizes within local image patches. The augmenter transforms input images to a target colorspace
(e.g. Lab), extracts an intensity-related channel from the converted images (e.g. L for Lab), applies CLAHE to the
channel and then converts the resulting image back to the original colorspace.

Grayscale images (images without channel axis or with only one channel axis) are automatically handled,
from_colorspace does not have to be adjusted for them. For images with four channels (e.g. RGBA), the fourth
channel is ignored in the colorspace conversion (e.g. from an RGBA image, only the RGB part is converted, normal-
ized, converted back and concatenated with the input A channel). Images with unusual channel numbers (2, 5 or
more than 5) are normalized channel-by-channel (same behaviour as AllChannelsCLAHE, though a warning will
be raised).

If you want to apply CLAHE to each channel of the original input image’s colorspace (without any colorspace con-
version), use imgaug.augmenters.contrast.AllChannelsCLAHE instead.

API link: CLAHE

Example. Create a standard CLAHE augmenter:

import imgaug.augmenters as iaa
aug = iaa.CLAHE()

Example. Create a CLAHE augmenter with a clip limit uniformly sampled from [1..10], where 1 is rather low
contrast and 10 is rather high contrast:

aug = iaa.CLAHE(clip_limit=(1, 10))

Example. Create a CLAHE augmenter with kernel sizes of SxS, where S is uniformly sampled from [3..21].
Sampling happens once per image.

190 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

9.8. augmenters.contrast 191

imgaug Documentation, Release 0.3.0

aug = iaa.CLAHE(tile_grid_size_px=(3, 21))

Example. Create a CLAHE augmenter with kernel sizes of SxS, where S is sampled from N(7, 2), but does not
go below 3:

import imgaug.parameters as iap
aug = iaa.CLAHE(

tile_grid_size_px=iap.Discretize(iap.Normal(loc=7, scale=2)),
tile_grid_size_px_min=3)

Example. Create a CLAHE augmenter with kernel sizes of HxW, where H is uniformly sampled from [3..21] and
W is randomly picked from the list [3, 5, 7]:

192 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

aug = iaa.CLAHE(tile_grid_size_px=((3, 21), [3, 5, 7]))

Example. Create a CLAHE augmenter that converts images from BGR colorspace to HSV colorspace and then
applies the local histogram equalization to the V channel of the images (before converting back to BGR). Alternatively,
Lab (default) or HLS can be used as the target colorspace. Grayscale images (no channels / one channel) are never
converted and are instead directly normalized (i.e. from_colorspace does not have to be changed for them).

aug = iaa.CLAHE(
from_colorspace=iaa.CLAHE.BGR,
to_colorspace=iaa.CLAHE.HSV)

9.8. augmenters.contrast 193

imgaug Documentation, Release 0.3.0

9.8.7 AllChannelsHistogramEqualization

Apply Histogram Eq. to all channels of images in their original colorspaces.

In contrast to imgaug.augmenters.contrast.HistogramEqualization, this augmenter operates di-
rectly on all channels of the input images. It does not perform any colorspace transformations and does not focus
on specific channels (e.g. L in Lab colorspace).

API link: AllChannelsHistogramEqualization

Example. Create an augmenter that applies histogram equalization to all channels of input images in the original
colorspaces:

import imgaug.augmenters as iaa
aug = iaa.AllChannelsHistogramEqualization()

Example. Same as in the previous example, but alpha-blends the contrast-enhanced augmented images with the
original input images using random blend strengths. This leads to random strengths of the contrast adjustment.

aug = iaa.Alpha((0.0, 1.0), iaa.AllChannelsHistogramEqualization())

9.8.8 HistogramEqualization

Apply Histogram Eq. to L/V/L channels of images in HLS/HSV/Lab colorspaces.

This augmenter is similar to imgaug.augmenters.contrast.CLAHE.

The augmenter transforms input images to a target colorspace (e.g. Lab), extracts an intensity-related channel from
the converted images (e.g. L for Lab), applies Histogram Equalization to the channel and then converts the resulting
image back to the original colorspace.

Grayscale images (images without channel axis or with only one channel axis) are automatically handled,
from_colorspace does not have to be adjusted for them. For images with four channels (e.g. RGBA), the fourth
channel is ignored in the colorspace conversion (e.g. from an RGBA image, only the RGB part is converted, normal-
ized, converted back and concatenated with the input A channel). Images with unusual channel numbers (2, 5 or
more than 5) are normalized channel-by-channel (same behaviour as AllChannelsHistogramEqualization,
though a warning will be raised).

If you want to apply HistogramEqualization to each channel of the original input image’s colorspace (without any
colorspace conversion), use imgaug.augmenters.contrast.AllChannelsHistogramEqualization
instead.

API link: HistogramEqualization

Example. Create an augmenter that converts images to HLS/HSV/Lab colorspaces, extracts intensity-related channels
(i.e. L/V/L), applies histogram equalization to these channels and converts back to the input colorspace:

194 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

9.8. augmenters.contrast 195

imgaug Documentation, Release 0.3.0

import imgaug.augmenters as iaa
aug = iaa.HistogramEqualization()

Example. Same as in the previous example, but alpha blends the result, leading to various strengths of contrast
normalization:

aug = iaa.Alpha((0.0, 1.0), iaa.HistogramEqualization())

Example. Same as in the first example, but the colorspace of input images has to be BGR (instead of default RGB) and
the histogram equalization is applied to the V channel in HSV colorspace:

aug = iaa.HistogramEqualization(
from_colorspace=iaa.HistogramEqualization.BGR,
to_colorspace=iaa.HistogramEqualization.HSV)

9.9 augmenters.convolutional

9.9.1 Convolve

Apply a Convolution to input images.

API link: Convolve

Example. Convolve each image with a 3x3 kernel:

import imgaug.augmenters as iaa
matrix = np.array([[0, -1, 0],

[-1, 4, -1],
[0, -1, 0]])

aug = iaa.Convolve(matrix=matrix)

Example. Convolve each image with a 3x3 kernel, which is chosen dynamically per image:

def gen_matrix(image, nb_channels, random_state):
matrix_A = np.array([[0, -1, 0],

[-1, 4, -1],
[0, -1, 0]])

matrix_B = np.array([[0, 0, 0],
[0, -4, 1],
[0, 2, 1]])

if random_state.rand() < 0.5:
return [matrix_A] * nb_channels

(continues on next page)

196 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

9.9. augmenters.convolutional 197

imgaug Documentation, Release 0.3.0

(continued from previous page)

else:
return [matrix_B] * nb_channels

aug = iaa.Convolve(matrix=gen_matrix)

9.9.2 Sharpen

Augmenter that sharpens images and overlays the result with the original image.

API link: Sharpen()

Example. Sharpen an image, then overlay the results with the original using an alpha between 0.0 and 1.0:

198 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

import imgaug.augmenters as iaa
aug = iaa.Sharpen(alpha=(0.0, 1.0), lightness=(0.75, 2.0))

Example. Effects of keeping lightness fixed at 1.0 and then varying alpha between 0.0 and 1.0 in eight
steps:

Example. Effects of keeping alpha fixed at 1.0 and then varying lightness between 0.75 and 1.5 in eight
steps:

9.9.3 Emboss

Augmenter that embosses images and overlays the result with the original image.

API link: Emboss()

Example. Emboss an image, then overlay the results with the original using an alpha between 0.0 and 1.0:

import imgaug.augmenters as iaa
aug = iaa.Emboss(alpha=(0.0, 1.0), strength=(0.5, 1.5))

Example. Effects of keeping strength fixed at 1.0 and then varying alpha between 0.0 and 1.0 in eight steps:

Example. Effects of keeping alpha fixed at 1.0 and then varying strength between 0.5 and 1.5 in eight steps:

9.9.4 EdgeDetect

Augmenter that detects all edges in images, marks them in a black and white image and then overlays the result with
the original image.

API link: EdgeDetect()

9.9. augmenters.convolutional 199

imgaug Documentation, Release 0.3.0

Example. Detect edges in images, turning them into black and white images and then overlay these with the original
images using random alphas between 0.0 and 1.0:

import imgaug.augmenters as iaa
aug = iaa.EdgeDetect(alpha=(0.0, 1.0))

Example. Effect of increasing alpha from 0.0 to 1.0 in eight steps:

9.9.5 DirectedEdgeDetect

Augmenter that detects edges that have certain directions and marks them in a black and white image and then overlays
the result with the original image.

API link: DirectedEdgeDetect()

Example. Detect edges having random directions (0 to 360 degrees) in images, turning the images into black and
white versions and then overlay these with the original images using random alphas between 0.0 and 1.0:

import imgaug.augmenters as iaa
aug = iaa.DirectedEdgeDetect(alpha=(0.0, 1.0), direction=(0.0, 1.0))

Example. Effect of fixing direction to 0.0 and then increasing alpha from 0.0 to 1.0 in eight steps:

Example. Effect of fixing alpha to 1.0 and then increasing direction from 0.0 to 1.0 (0 to 360 degrees) in
eight steps:

200 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

9.10 augmenters.debug

9.10.1 SaveDebugImageEveryNBatches

Visualize data in batches and save corresponding plots to a folder.

API link: SaveDebugImageEveryNBatches()

Example. Save a debug plot to a temporary folder every 100 batches. Set folder_path to a string, e.g. /tmp/
experiments/debug-images, in order to save to that filepath instead of the temporary folder.

import imgaug.augmenters as iaa
import tempfile
with tempfile.TemporaryDirectory() as folder_path:

seq = iaa.Sequential([
iaa.Sequential([

iaa.Fliplr(0.5),
iaa.Crop(px=(0, 16))

], random_order=True),
iaa.SaveDebugImageEveryNBatches(folder_path, 100)

])

9.11 augmenters.edges

9.11.1 Canny

Apply a canny edge detector to input images.

API link: Canny

Example. Create an augmenter that generates random blends between images and their canny edge representations:

import imgaug.augmenters as iaa
aug = iaa.Canny()

9.10. augmenters.debug 201

imgaug Documentation, Release 0.3.0

202 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

Example. Create a canny edge augmenter that generates edge images with a blending factor of max 50%, i.e. the
original (non-edge) image is always at least partially visible:

aug = iaa.Canny(alpha=(0.0, 0.5))

Example. Same as in the previous example, but the edge image always uses the color white for edges and black for
the background:

aug = iaa.Canny(
alpha=(0.0, 0.5),
colorizer=iaa.RandomColorsBinaryImageColorizer(

color_true=255,

(continues on next page)

9.11. augmenters.edges 203

imgaug Documentation, Release 0.3.0

(continued from previous page)

color_false=0
)

)

Example. Create a canny edge augmenter that initially preprocesses images using a sobel filter with kernel size of
either 3x3 or 13x13 and alpha-blends with result using a strength of 50% (both images equally visible) to 100%
(only edge image visible).

aug = iaa.Canny(alpha=(0.5, 1.0), sobel_kernel_size=[3, 7])

Example. Create an augmenter that blends a canny edge image with a median-blurred version of the input image. The
median blur uses a fixed kernel size of 13x13 pixels.

204 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

aug = iaa.Alpha(
(0.0, 1.0),
iaa.Canny(alpha=1),
iaa.MedianBlur(13)

)

9.12 augmenters.flip

9.12.1 HorizontalFlip

Alias for Fliplr.

API link: HorizontalFlip

9.12.2 VericalFlip

Alias for Flipud.

API link: VerticalFlip

9.12.3 Fliplr

Flip/mirror input images horizontally.

Note: The default value for the probability is 1.0, i.e. all images will be flipped.

API link: Fliplr

Example. Flip 50% of all images horizontally:

9.12. augmenters.flip 205

imgaug Documentation, Release 0.3.0

import imgaug.augmenters as iaa
aug = iaa.Fliplr(0.5)

9.12.4 Flipud

Flip/mirror input images vertically.

Note: The default value for the probability is 1.0, i.e. all images will be flipped.

API link: Flipud

Example. Flip 50% of all images vertically:

aug = iaa.Flipud(0.5)

9.13 augmenters.geometric

9.13.1 Affine

Augmenter to apply affine transformations to images.

API link: Affine

Example. Scale images to a value of 50 to 150% of their original size:

import imgaug.augmenters as iaa
aug = iaa.Affine(scale=(0.5, 1.5))

206 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

Example. Scale images to a value of 50 to 150% of their original size, but do this independently per axis (i.e. sample
two values per image):

aug = iaa.Affine(scale={"x": (0.5, 1.5), "y": (0.5, 1.5)})

Example. Translate images by -20 to +20% on x- and y-axis independently:

aug = iaa.Affine(translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)})

Example. Translate images by -20 to 20 pixels on x- and y-axis independently:

aug = iaa.Affine(translate_px={"x": (-20, 20), "y": (-20, 20)})

Example. Rotate images by -45 to 45 degrees:

aug = iaa.Affine(rotate=(-45, 45))

Example. Shear images by -16 to 16 degrees:

aug = iaa.Affine(shear=(-16, 16))

9.13. augmenters.geometric 207

imgaug Documentation, Release 0.3.0

208 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

Example. When applying affine transformations, new pixels are often generated, e.g. when translating to the left,
pixels are generated on the right. Various modes exist to set how these pixels are ought to be filled. Below code shows
an example that uses all modes, sampled randomly per image. If the mode is constant (fill all with one constant
value), then a random brightness between 0 and 255 is used:

aug = iaa.Affine(translate_percent={"x": -0.20}, mode=ia.ALL, cval=(0, 255))

9.13.2 ScaleX

Apply affine scaling on the x-axis to input data.

This is a wrapper around imgaug.augmenters.geometric.Affine.

API link: ScaleX

Example. Create an augmenter that scales images along the width to sizes between 50% and 150%. This does not
change the image shape (i.e. height and width), only the pixels within the image are remapped and potentially new
ones are filled in.

import imgaug.augmenters as iaa
aug = iaa.ScaleX((0.5, 1.5))

9.13. augmenters.geometric 209

imgaug Documentation, Release 0.3.0

9.13.3 ScaleY

Apply affine scaling on the y-axis to input data.

This is a wrapper around imgaug.augmenters.geometric.Affine.

API link: ScaleY

Example. Create an augmenter that scales images along the height to sizes between 50% and 150%. This does not
change the image shape (i.e. height and width), only the pixels within the image are remapped and potentially new
ones are filled in.

import imgaug.augmenters as iaa
aug = iaa.ScaleY((0.5, 1.5))

9.13.4 TranslateX

Apply affine translation on the x-axis to input data.

This is a wrapper around imgaug.augmenters.geometric.Affine.

API link: TranslateX

Example. Create an augmenter that translates images along the x-axis by -20 to 20 pixels:

import imgaug.augmenters as iaa
aug = iaa.TranslateX(px=(-20, 20))

Example. Create an augmenter that translates images along the x-axis by -10% to 10% (relative to the x-axis size):

aug = iaa.TranslateX(percent=(-0.1, 0.1))

9.13.5 TranslateY

Apply affine translation on the y-axis to input data.

210 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

9.13. augmenters.geometric 211

imgaug Documentation, Release 0.3.0

This is a wrapper around imgaug.augmenters.geometric.Affine.

API link: TranslateY

Example. Create an augmenter that translates images along the y-axis by -20 to 20 pixels:

import imgaug.augmenters as iaa
aug = iaa.TranslateY(px=(-20, 20))

Example. Create an augmenter that translates images along the y-axis by -10% to 10% (relative to the y-axis size):

aug = iaa.TranslateY(percent=(-0.1, 0.1))

9.13.6 Rotate

Apply affine rotation on the y-axis to input data.

This is a wrapper around imgaug.augmenters.geometric.Affine. It is the same as
Affine(rotate=<value>).

API link: Rotate

Example. Create an augmenter that rotates images by a random value between -45 and 45 degress:

import imgaug.augmenters as iaa
aug = iaa.Rotate((-45, 45))

9.13.7 ShearX

Apply affine shear on the x-axis to input data.

This is a wrapper around Affine.

212 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

9.13. augmenters.geometric 213

imgaug Documentation, Release 0.3.0

API link: ShearX

Example. Create an augmenter that shears images along the x-axis by random amounts between -20 and 20 degrees:

import imgaug.augmenters as iaa
aug = iaa.ShearX((-20, 20))

9.13.8 ShearY

Apply affine shear on the y-axis to input data.

This is a wrapper around Affine.

API link: ShearY

Example. Create an augmenter that shears images along the y-axis by random amounts between -20 and 20 degrees:

import imgaug.augmenters as iaa
aug = iaa.ShearY((-20, 20))

9.13.9 PiecewiseAffine

Apply affine transformations that differ between local neighbourhoods.

This augmenter places a regular grid of points on an image and randomly moves the neighbourhood of these point
around via affine transformations. This leads to local distortions.

This is mostly a wrapper around scikit-image’s PiecewiseAffine. See also Affine for a similar technique.

Note: This augmenter is very slow. See Performance. Try to use ElasticTransformation instead, which is at
least 10x faster.

214 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

Note: For coordinate-based inputs (keypoints, bounding boxes, polygons, . . .), this augmenter still has to perform
an image-based augmentation, which will make it significantly slower for such inputs than other augmenters. See
Performance.

API link: PiecewiseAffine

Example. Distort images locally by moving points around, each with a distance v (percent relative to image size),
where v is sampled per point from N(0, z) z is sampled per image from the range 0.01 to 0.05:

import imgaug.augmenters as iaa
aug = iaa.PiecewiseAffine(scale=(0.01, 0.05))

9.13. augmenters.geometric 215

imgaug Documentation, Release 0.3.0

Example. Effect of increasing scale from 0.01 to 0.3 in eight steps:

Example. PiecewiseAffine works by placing a regular grid of points on the image and moving them around. By
default this grid consists of 4x4 points. The below image shows the effect of increasing that value from 2x2 to 16x16
in 8 steps:

9.13.10 PerspectiveTransform

Apply random four point perspective transformations to images.

Each of the four points is placed on the image using a random distance from its respective corner. The distance is
sampled from a normal distribution. As a result, most transformations don’t change the image very much, while some
“focus” on polygons far inside the image.

The results of this augmenter have some similarity with Crop.

API link: PerspectiveTransform

Example. Apply perspective transformations using a random scale between 0.01 and 0.15 per image, where the
scale is roughly a measure of how far the perspective transformation’s corner points may be distanced from the image’s
corner points:

216 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

import imgaug.augmenters as iaa
aug = iaa.PerspectiveTransform(scale=(0.01, 0.15))

Example. Same as in the previous example, but images are not resized back to the input image size after augmentation.
This will lead to smaller output images.

aug = iaa.PerspectiveTransform(scale=(0.01, 0.15), keep_size=False)

9.13.11 ElasticTransformation

Transform images by moving pixels locally around using displacement fields.

The augmenter has the parameters alpha and sigma. alpha controls the strength of the displacement: higher
values mean that pixels are moved further. sigma controls the smoothness of the displacement: higher values lead to
smoother patterns – as if the image was below water – while low values will cause indivdual pixels to be moved very
differently from their neighbours, leading to noisy and pixelated images.

A relation of 10:1 seems to be good for alpha and sigma, e.g. alpha=10 and sigma=1 or alpha=50,
sigma=5. For 128x128 a setting of alpha=(0, 70.0), sigma=(4.0, 6.0) may be a good choice and
will lead to a water-like effect.

For a detailed explanation, see

9.13. augmenters.geometric 217

imgaug Documentation, Release 0.3.0

Fig. 1: PerspectiveTransform with keep_size set to False. Note that the individual images are here
padded after augmentation in order to align them in a grid (i.e. purely for visualization purposes).

218 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

Simard, Steinkraus and Platt
Best Practices for Convolutional Neural Networks applied to Visual
Document Analysis
in Proc. of the International Conference on Document Analysis and
Recognition, 2003

Note: For coordinate-based inputs (keypoints, bounding boxes, polygons, . . .), this augmenter still has to perform
an image-based augmentation, which will make it significantly slower for such inputs than other augmenters. See
Performance.

API link: ElasticTransformation

Example. Distort images locally by moving individual pixels around following a distortions field with strength 0.25.
The strength of the movement is sampled per pixel from the range 0 to 5.0:

import imgaug.augmenters as iaa
aug = iaa.ElasticTransformation(alpha=(0, 5.0), sigma=0.25)

Example. Effect of keeping sigma fixed at 0.25 and increasing alpha from 0 to 5.0 in eight steps:

Example. Effect of keeping alpha fixed at 2.5 and increasing sigma from 0.01 to 1.0 in eight steps:

9.13.12 Rot90

Rotate images clockwise by multiples of 90 degrees.

9.13. augmenters.geometric 219

imgaug Documentation, Release 0.3.0

This could also be achieved using Affine, but Rot90 is significantly more efficient.

API link: Rot90

Fig. 2: The below examples use this input image, which slightly deviates from the examples for other augmenters (i.e.
it is not square).

Example. Rotate all images by 90 degrees. Resize these images afterwards to keep the size that they had before
augmentation. This may cause the images to look distorted.

import imgaug.augmenters as iaa
aug = iaa.Rot90(1)

Example. Rotate all images by 90 or 270 degrees. Resize these images afterwards to keep the size that they had before
augmentation. This may cause the images to look distorted.

aug = iaa.Rot90([1, 3])

Example. Rotate all images by 90, 180 or 270 degrees. Resize these images afterwards to keep the size that they had
before augmentation. This may cause the images to look distorted.

aug = iaa.Rot90((1, 3))

Example. Rotate all images by 90, 180 or 270 degrees. Does not resize to the original image size afterwards, i.e. each
image’s size may change.

220 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

9.13. augmenters.geometric 221

imgaug Documentation, Release 0.3.0

aug = iaa.Rot90((1, 3), keep_size=False)

Fig. 3: Rot90 with keep_size set to False. Note that the individual images are here padded after augmentation
in order to align them in a grid (i.e. purely for visualization purposes).

9.13.13 WithPolarWarping

Augmenter that applies other augmenters in a polar-transformed space.

This augmenter first transforms an image into a polar representation, then applies its child augmenter, then transforms
back to cartesian space. The polar representation is still in the image’s input dtype (i.e. uint8 stays uint8) and
can be visualized. It can be thought of as an “unrolled” version of the image, where previously circular lines appear
straight. Hence, applying child augmenters in that space can lead to circular effects. E.g. replacing rectangular pixel
areas in the polar representation with black pixels will lead to curved black areas in the cartesian result.

This augmenter can create new pixels in the image. It will fill these with black pixels. For segmentation maps it will
fill with class id 0. For heatmaps it will fill with 0.0.

This augmenter is limited to arrays with a height and/or width of 32767 or less.

Warning: When augmenting coordinates in polar representation, it is possible that these are shifted outside of the
polar image, but are inside the image plane after transforming back to cartesian representation, usually on newly
created pixels (i.e. black backgrounds). These coordinates are currently not removed. It is recommended to not
use very strong child transformations when also augmenting coordinate-based augmentables.

Warning: For bounding boxes, this augmenter suffers from the same problem as affine rotations applied to
bounding boxes, i.e. the resulting bounding boxes can have unintuitive (seemingly wrong) appearance. This is
due to coordinates being “rotated” that are inside the bounding box, but do not fall on the object and actually are
background. It is recommended to use this augmenter with caution when augmenting bounding boxes.

222 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

Warning: For polygons, this augmenter should not be combined with augmenters that perform automatic polygon
recovery for invalid polygons, as the polygons will frequently appear broken in polar representation and their
“fixed” version will be very broken in cartesian representation. Augmenters that perform such polygon recovery
are currently PerspectiveTransform, PiecewiseAffine and ElasticTransformation.

API link: WithPolarWarping

Example. Apply cropping and padding in polar representation, then warp back to cartesian representation:

import imgaug.augmenters as iaa
aug = iaa.WithPolarWarping(iaa.CropAndPad(percent=(-0.1, 0.1)))

Example. Apply affine translations in polar representation:

aug = iaa.WithPolarWarping(
iaa.Affine(

translate_percent={"x": (-0.1, 0.1), "y": (-0.1, 0.1)}
)

)

Example. Apply average pooling in polar representation. This leads to circular bins:

aug = iaa.WithPolarWarping(iaa.AveragePooling((2, 8)))

9.13.14 Jigsaw

Move cells within images similar to jigsaw patterns.

Note: This augmenter will by default pad images until their height is a multiple of nb_rows. Analogous for nb_cols.

Note: This augmenter will resize heatmaps and segmentation maps to the image size, then apply similar padding as for
the corresponding images and resize back to the original map size. That also means that images may change in shape
(due to padding), but heatmaps/segmaps will not change. For heatmaps/segmaps, this deviates from pad augmenters
that will change images and heatmaps/segmaps in corresponding ways and then keep the heatmaps/segmaps at the new
size.

Warning: This augmenter currently only supports augmentation of images, heatmaps, segmentation maps and
keypoints. Other augmentables, i.e. bounding boxes, polygons and line strings, will result in errors.

9.13. augmenters.geometric 223

imgaug Documentation, Release 0.3.0

224 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

API link: Jigsaw

Example. Create a jigsaw augmenter that splits images into 10x10 cells and shifts them around by 0 to 2 steps
(default setting):

import imgaug.augmenters as iaa
aug = iaa.Jigsaw(nb_rows=10, nb_cols=10)

Example. Create a jigsaw augmenter that splits each image into 1 to 4 cells along each axis:

aug = iaa.Jigsaw(nb_rows=(1, 4), nb_cols=(1, 4))

Example. Create a jigsaw augmenter that moves the cells in each image by a random amount between 1 and 5 times
(decided per image). Some images will be barely changed, some will be fairly distorted.

aug = iaa.Jigsaw(nb_rows=10, nb_cols=10, max_steps=(1, 5))

9.13. augmenters.geometric 225

imgaug Documentation, Release 0.3.0

226 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

9.14 augmenters.imgcorruptlike

9.14.1 GaussianNoise

Wrapper around gaussian_noise().

Note: This augmenter only affects images. Other data is not changed.

API link: GaussianNoise

The image below visualizes severities 1 to 5 – one severity per row:

Example. Create an augmenter around gaussian_noise(). Apply it to images using e.g.
aug(images=[image1, image2, ...]):

import imgaug.augmenters as iaa
aug = iaa.imgcorruptlike.GaussianNoise(severity=2)

9.14.2 ShotNoise

Wrapper around shot_noise().

Note: This augmenter only affects images. Other data is not changed.

API link: ShotNoise

The image below visualizes severities 1 to 5 – one severity per row:

Example. Create an augmenter around shot_noise(). Apply it to images using e.g. aug(images=[image1,
image2, ...]):

import imgaug.augmenters as iaa
aug = iaa.imgcorruptlike.ShotNoise(severity=2)

9.14.3 ImpulseNoise

Wrapper around impulse_noise().

Note: This augmenter only affects images. Other data is not changed.

API link: ImpulseNoise

The image below visualizes severities 1 to 5 – one severity per row:

Example. Create an augmenter around impulse_noise(). Apply it to images using e.g.
aug(images=[image1, image2, ...]):

import imgaug.augmenters as iaa
aug = iaa.imgcorruptlike.ImpulseNoise(severity=2)

9.14. augmenters.imgcorruptlike 227

imgaug Documentation, Release 0.3.0

228 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

9.14. augmenters.imgcorruptlike 229

imgaug Documentation, Release 0.3.0

230 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

9.14.4 SpeckleNoise

Wrapper around speckle_noise().

Note: This augmenter only affects images. Other data is not changed.

API link: SpeckleNoise

The image below visualizes severities 1 to 5 – one severity per row:

Example. Create an augmenter around speckle_noise(). Apply it to images using e.g.
aug(images=[image1, image2, ...]):

import imgaug.augmenters as iaa
aug = iaa.imgcorruptlike.SpeckleNoise(severity=2)

9.14.5 GaussianBlur

Wrapper around gaussian_blur().

Note: This augmenter only affects images. Other data is not changed.

API link: GaussianBlur

The image below visualizes severities 1 to 5 – one severity per row:

Example. Create an augmenter around gaussian_blur(). Apply it to images using e.g.
aug(images=[image1, image2, ...]):

import imgaug.augmenters as iaa
aug = iaa.imgcorruptlike.GaussianBlur(severity=2)

9.14.6 GlassBlur

Wrapper around glass_blur().

Note: This augmenter only affects images. Other data is not changed.

API link: GlassBlur

The image below visualizes severities 1 to 5 – one severity per row:

Example. Create an augmenter around glass_blur(). Apply it to images using e.g. aug(images=[image1,
image2, ...]):

import imgaug.augmenters as iaa
aug = iaa.imgcorruptlike.GlassBlur(severity=2)

9.14. augmenters.imgcorruptlike 231

imgaug Documentation, Release 0.3.0

232 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

9.14. augmenters.imgcorruptlike 233

imgaug Documentation, Release 0.3.0

234 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

9.14.7 DefocusBlur

Wrapper around defocus_blur().

Note: This augmenter only affects images. Other data is not changed.

API link: DefocusBlur

The image below visualizes severities 1 to 5 – one severity per row:

Example. Create an augmenter around defocus_blur(). Apply it to images using e.g.
aug(images=[image1, image2, ...]):

import imgaug.augmenters as iaa
aug = iaa.imgcorruptlike.DefocusBlur(severity=2)

9.14.8 MotionBlur

Wrapper around motion_blur().

Note: This augmenter only affects images. Other data is not changed.

API link: MotionBlur

The image below visualizes severities 1 to 5 – one severity per row:

Example. Create an augmenter around motion_blur(). Apply it to images using e.g. aug(images=[image1,
image2, ...]):

import imgaug.augmenters as iaa
aug = iaa.imgcorruptlike.MotionBlur(severity=2)

9.14.9 ZoomBlur

Wrapper around zoom_blur().

Note: This augmenter only affects images. Other data is not changed.

API link: ZoomBlur

The image below visualizes severities 1 to 5 – one severity per row:

Example. Create an augmenter around zoom_blur(). Apply it to images using e.g. aug(images=[image1,
image2, ...]):

import imgaug.augmenters as iaa
aug = iaa.imgcorruptlike.ZoomBlur(severity=2)

9.14. augmenters.imgcorruptlike 235

imgaug Documentation, Release 0.3.0

236 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

9.14. augmenters.imgcorruptlike 237

imgaug Documentation, Release 0.3.0

238 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

9.14.10 Fog

Wrapper around fog().

Note: This augmenter only affects images. Other data is not changed.

API link: Fog

The image below visualizes severities 1 to 5 – one severity per row:

Example. Create an augmenter around fog(). Apply it to images using e.g. aug(images=[image1, image2,
...]):

import imgaug.augmenters as iaa
aug = iaa.imgcorruptlike.Fog(severity=2)

9.14.11 Frost

Wrapper around frost().

Note: This augmenter only affects images. Other data is not changed.

API link: Frost

The image below visualizes severities 1 to 5 – one severity per row:

Example. Create an augmenter around frost(). Apply it to images using e.g. aug(images=[image1,
image2, ...]):

import imgaug.augmenters as iaa
aug = iaa.imgcorruptlike.Frost(severity=2)

9.14.12 Snow

Wrapper around snow().

Note: This augmenter only affects images. Other data is not changed.

API link: Snow

The image below visualizes severities 1 to 5 – one severity per row:

Example. Create an augmenter around snow(). Apply it to images using e.g. aug(images=[image1,
image2, ...]):

import imgaug.augmenters as iaa
aug = iaa.imgcorruptlike.Snow(severity=2)

9.14. augmenters.imgcorruptlike 239

imgaug Documentation, Release 0.3.0

240 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

9.14. augmenters.imgcorruptlike 241

imgaug Documentation, Release 0.3.0

242 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

9.14.13 Spatter

Wrapper around spatter().

Note: This augmenter only affects images. Other data is not changed.

API link: Spatter

The image below visualizes severities 1 to 5 – one severity per row:

Example. Create an augmenter around spatter(). Apply it to images using e.g. aug(images=[image1,
image2, ...]):

import imgaug.augmenters as iaa
aug = iaa.imgcorruptlike.Spatter(severity=2)

9.14.14 Contrast

Wrapper around contrast().

Note: This augmenter only affects images. Other data is not changed.

API link: Contrast

The image below visualizes severities 1 to 5 – one severity per row:

Example. Create an augmenter around contrast(). Apply it to images using e.g. aug(images=[image1,
image2, ...]):

import imgaug.augmenters as iaa
aug = iaa.imgcorruptlike.Contrast(severity=2)

9.14.15 Brightness

Wrapper around brightness().

Note: This augmenter only affects images. Other data is not changed.

API link: Brightness

The image below visualizes severities 1 to 5 – one severity per row:

Example. Create an augmenter around brightness(). Apply it to images using e.g. aug(images=[image1,
image2, ...]):

import imgaug.augmenters as iaa
aug = iaa.imgcorruptlike.Brightness(severity=2)

9.14. augmenters.imgcorruptlike 243

imgaug Documentation, Release 0.3.0

244 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

9.14. augmenters.imgcorruptlike 245

imgaug Documentation, Release 0.3.0

246 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

9.14.16 Saturate

Wrapper around saturate().

Note: This augmenter only affects images. Other data is not changed.

API link: Saturate

The image below visualizes severities 1 to 5 – one severity per row:

Example. Create an augmenter around saturate(). Apply it to images using e.g. aug(images=[image1,
image2, ...]):

import imgaug.augmenters as iaa
aug = iaa.imgcorruptlike.Saturate(severity=2)

9.14.17 JpegCompression

Wrapper around jpeg_compression().

Note: This augmenter only affects images. Other data is not changed.

API link: JpegCompression

The image below visualizes severities 1 to 5 – one severity per row:

Example. Create an augmenter around jpeg_compression(). Apply it to images using e.g.
aug(images=[image1, image2, ...]):

import imgaug.augmenters as iaa
aug = iaa.imgcorruptlike.JpegCompression(severity=2)

9.14.18 Pixelate

Wrapper around jpeg_compression().

Note: This augmenter only affects images. Other data is not changed.

Wrapper around pixelate().

Note: This augmenter only affects images. Other data is not changed.

API link: Pixelate

The image below visualizes severities 1 to 5 – one severity per row:

Example. Create an augmenter around pixelate(). Apply it to images using e.g. aug(images=[image1,
image2, ...]):

import imgaug.augmenters as iaa
aug = iaa.imgcorruptlike.Pixelate(severity=2)

9.14. augmenters.imgcorruptlike 247

imgaug Documentation, Release 0.3.0

248 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

9.14. augmenters.imgcorruptlike 249

imgaug Documentation, Release 0.3.0

250 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

9.14.19 ElasticTransform

Wrapper around elastic_transform().

Note: This augmenter only affects images. Other data is not changed.

API link: ElasticTransform

The image below visualizes severities 1 to 5 – one severity per row:

Example. Create an augmenter around elastic_transform(). Apply it to images using e.g.
aug(images=[image1, image2, ...]):

import imgaug.augmenters as iaa
aug = iaa.imgcorruptlike.ElasticTransform(severity=2)

9.15 augmenters.pillike

9.15.1 Solarize

Augmenter with identical outputs to PIL’s solarize() function.

This augmenter inverts all pixel values above a threshold.

The outputs are identical to PIL’s solarize().

API link: Solarize()

Example. Invert the colors in 50 percent of all images for pixels with a value between 32 and 128 or more. The
threshold is sampled once per image. The thresholding operation happens per channel.

import imgaug.augmenters as iaa
aug = iaa.Solarize(0.5, threshold=(32, 128))

9.15.2 Posterize

Augmenter with identical outputs to PIL’s posterize() function.

This augmenter quantizes each array component to N bits.

This class is currently an alias for Posterize, which again is an alias for
UniformColorQuantizationToNBits, i.e. all three classes are right now guarantueed to have the
same outputs as PIL’s function.

API link: Posterize()

9.15.3 Equalize

Equalize the image histogram.

This augmenter has identical outputs to equalize().

API link: Equalize()

Example. Equalize the histograms of all input images:

9.15. augmenters.pillike 251

imgaug Documentation, Release 0.3.0

252 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

9.15. augmenters.pillike 253

imgaug Documentation, Release 0.3.0

import imgaug.augmenters as iaa
aug = iaa.pillike.Equalize()

9.15.4 Autocontrast

Adjust contrast by cutting off p% of lowest/highest histogram values.

This augmenter has identical outputs to autocontrast().

See autocontrast() for more details.

API link: Autocontrast()

Example. Modify the contrast of images by cutting off the 0 to 20% lowest and highest values from the histogram,
then stretching it to full length:

import imgaug.augmenters as iaa
aug = iaa.pillike.Autocontrast()

Example. Modify the contrast of images by cutting off the 10 to 20% lowest and highest values from the histogram,
then stretching it to full length. The cutoff value is sampled per channel instead of per image.

aug = iaa.pillike.Autocontrast((10, 20), per_channel=True)

9.15.5 EnhanceColor

Convert images to grayscale.

This augmenter has identical outputs to Color.

API link: EnhanceColor()

Example. Create an augmenter to remove a random fraction of color from input images:

254 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

import imgaug.augmenters as iaa
aug = iaa.pillike.EnhanceColor()

9.15.6 EnhanceContrast

Change the contrast of images.

This augmenter has identical outputs to Contrast.

API link: EnhanceContrast()

Example. Create an augmenter that worsens the contrast of an image by a random factor:

import imgaug.augmenters as iaa
aug = iaa.pillike.EnhanceContrast()

9.15.7 EnhanceBrightness

Change the brightness of images.

This augmenter has identical outputs to Brightness.

API link: EnhanceBrightness()

Example. Create an augmenter that worsens the brightness of an image by a random factor:

import imgaug.augmenters as iaa
aug = iaa.pillike.EnhanceBrightness()

9.15.8 EnhanceSharpness

Change the sharpness of images.

9.15. augmenters.pillike 255

imgaug Documentation, Release 0.3.0

256 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

9.15. augmenters.pillike 257

imgaug Documentation, Release 0.3.0

258 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

This augmenter has identical outputs to Sharpness.

API link: EnhanceSharpness()

Example. Create an augmenter that randomly decreases or increases the sharpness of an image:

import imgaug.augmenters as iaa
aug = iaa.pillike.EnhanceSharpness()

9.15.9 FilterBlur

Apply a blur filter kernel to images.

This augmenter has identical outputs to calling filter() with kernel PIL.ImageFilter.BLUR.

API link: FilterBlur()

Example. Create an augmenter that applies a blur filter kernel to images:

import imgaug.augmenters as iaa
aug = iaa.pillike.FilterBlur()

9.15. augmenters.pillike 259

imgaug Documentation, Release 0.3.0

9.15.10 FilterSmooth

Apply a smoothening filter kernel to images.

This augmenter has identical outputs to calling filter() with kernel PIL.ImageFilter.SMOOTH.

API link: FilterSmooth()

Example. Create an augmenter that applies a smoothening filter kernel to images:

import imgaug.augmenters as iaa
aug = iaa.pillike.FilterSmooth()

9.15.11 FilterSmoothMore

Apply a strong smoothening filter kernel to images.

This augmenter has identical outputs to calling filter() with kernel PIL.ImageFilter.BLUR.

API link: FilterSmoothMore()

Example. Create an augmenter that applies a strong smoothening filter kernel to images:

import imgaug.augmenters as iaa
aug = iaa.pillike.FilterSmoothMore()

9.15.12 FilterEdgeEnhance

Apply an edge enhance filter kernel to images.

This augmenter has identical outputs to calling filter() with kernel PIL.ImageFilter.EDGE_ENHANCE.

API link: FilterEdgeEnhance()

260 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

Example. Create an augmenter that applies a edge enhancement filter kernel to images:

import imgaug.augmenters as iaa
aug = iaa.pillike.FilterEdgeEnhance()

9.15.13 FilterEdgeEnhanceMore

Apply a strong edge enhancement filter kernel to images.

This augmenter has identical outputs to calling filter() with kernel PIL.ImageFilter.
EDGE_ENHANCE_MORE.

API link: FilterEdgeEnhanceMore()

Example. Create an augmenter that applies a strong edge enhancement filter kernel to images:

import imgaug.augmenters as iaa
aug = iaa.pillike.FilterEdgeEnhanceMore()

9.15. augmenters.pillike 261

imgaug Documentation, Release 0.3.0

9.15.14 FilterFindEdges

Apply a edge detection kernel to images.

This augmenter has identical outputs to calling filter() with kernel PIL.ImageFilter.FIND_EDGES.

API link: FilterFindEdges()

Example. Create an augmenter that applies an edge detection filter kernel to images:

import imgaug.augmenters as iaa
aug = iaa.pillike.FilterFindEdges()

9.15.15 FilterContour

Apply a contour detection filter kernel to images.

This augmenter has identical outputs to calling filter() with kernel PIL.ImageFilter.CONTOUR.

API link: FilterContour()

Example. Create an augmenter that applies a contour detection filter kernel to images:

import imgaug.augmenters as iaa
aug = iaa.pillike.FilterContour()

9.15.16 FilterEmboss

Apply an emboss filter kernel to images.

This augmenter has identical outputs to calling filter() with kernel PIL.ImageFilter.EMBOSS.

API link: FilterEmboss()

Example. Create an augmenter that applies an emboss filter kernel to images:

262 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

import imgaug.augmenters as iaa
aug = iaa.pillike.FilterEmboss()

9.15.17 FilterSharpen

Apply a sharpening filter kernel to images.

This augmenter has identical outputs to calling filter() with kernel PIL.ImageFilter.SHARPEN.

API link: FilterSharpen()

Example. Create an augmenter that applies a sharpening filter kernel to images:

import imgaug.augmenters as iaa
aug = iaa.pillike.FilterSharpen()

9.15.18 FilterDetail

Apply a detail enhancement filter kernel to images.

This augmenter has identical outputs to calling filter() with kernel PIL.ImageFilter.DETAIL.

API link: FilterDetail()

Example. Create an augmenter that applies a detail enhancement filter kernel to images:

import imgaug.augmenters as iaa
aug = iaa.pillike.FilterDetail()

9.15. augmenters.pillike 263

imgaug Documentation, Release 0.3.0

9.15.19 Affine

Apply PIL-like affine transformations to images.

This augmenter has identical outputs to transform() with parameter method=PIL.Image.AFFINE.

Note: This augmenter can currently only transform image-data. Batches containing heatmaps, segmentation maps
and coordinate-based augmentables will be rejected with an error. Use Affine if you have to transform such inputs.

Note: This augmenter uses the image center as the transformation center. This has to be explicitly enforced in
PIL using corresponding translation matrices. Without such translation, PIL uses the image top left corner as the
transformation center. To mirror that behaviour, use center=(0.0, 0.0).

API link: Affine()

Example. Create an augmenter that applies affine scaling (zoom in/out) to images. Along the x-axis they are scaled
to 80-120% of their size, along the y-axis to 50-150% (both values randomly and uniformly chosen per image).

import imgaug.augmenters as iaa
aug = iaa.pillike.Affine(scale={"x": (0.8, 1.2), "y": (0.5, 1.5)})

264 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

Example. Create an augmenter that translates images along the y-axis by either -10px or 10px. Newly created
pixels are always filled with the value 128 (along all channels).

aug = iaa.pillike.Affine(translate_px={"x": 0, "y": [-10, 10]},
fillcolor=128)

Example. Rotate an image by -20 to 20 degress and fill up all newly created pixels with a random RGB color:

aug = iaa.pillike.Affine(rotate=(-20, 20), fillcolor=(0, 256))

See the similar augmenter Affine for more examples.

9.15. augmenters.pillike 265

imgaug Documentation, Release 0.3.0

9.16 augmenters.pooling

9.16.1 AveragePooling

Apply average pooling to images.

This augmenter pools images with kernel sizes H x W by averaging the pixel values within these windows. For e.g.
2 x 2 this halves the image size. Optionally, the augmenter will automatically re-upscale the image to the input size
(by default this is activated).

This augmenter does not affect heatmaps, segmentation maps or coordinates-based augmentables (e.g. keypoints,
bounding boxes, . . .).

Note that this augmenter is very similar to AverageBlur. AverageBlur applies averaging within windows of
given kernel size without striding, while AveragePooling applies striding corresponding to the kernel size, with
optional upscaling afterwards. The upscaling is configured to create “pixelated”/”blocky” images by default.

API link: AveragePooling

Example. Create an augmenter that always pools with a kernel size of 2 x 2:

import imgaug.augmenters as iaa
aug = iaa.AveragePooling(2)

Example. Create an augmenter that always pools with a kernel size of 2 x 2 and does not resize back to the input
image size, i.e. the resulting images have half the resolution:

aug = iaa.AveragePooling(2, keep_size=False)

Example. Create an augmenter that always pools either with a kernel size of 2 x 2 or 8 x 8:

aug = iaa.AveragePooling([2, 8])

Example. Create an augmenter that always pools with a kernel size of 1 x 1 (does nothing) to 7 x 7. The kernel
sizes are always symmetric.

aug = iaa.AveragePooling((1, 7))

266 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

9.16. augmenters.pooling 267

imgaug Documentation, Release 0.3.0

Example. Create an augmenter that always pools with a kernel size of H x W where H and W are both sampled
independently from the range [1..7]. E.g. resulting kernel sizes could be 3 x 7 or 5 x 1.

aug = iaa.AveragePooling(((1, 7), (1, 7)))

9.16.2 MaxPooling

Apply max pooling to images.

This augmenter pools images with kernel sizes H x W by taking the maximum pixel value over windows. For e.g. 2
x 2 this halves the image size. Optionally, the augmenter will automatically re-upscale the image to the input size
(by default this is activated).

The maximum within each pixel window is always taken channelwise.

This augmenter does not affect heatmaps, segmentation maps or coordinates-based augmentables (e.g. keypoints,
bounding boxes, . . .).

API link: MaxPooling

Example. Create an augmenter that always pools with a kernel size of 2 x 2:

import imgaug.augmenters as iaa
aug = iaa.MaxPooling(2)

Example. Create an augmenter that always pools with a kernel size of 2 x 2 and does not resize back to the input
image size, i.e. the resulting images have half the resolution:

aug = iaa.MaxPooling(2, keep_size=False)

Example. Create an augmenter that always pools either with a kernel size of 2 x 2 or 8 x 8:

aug = iaa.MaxPooling([2, 8])

Example. Create an augmenter that always pools with a kernel size of 1 x 1 (does nothing) to 7 x 7. The kernel
sizes are always symmetric.

268 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

9.16. augmenters.pooling 269

imgaug Documentation, Release 0.3.0

aug = iaa.MaxPooling((1, 7))

Example. Create an augmenter that always pools with a kernel size of H x W where H and W are both sampled
independently from the range [1..7]. E.g. resulting kernel sizes could be 3 x 7 or 5 x 1.

aug = iaa.MaxPooling(((1, 7), (1, 7)))

9.16.3 MinPooling

Apply minimum pooling to images.

270 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

This augmenter pools images with kernel sizes H x W by taking the minimum pixel value over windows. For e.g. 2
x 2 this halves the image size. Optionally, the augmenter will automatically re-upscale the image to the input size
(by default this is activated).

The minimum within each pixel window is always taken channelwise.

This augmenter does not affect heatmaps, segmentation maps or coordinates-based augmentables (e.g. keypoints,
bounding boxes, . . .).

API link: MinPooling

Example. Create an augmenter that always pools with a kernel size of 2 x 2:

import imgaug.augmenters as iaa
aug = iaa.MinPooling(2)

Example. Create an augmenter that always pools with a kernel size of 2 x 2 and does not resize back to the input
image size, i.e. the resulting images have half the resolution.

aug = iaa.MinPooling(2, keep_size=False)

Example. Create an augmenter that always pools either with a kernel size of 2 x 2 or 8 x 8:

aug = iaa.MinPooling([2, 8])

Example. Create an augmenter that always pools with a kernel size of 1 x 1 (does nothing) to 7 x 7. The kernel
sizes are always symmetric.

aug = iaa.MinPooling((1, 7))

Example. Create an augmenter that always pools with a kernel size of H x W where H and W are both sampled
independently from the range [1..7]. E.g. resulting kernel sizes could be 3 x 7 or 5 x 1.

aug = iaa.MinPooling(((1, 7), (1, 7)))

9.16.4 MedianPooling

Apply median pooling to images.

9.16. augmenters.pooling 271

imgaug Documentation, Release 0.3.0

272 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

This augmenter pools images with kernel sizes H x W by taking the median pixel value over windows. For e.g. 2 x
2 this halves the image size. Optionally, the augmenter will automatically re-upscale the image to the input size (by
default this is activated).

The median within each pixel window is always taken channelwise.

This augmenter does not affect heatmaps, segmentation maps or coordinates-based augmentables (e.g. keypoints,
bounding boxes, . . .).

API link: MedianPooling

Example. Create an augmenter that always pools with a kernel size of 2 x 2:

import imgaug.augmenters as iaa
aug = iaa.MedianPooling(2)

Example. Create an augmenter that always pools with a kernel size of 2 x 2 and does not resize back to the input
image size, i.e. the resulting images have half the resolution:

aug = iaa.MedianPooling(2, keep_size=False)

Example. Create an augmenter that always pools either with a kernel size of 2 x 2 or 8 x 8:

9.16. augmenters.pooling 273

imgaug Documentation, Release 0.3.0

aug = iaa.MedianPooling([2, 8])

Example. Create an augmenter that always pools with a kernel size of 1 x 1 (does nothing) to 7 x 7. The kernel
sizes are always symmetric.

aug = iaa.MedianPooling((1, 7))

Example. Create an augmenter that always pools with a kernel size of H x W where H and W are both sampled
independently from the range [1..7]. E.g. resulting kernel sizes could be 3 x 7 or 5 x 1.

aug = iaa.MedianPooling(((1, 7), (1, 7)))

9.17 augmenters.segmentation

9.17.1 Superpixels

Completely or partially transform images to their superpixel representation.

Note: This augmenter is fairly slow. See Performance.

API link: Superpixels

274 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

9.17. augmenters.segmentation 275

imgaug Documentation, Release 0.3.0

Example. Generate about 64 superpixels per image. Replace each one with a probability of 50% by its average pixel
color.

import imgaug.augmenters as iaa
aug = iaa.Superpixels(p_replace=0.5, n_segments=64)

Example. Generate 16 to 128 superpixels per image. Replace each superpixel with a probability between 10 and
100% (sampled once per image) by its average pixel color.

aug = iaa.Superpixels(p_replace=(0.1, 1.0), n_segments=(16, 128))

Example. Effect of setting n_segments to a fixed value of 64 and then increasing p_replace from 0.0 and
1.0:

276 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

Example. Effect of setting p_replace to a fixed value of 1.0 and then increasing n_segments from 1*16 to
9*16=144:

9.17.2 Voronoi

Average colors of an image within Voronoi cells.

This augmenter performs the following steps:

1. Query points_sampler to sample random coordinates of cell centers. On the image.

2. Estimate for each pixel to which voronoi cell (i.e. segment) it belongs. Each pixel belongs to the cell with the
closest center coordinate (euclidean distance).

3. Compute for each cell the average color of the pixels within it.

4. Replace the pixels of p_replace percent of all cells by their average color. Do not change the pixels of (1 -
p_replace) percent of all cells. (The percentages are average values over many images. Some images may
get more/less cells replaced by their average color.)

API link: Voronoi

Example. Create an augmenter that places a 20x40 (HxW) grid of cells on the image and replaces all pixels within
each cell by the cell’s average color. The process is performed at an image size not exceeding 128px on any side. If
necessary, the downscaling is performed using linear interpolation.

import imgaug.augmenters as iaa
points_sampler = iaa.RegularGridPointsSampler(n_cols=20, n_rows=40)
aug = iaa.Voronoi(points_sampler)

Example. Create a voronoi augmenter that generates a grid of cells dynamically adapted to the image size. Larger
images get more cells. On the x-axis, the distance between two cells is w * W pixels, where W is the width of the
image and w is always 0.1. On the y-axis, the distance between two cells is h * H pixels, where H is the height of
the image and h is sampled uniformly from the interval [0.05, 0.2]. To make the voronoi pattern less regular,
about 20 percent of the cell coordinates are randomly dropped (i.e. the remaining cells grow in size). In contrast to
the first example, the image is not resized (if it was, the sampling would happen after the resizing, which would affect
W and H). Not all voronoi cells are replaced by their average color, only around 90 percent of them. The remaining 10
percent’s pixels remain unchanged.

points_sampler = iaa.DropoutPointsSampler(
iaa.RelativeRegularGridPointsSampler(

n_cols_frac=(0.05, 0.2),
n_rows_frac=0.1),

(continues on next page)

9.17. augmenters.segmentation 277

imgaug Documentation, Release 0.3.0

(continued from previous page)

0.2)
aug = iaa.Voronoi(points_sampler, p_replace=0.9, max_size=None)

9.17.3 UniformVoronoi

Uniformly sample Voronoi cells on images and average colors within them.

This augmenter is a shortcut for the combination of Voronoiwith UniformPointsSampler. Hence, it generates
a fixed amount of N random coordinates of voronoi cells on each image. The cell coordinates are sampled uniformly
using the image height and width as maxima.

278 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

API link: UniformVoronoi

Example. Sample for each image uniformly the number of voronoi cells N from the interval [100, 500]. Then
generates N coordinates by sampling uniformly the x-coordinates from [0, W] and the y-coordinates from [0, H],
where H is the image height and W the image width. Then uses these coordinates to group the image pixels into voronoi
cells and averages the colors within them. The process is performed at an image size not exceeding 128px on any side.
If necessary, the downscaling is performed using linear interpolation.

import imgaug.augmenters as iaa
aug = iaa.UniformVoronoi((100, 500))

Example. Same as above, but always samples N=250 cells, replaces only 90 percent of them with their average color
(the pixels of the remaining 10 percent are not changed) and performs the transformation at the original image size.

aug = iaa.UniformVoronoi(250, p_replace=0.9, max_size=None)

9.17.4 RegularGridVoronoi

Sample Voronoi cells from regular grids and color-average them.

This augmenter is a shortcut for the combination of Voronoi, RegularGridPointsSampler and
DropoutPointsSampler. Hence, it generates a regular grid with R rows and C columns of coordinates on each
image. Then, it drops p percent of the R*C coordinates to randomize the grid. Each image pixel then belongs to the
voronoi cell with the closest coordinate.

API link: RegularGridVoronoi

Example. Place a regular grid of 10x20 (height x width) coordinates on each image. Randomly drop on
average 20 percent of these points to create a less regular pattern. Then use the remaining coordinates to group the
image pixels into voronoi cells and average the colors within them. The process is performed at an image size not
exceeding 128px on any side. If necessary, the downscaling is performed using linear interpolation.

import imgaug.augmenters as iaa
aug = iaa.RegularGridVoronoi(10, 20)

9.17. augmenters.segmentation 279

imgaug Documentation, Release 0.3.0

280 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

Example. Same as above, generates a grid with randomly 10 to 30 rows, drops none of the generated points, replaces
only 90 percent of the voronoi cells with their average color (the pixels of the remaining 10 percent are not changed)
and performs the transformation at the original image size.

aug = iaa.RegularGridVoronoi(
(10, 30), 20, p_drop_points=0.0, p_replace=0.9, max_size=None)

9.17.5 RelativeRegularGridVoronoi

Sample Voronoi cells from image-dependent grids and color-average them.

This augmenter is a shortcut for the combination of Voronoi, RegularGridPointsSampler and
DropoutPointsSampler. Hence, it generates a regular grid with R rows and C columns of coordinates on each
image. Then, it drops p percent of the R*C coordinates to randomize the grid. Each image pixel then belongs to the
voronoi cell with the closest coordinate.

Note: In contrast to the other Voronoi augmenters, this one uses None as the default value for max_size, i.e. the color
averaging is always performed at full resolution. This enables the augmenter to make most use of the added points for
larger images. It does however slow down the augmentation process.

API link: RelativeRegularGridVoronoi

Example. Place a regular grid of R x C coordinates on each image, where R is the number of rows and computed as
R=0.1*H with H being the height of the input image. C is the number of columns and analogously estimated from the
image width W as C=0.25*W. Larger images will lead to larger R and C values. On average, 20 percent of these grid
coordinates are randomly dropped to create a less regular pattern. Then, the remaining coordinates are used to group
the image pixels into voronoi cells and the colors within them are averaged.

import imgaug.augmenters as iaa
aug = iaa.RelativeRegularGridVoronoi(0.1, 0.25)

Example. Same as above, generates a grid with randomly R=r*H rows, where r is sampled uniformly from the
interval [0.03, 0.1] and C=0.1*W rows. No points are dropped. The augmenter replaces only 90 percent of the

9.17. augmenters.segmentation 281

imgaug Documentation, Release 0.3.0

voronoi cells with their average color (the pixels of the remaining 10 percent are not changed). Images larger than
512px are temporarily downscaled (before sampling the grid points) so that no side exceeds 512px. This improves
performance, but degrades the quality of the resulting image.

aug = iaa.RelativeRegularGridVoronoi(
(0.03, 0.1), 0.1, p_drop_points=0.0, p_replace=0.9, max_size=512)

282 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

9.18 augmenters.size

9.18.1 Resize

Augmenter that resizes images to specified heights and widths.

API link: Resize

Example. Resize each image to height=32 and width=64:

import imgaug.augmenters as iaa
aug = iaa.Resize({"height": 32, "width": 64})

Example. Resize each image to height=32 and keep the aspect ratio for width the same:

aug = iaa.Resize({"height": 32, "width": "keep-aspect-ratio"})

Example. Resize each image to something between 50 and 100% of its original size:

aug = iaa.Resize((0.5, 1.0))

9.18. augmenters.size 283

imgaug Documentation, Release 0.3.0

Example. Resize each image’s height to 50-75% of its original size and width to either 16px or 32px or 64px:

aug = iaa.Resize({"height": (0.5, 0.75), "width": [16, 32, 64]})

9.18.2 CropAndPad

Crop/pad images by pixel amounts or fractions of image sizes.

Cropping removes pixels at the sides (i.e. extracts a subimage from a given full image). Padding adds pixels to the
sides (e.g. black pixels).

Note: This augmenter automatically resizes images back to their original size after it has augmented them. To
deactivate this, add the parameter keep_size=False.

API link: CropAndPad

Example. Crop or pad each side by up to 10 percent relative to its original size (negative values result in cropping,
positive in padding):

import imgaug.augmenters as iaa
aug = iaa.CropAndPad(percent=(-0.25, 0.25))

Example. Pad each side by 0 to 20 percent. This adds new pixels to the sides. These pixels will either be filled with a
constant value (mode=constant) or filled with the value on the closest edge (mode=edge). If a constant value is used,
it will be a random value between 0 and 128 (sampled per image).

aug = iaa.CropAndPad(
percent=(0, 0.2),
pad_mode=["constant", "edge"],
pad_cval=(0, 128)

)

Example. Pad the top side of each image by 0 to 30 pixels, the right side by 0-10px, bottom side by 0-30px and left
side by 0-10px. Use any of the available modes to fill new pixels and if the mode is constant then use a constant value
between 0 and 128.

284 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

9.18. augmenters.size 285

imgaug Documentation, Release 0.3.0

aug = iaa.CropAndPad(
px=((0, 30), (0, 10), (0, 30), (0, 10)),
pad_mode=ia.ALL,
pad_cval=(0, 128)

)

Example. Crop/pad each side by up to 10px. The value will be sampled once per image and used for all sides (i.e. all
sides gain/lose the same number of rows/colums).

aug = iaa.CropAndPad(
px=(-10, 10),
sample_independently=False

)

9.18.3 Pad

Pad images, i.e. adds columns/rows of pixels to them.

This is a shortcut for CropAndPad. It only accepts positive pixel/percent values.

API link: Pad

286 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

9.18.4 Crop

Crop images, i.e. remove columns/rows of pixels at the sides of images.

This is a shortcut for CropAndPad. It only accepts positive pixel/percent values and transfers them as negative values
to CropAndPad.

API link: Crop

9.18.5 PadToFixedSize

Pad images to minimum width/height.

If images are already at the minimum width/height or are larger, they will not be padded. Note that this also means
that images will not be cropped if they exceed the required width/height.

The augmenter randomly decides per image how to distribute the required padding amounts over the image axis. E.g.
if 2px have to be padded on the left or right to reach the required width, the augmenter will sometimes add 2px to the
left and 0px to the right, sometimes add 2px to the right and 0px to the left and sometimes add 1px to both sides. Set
position to center to prevent that.

API link: PadToFixedSize

Example. For image sides smaller than 100 pixels, pad to 100 pixels. Do nothing for the other edges. The padding
is randomly (uniformly) distributed over the sides, so that e.g. sometimes most of the required padding is applied to
the left, sometimes to the right (analogous top/bottom). The input image here has a size of 80x80.

import imgaug.augmenters as iaa
aug = iaa.PadToFixedSize(width=100, height=100)

Example. For image sides smaller than 100 pixels, pad to 100 pixels. Do nothing for the other image sides. The
padding is always equally distributed over the left/right and top/bottom sides. The input image here has a size of
80x80.

aug = iaa.PadToFixedSize(width=100, height=100, position="center")

Example. For image sides smaller than 100 pixels, pad to 100 pixels and use any possible padding mode for that. Do
nothing for the other image sides. The padding is always equally distributed over the left/right and top/bottom sides.
The input image here has a size of 80x80.

9.18. augmenters.size 287

imgaug Documentation, Release 0.3.0

aug = iaa.PadToFixedSize(width=100, height=100, pad_mode=ia.ALL)

Example. Pad images smaller than 100x100 until they reach 100x100. Analogously, crop images larger than
100x100 until they reach 100x100. The output images therefore have a fixed size of 100x100. The input image
here has a size of 80x120, so that the top/bottom sides have to be cropped and the left/right sides have to be padded.
Note that the original image was resized to 80x120, leading to a bit of an distorted appearance.

aug = iaa.Sequential([
iaa.PadToFixedSize(width=100, height=100),
iaa.CropToFixedSize(width=100, height=100)

])

9.18.6 CropToFixedSize

Crop images down to a fixed maximum width/height.

If images are already at the maximum width/height or are smaller, they will not be cropped. Note that this also means
that images will not be padded if they are below the required width/height.

The augmenter randomly decides per image how to distribute the required cropping amounts over the image axis.
E.g. if 2px have to be cropped on the left or right to reach the required width, the augmenter will sometimes remove
2px from the left and 0px from the right, sometimes remove 2px from the right and 0px from the left and sometimes
remove 1px from both sides. Set position to center to prevent that.

API link: CropToFixedSize

288 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

Example. For image sides larger than 100 pixels, crop to 100 pixels. Do nothing for the other sides. The cropping
amounts are randomly (and uniformly) distributed over the sides of the image. The input image here has a size of
120x120.

import imgaug.augmenters as iaa
aug = iaa.CropToFixedSize(width=100, height=100)

Example. For sides larger than 100 pixels, crop to 100 pixels. Do nothing for the other sides. The cropping amounts
are always equally distributed over the left/right sides of the image (and analogously for top/bottom). The input image
here has a size of 120x120.

aug = iaa.CropToFixedSize(width=100, height=100, position="center")

Example. Pad images smaller than 100x100 until they reach 100x100. Analogously, crop images larger than
100x100 until they reach 100x100. The output images therefore have a fixed size of 100x100. The input image
here has a size of 80x120, so that the top/bottom sides have to be cropped and the left/right sides have to be padded.
Note that the original image was resized to 80x120, leading to a bit of an distorted appearance.

9.18. augmenters.size 289

imgaug Documentation, Release 0.3.0

aug = iaa.Sequential([
iaa.PadToFixedSize(width=100, height=100),
iaa.CropToFixedSize(width=100, height=100)

])

9.18.7 PadToMultiplesOf

Pad images until their height/width is a multiple of a value.

API link: PadToMultiplesOf

Example. Create an augmenter that pads images to multiples of 10 along the y-axis (i.e. 10, 20, 30, . . .) and to
multiples of 6 along the x-axis (i.e. 6, 12, 18, . . .). The rows to be padded will be spread randomly over the top and
bottom sides (analogous for the left/right sides).

import imgaug.augmenters as iaa
aug = iaa.PadToMultiplesOf(height_multiple=10, width_multiple=6)

9.18.8 CropToMultiplesOf

Crop images down until their height/width is a multiple of a value.

290 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

Note: For a given axis size A and multiple M, if A is in the interval [0 .. M], the axis will not be changed. As a
result, this augmenter can still produce axis sizes that are not multiples of the given values.

API link: CropToMultiplesOf

Example. Create an augmenter that crops images to multiples of 10 along the y-axis (i.e. 10, 20, 30, . . .) and to
multiples of 6 along the x-axis (i.e. 6, 12, 18, . . .). The rows to be cropped will be spread randomly over the top and
bottom sides (analogous for the left/right sides).

import imgaug.augmenters as iaa
aug = iaa.CropToMultiplesOf(height_multiple=10, width_multiple=6)

9.18.9 CropToPowersOf

Crop images until their height/width is a power of a base.

This augmenter removes pixels from an axis with size S leading to the new size S' until S' = B^E is fulfilled, where
B is a provided base (e.g. 2) and E is an exponent from the discrete interval [1 .. inf).

Note: This augmenter does nothing for axes with size less than B^1 = B. If you have images with S < B^1, it is
recommended to combine this augmenter with a padding augmenter that pads each axis up to B.

API link: CropToPowersOf

Example. Create an augmenter that crops each image down to powers of 3 along the y-axis (i.e. 3, 9, 27, . . .) and
powers of 2 along the x-axis (i.e. 2, 4, 8, 16, . . .). The rows to be cropped will be spread randomly over the top and
bottom sides (analogous for the left/right sides).

import imgaug.augmenters as iaa
aug = iaa.CropToPowersOf(height_base=3, width_base=2)

9.18.10 PadToPowersOf

Pad images until their height/width is a power of a base.

This augmenter adds pixels to an axis with size S leading to the new size S' until S' = B^E is fulfilled, where B is
a provided base (e.g. 2) and E is an exponent from the discrete interval [1 .. inf).

API link: PadToPowersOf

Example. Create an augmenter that pads each image to powers of 3 along the y-axis (i.e. 3, 9, 27, . . .) and powers of
2 along the x-axis (i.e. 2, 4, 8, 16, . . .). The rows to be padded will be spread randomly over the top and bottom sides
(analogous for the left/right sides).

import imgaug.augmenters as iaa
aug = iaa.PadToPowersOf(height_base=3, width_base=2)

9.18.11 CropToAspectRatio

Crop images until their width/height matches an aspect ratio.

9.18. augmenters.size 291

imgaug Documentation, Release 0.3.0

This augmenter removes either rows or columns until the image reaches the desired aspect ratio given in width /
height. The cropping operation is stopped once the desired aspect ratio is reached or the image side to crop reaches
a size of 1. If any side of the image starts with a size of 0, the image will not be changed.

API link: CropToAspectRatio

Example. Create an augmenter that crops each image until its aspect ratio is as close as possible to 2.0 (i.e. two
times as many pixels along the x-axis than the y-axis). The rows to be cropped will be spread randomly over the top
and bottom sides (analogous for the left/right sides).

import imgaug.augmenters as iaa
aug = iaa.CropToAspectRatio(2.0)

9.18.12 PadToAspectRatio

Pad images until their width/height matches an aspect ratio.

This augmenter adds either rows or columns until the image reaches the desired aspect ratio given in width /
height.

API link: PadToAspectRatio

Example. Create an augmenter that pads each image until its aspect ratio is as close as possible to 2.0 (i.e. two times
as many pixels along the x-axis than the y-axis). The rows to be padded will be spread randomly over the top and
bottom sides (analogous for the left/right sides).

import imgaug.augmenters as iaa
aug = iaa.PadToAspectRatio(2.0)

9.18.13 CropToSquare

Crop images until their width and height are identical.

This is identical to imgaug.augmenters.size.CropToAspectRatio with aspect_ratio=1.0.

Images with axis sizes of 0 will not be altered.

API link: CropToSquare

Example. Create an augmenter that crops each image until its square, i.e. height and width match. The rows to be
cropped will be spread randomly over the top and bottom sides (analogous for the left/right sides).

import imgaug.augmenters as iaa
aug = iaa.CropToSquare()

9.18.14 PadToSquare

Pad images until their height and width are identical.

This augmenter is identical to imgaug.augmenters.size.PadToAspectRatio with aspect_ratio=1.
0.

API link: PadToSquare

Example. Create an augmenter that pads each image until its square, i.e. height and width match. The rows to be
padded will be spread randomly over the top and bottom sides (analogous for the left/right sides).

292 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

import imgaug.augmenters as iaa
aug = iaa.PadToSquare()

9.18.15 CenterPadToFixedSize

Pad images equally on all sides up to given minimum heights/widths.

This is an alias for imgaug.augmenters.size.PadToFixedSize with position="center". It spreads
the pad amounts equally over all image sides, while imgaug.augmenters.size.PadToFixedSize by de-
faults spreads them randomly.

API link: CenterPadToFixedSize

Example. Create an augmenter that pads images up to 20x30, with the padded rows added equally on the top and
bottom (analogous for the padded columns).

import imgaug.augmenters as iaa
aug = iaa.CenterPadToFixedSize(height=20, width=30)

9.18.16 CenterCropToFixedSize

Take a crop from the center of each image.

This is an alias for imgaug.augmenters.size.CropToFixedSize with position="center".

Note: If images already have a width and/or height below the provided width and/or height then this augmenter will
do nothing for the respective axis. Hence, resulting images can be smaller than the provided axis sizes.

API link: CenterCropToFixedSize

Example. Create an augmenter that takes 20x10 sized crops from the center of images:

import imgaug.augmenters as iaa
crop = iaa.CenterCropToFixedSize(height=20, width=10)

9.18.17 CenterCropToMultiplesOf

Crop images equally on all sides until H/W are multiples of given values.

This is the same as imgaug.augmenters.size.CropToMultiplesOf, but uses position="center"
by default, which spreads the crop amounts equally over all image sides, while imgaug.augmenters.size.
CropToMultiplesOf by default spreads them randomly.

API link: CenterCropToMultiplesOf

Example. Create an augmenter that crops images to multiples of 10 along the y-axis (i.e. 10, 20, 30, . . .) and to
multiples of 6 along the x-axis (i.e. 6, 12, 18, . . .). The rows to be cropped will be spread equally over the top and
bottom sides (analogous for the left/right sides).

import imgaug.augmenters as iaa
aug = iaa.CenterCropToMultiplesOf(height_multiple=10, width_multiple=6)

9.18. augmenters.size 293

imgaug Documentation, Release 0.3.0

9.18.18 CenterPadToMultiplesOf

Pad images equally on all sides until H/W are multiples of given values.

This is the same as imgaug.augmenters.size.PadToMultiplesOf, but uses position="center"
by default, which spreads the pad amounts equally over all image sides, while imgaug.augmenters.size.
PadToMultiplesOf by default spreads them randomly.

API link: CenterPadToMultiplesOf

Example. Create an augmenter that pads images to multiples of 10 along the y-axis (i.e. 10, 20, 30, . . .) and to
multiples of 6 along the x-axis (i.e. 6, 12, 18, . . .). The rows to be padded will be spread equally over the top and
bottom sides (analogous for the left/right sides).

import imgaug.augmenters as iaa
aug = iaa.CenterPadToMultiplesOf(height_multiple=10, width_multiple=6)

9.18.19 CenterCropToPowersOf

Crop images equally on all sides until H/W is a power of a base.

This is the same as imgaug.augmenters.size.CropToPowersOf, but uses position="center" by
default, which spreads the crop amounts equally over all image sides, while imgaug.augmenters.size.
CropToPowersOf by default spreads them randomly.

API link: CenterCropToPowersOf

Example. Create an augmenter that crops each image down to powers of 3 along the y-axis (i.e. 3, 9, 27, . . .) and
powers of 2 along the x-axis (i.e. 2, 4, 8, 16, . . .). The rows to be cropped will be spread equally over the top and
bottom sides (analogous for the left/right sides).

import imgaug.augmenters as iaa
aug = iaa.CropToPowersOf(height_base=3, width_base=2)

9.18.20 CenterPadToPowersOf

Pad images equally on all sides until H/W is a power of a base.

This is the same as imgaug.augmenters.size.PadToPowersOf, but uses position="center" by
default, which spreads the pad amounts equally over all image sides, while imgaug.augmenters.size.
PadToPowersOf by default spreads them randomly.

API link: CenterPadToPowersOf

Example. Create an augmenter that pads each image to powers of 3 along the y-axis (i.e. 3, 9, 27, . . .) and powers of
2 along the x-axis (i.e. 2, 4, 8, 16, . . .). The rows to be padded will be spread equally over the top and bottom sides
(analogous for the left/right sides).

import imgaug.augmenters as iaa
aug = iaa.CenterPadToPowersOf(height_base=3, width_base=2)

9.18.21 CenterCropToAspectRatio

Crop images equally on all sides until they reach an aspect ratio.

294 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

This is the same as imgaug.augmenters.size.CropToAspectRatio, but uses position="center"
by default, which spreads the crop amounts equally over all image sides, while imgaug.augmenters.size.
CropToAspectRatio by default spreads them randomly.

API link: CenterCropToAspectRatio

Example. Create an augmenter that crops each image until its aspect ratio is as close as possible to 2.0 (i.e. two
times as many pixels along the x-axis than the y-axis). The rows to be cropped will be spread equally over the top and
bottom sides (analogous for the left/right sides).

import imgaug.augmenters as iaa
aug = iaa.CenterCropToAspectRatio(2.0)

9.18.22 CenterPadToAspectRatio

Pad images equally on all sides until H/W matches an aspect ratio.

This is the same as imgaug.augmenters.size.PadToAspectRatio, but uses position="center"
by default, which spreads the pad amounts equally over all image sides, while imgaug.augmenters.size.
PadToAspectRatio by default spreads them randomly.

API link: CenterPadToAspectRatio

Example. Create am augmenter that pads each image until its aspect ratio is as close as possible to 2.0 (i.e. two
times as many pixels along the x-axis than the y-axis). The rows to be padded will be spread equally over the top and
bottom sides (analogous for the left/right sides).

import imgaug.augmenters as iaa
aug = iaa.PadToAspectRatio(2.0)

9.18.23 CenterCropToSquare

Crop images equally on all sides until their height/width are identical.

In contrast to imgaug.augmenters.size.CropToSquare, this augmenter always tries to spread the
columns/rows to remove equally over both sides of the respective axis to be cropped. imgaug.augmenters.
size.CropToAspectRatio by default spreads the croppings randomly.

This augmenter is identical to imgaug.augmenters.size.CropToSquare with position="center",
and thereby the same as imgaug.augmenters.size.CropToAspectRatio with aspect_ratio=1.0,
position="center".

Images with axis sizes of 0 will not be altered.

API link: CenterCropToSquare

Example. Create an augmenter that crops each image until its square, i.e. height and width match. The rows to be
cropped will be spread equally over the top and bottom sides (analogous for the left/right sides).

import imgaug.augmenters as iaa
aug = iaa.CenterCropToSquare()

9.18.24 CenterPadToSquare

Pad images equally on all sides until their height & width are identical.

9.18. augmenters.size 295

imgaug Documentation, Release 0.3.0

This is the same as imgaug.augmenters.size.PadToSquare, but uses position="center" by default,
which spreads the pad amounts equally over all image sides, while imgaug.augmenters.size.PadToSquare
by default spreads them randomly. This augmenter is thus also identical to imgaug.augmenters.size.
PadToAspectRatio with aspect_ratio=1.0, position="center".

API link: CenterPadToSquare

Example. Create an augmenter that pads each image until its square, i.e. height and width match. The rows to be
padded will be spread equally over the top and bottom sides (analogous for the left/right sides).

import imgaug.augmenters as iaa
aug = iaa.CenterPadToSquare()

9.18.25 KeepSizeByResize

Resize images back to their input sizes after applying child augmenters.

Combining this with e.g. a cropping augmenter as the child will lead to images being resized back to the input size
after the crop operation was applied. Some augmenters have a keep_size argument that achieves the same goal
(if set to True), though this augmenter offers control over the interpolation mode and which augmentables to resize
(images, heatmaps, segmentation maps).

API link: KeepSizeByResize

Example. Apply random cropping to input images, then resize them back to their original input sizes. The resizing is
done using this augmenter instead of the corresponding internal resizing operation in Crop.

import imgaug.augmenters as iaa
aug = iaa.KeepSizeByResize(

iaa.Crop((20, 40), keep_size=False)
)

Example. Same as in the previous example, but images are now always resized using nearest neighbour interpolation.

296 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

aug = iaa.KeepSizeByResize(
iaa.Crop((20, 40), keep_size=False),
interpolation="nearest"

)

Example. Similar to the previous example, but images are now sometimes resized using linear interpolation and
sometimes using nearest neighbour interpolation. Heatmaps are resized using the same interpolation as was used for
the corresponding image. Segmentation maps are not resized and will therefore remain at their size after cropping.

aug = iaa.KeepSizeByResize(
iaa.Crop((20, 40), keep_size=False),
interpolation=["nearest", "cubic"],
interpolation_heatmaps=iaa.KeepSizeByResize.SAME_AS_IMAGES,
interpolation_segmaps=iaa.KeepSizeByResize.NO_RESIZE

)

9.19 augmenters.weather

Note: All examples below use the following input image:

9.19.1 FastSnowyLandscape

Convert non-snowy landscapes to snowy ones.

This augmenter expects to get an image that roughly shows a landscape.

API link: FastSnowyLandscape

Example. Search for all pixels in the image with a lightness value in HLS colorspace of less than 140 and increase
their lightness by a factor of 2.5.

9.19. augmenters.weather 297

imgaug Documentation, Release 0.3.0

298 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

import imgaug.augmenters as iaa
aug = iaa.FastSnowyLandscape(

lightness_threshold=140,
lightness_multiplier=2.5

)

Example. Search for all pixels in the image with a lightness value in HLS colorspace of less than 128 or less than
200 (one of these values is picked per image) and multiply their lightness by a factor of x with x being sampled from
uniform(1.5, 3.5) (once per image).

aug = iaa.FastSnowyLandscape(
lightness_threshold=[128, 200],
lightness_multiplier=(1.5, 3.5)

)

Example. Similar to the previous example, but the lightness threshold is sampled from uniform(100, 255) (per
image) and the multiplier from uniform(1.0, 4.0) (per image). This seems to produce good and varied results.

aug = iaa.FastSnowyLandscape(
lightness_threshold=(100, 255),
lightness_multiplier=(1.0, 4.0)

)

9.19. augmenters.weather 299

imgaug Documentation, Release 0.3.0

9.19.2 Clouds

Add clouds to images.

This is a wrapper around CloudLayer. It executes 1 to 2 layers per image, leading to varying densities and frequency
patterns of clouds.

This augmenter seems to be fairly robust w.r.t. the image size. Tested with 96x128, 192x256 and 960x1280.

API link: Clouds()

Example. Create an augmenter that adds clouds to images:

import imgaug.augmenters as iaa
aug = iaa.Clouds()

9.19.3 Fog

Add fog to images.

This is a wrapper around CloudLayer. It executes a single layer per image with a configuration leading to fairly
dense clouds with low-frequency patterns.

300 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

This augmenter seems to be fairly robust w.r.t. the image size. Tested with 96x128, 192x256 and 960x1280.

API link: Fog()

Example. Create an augmenter that adds fog to images:

import imgaug.augmenters as iaa
aug = iaa.Fog()

9.19.4 CloudLayer

Add a single layer of clouds to an image.

API link: CloudLayer

9.19.5 Snowflakes

Add falling snowflakes to images.

This is a wrapper around SnowflakesLayer. It executes 1 to 3 layers per image.

API link: Snowflakes()

Example. Add snowflakes to small images (around 96x128):

import imgaug.augmenters as iaa
aug = iaa.Snowflakes(flake_size=(0.1, 0.4), speed=(0.01, 0.05))

Example. Add snowflakes to medium-sized images (around 192x256):

aug = iaa.Snowflakes(flake_size=(0.2, 0.7), speed=(0.007, 0.03))

Example. Add snowflakes to large images (around 960x1280):

aug = iaa.Snowflakes(flake_size=(0.7, 0.95), speed=(0.001, 0.03))

9.19. augmenters.weather 301

imgaug Documentation, Release 0.3.0

9.19.6 SnowflakesLayer

Add a single layer of falling snowflakes to images.

API link: SnowflakesLayer

9.19.7 Rain

Add falling snowflakes to images.

This is a wrapper around RainLayer. It executes 1 to 3 layers per image.

Note: This augmenter currently seems to work best for medium-sized images around 192x256. For smaller images,
you may want to increase the speed value to e.g. (0.1, 0.3), otherwise the drops tend to look like snowflakes. For
larger images, you may want to increase the drop_size to e.g. (0.10, 0.20).

API link: Rain

Example. Add rain to small images (around 96x128):

import imgaug.augmenters as iaa
aug = iaa.Rain(speed=(0.1, 0.3))

Example. Add rain to medium sized images (around 192x256):

aug = iaa.Rain()

Example. Add rain to large images (around 960x1280):

aug = iaa.Rain(drop_size=(0.10, 0.20))

9.19.8 RainLayer

Add a single layer of falling raindrops to images.

API link: RainLayer

302 Chapter 9. Overview of Augmenters

imgaug Documentation, Release 0.3.0

9.19. augmenters.weather 303

imgaug Documentation, Release 0.3.0

304 Chapter 9. Overview of Augmenters

CHAPTER 10

Performance

Below are performance measurements of each augmenter for image augmentation (augment_images()), heatmap
augmentation (augment_heatmaps()) and keypoint/landmark augmentation (augment_keypoints()). (Last
updated for 0.3.0)

System: The numbers were computed based on a haswell-generation i7 3.2Ghz CPU with DDR3 memory. That is a
rather dated system by today’s standards. A modern, high-end system should achieve higher bandwidths.

All experiments were conducted using python 3.7 and numpy 1.17.0. Note that the precise python/numpy version can
have significant impact on your performance.

Experiments Settings: All augmenters were run with reasonable parameter choices that should reflect expected real-
world usage, while avoiding too simple parameter values that would lead to inflated scores. Some parameter choices
are listed below, the remaining ones can be looked up in measure_performance.py. Kernel sizes were all set
to 3x3, unless otherwise mentioned. The inputs focused on a small and large image-size setting, using 64x64x3
and 224x224x3 as the respective sizes. The base image was taken from skimage.data.astronaut, which should be a
representative real-world image. Batch sizes of 1 and 128 were tested. Each augmenter was run at least 40 times on
the generated input and the average of the measured runtimes was computed to derive bandwidth in mbit per second
and th raw number of augmented items (e.g. images) per second.

10.1 Results Overview

From the results, the following points can be derived.

Inputs:

• Use large batch sizes whenever possible. Many augmenters are significantly faster with these.

• Large image sizes lead to higher throughput based on mbit/sec. Smaller images lead to lower throughput, but
significantly more items/sec (roughly 4-10x more). Use small images whenever possible.

• For keypoint-based and heatmap-based augmentation, try to increase the number of items per augmented in-
stance. E.g. augment_keypoints() accepts a list of KeypointsOnImage instances, with each such
instance representing the keypoints on an image. Try to place for each image all keypoints in the respective

305

http://scikit-image.org/docs/dev/api/skimage.data.html#skimage.data.astronaut

imgaug Documentation, Release 0.3.0

KeypointsOnImage instance instead of splitting them into multiple such instances (which would be more
work anyways). The same is true for bounding boxes, heatmaps and segmentation maps.

• Keypoint- and heatmap-based inputs are only affected by augmenters that change the geometry of the image
(e.g. Crop or Affine). Other augmenters are essentially free to execute as they do not perform any changes.

• Keypoint-based augmentation is very fast for almost all augmenters, reaching several 100k keypoints per second.
Slower augmenters are ElasticTransformation and PiecewiseAffine, as these currently have to
fall back to image-based algorithms.

Parameter choices:

• When possible, nearest neighbour interpolation or linear interpolation should be used as these are significantly
faster than other options. Most augmenters that use interpolation offer either an order parameter (0=nearest
neighbour, 1=linear) or an interpolation parameter (“nearest”, “linear”).

• Using keep_size=True is the default setting in all augmenters that change image sizes. It
is convenient, as it ensures that image sizes are not altered by the augmentation. It does
however incur a significant performance penalty, often more than halving the bandwidth. Try
keep_size=False when possible. You can still resize images manually after augmentation or by using
KeepSizeByResize(Sequential(<augmenters>)).

• When augmenters offer modes to fill newly created pixels in user-defined ways (e.g. pad_mode=constant
in Pad to fill up all padded pixels with a specified constant color), using edge instead of constant will
usually not incur a significant performance penalty.

Specific Augmenter suggestions:

• For augmenters where an elementwise sibling exists (e.g. Multiply and MultiplyElementwise), the
elementwise augmenter is usually significantly slower than the non-elementwise one.

• If blurring is required, AverageBlur is the fastest choice, followed by GaussianBlur.

• Augmenters that operate on coarser images (e.g. CoarseDropout vs Dropout) can be significantly faster
than their non-coarse siblings.

• Contrast normalizing augmenters are all comparable in performance, except for histogram-based ones, which
are significantly slower.

• PiecewiseAffine is a very slow augmenter and should usually be replaced by ElasticTransformation, which
achieves similar outputs and is quite a bit faster.

• Superpixels is a fairly slow augmenter and should usually be wrapped in e.g. Sometimes to not apply it
very often and reduce its performance impact.

• Weather augmenters other than FastSnowyLandscape are rather slow and should only be used when sensi-
ble.

10.2 Images

Numbers below are for small images (64x64x3) and large images (224x224x3). B=1 denotes a batch size of 1,
B=128 one of 128.

In mbit/sec:

64x64x3, uint8 224x224x3, uint8
Augmenter B=1 B=128 B=1 B=128
Sequential (2xIdentity) 1114.3 24601.3 9815.7 41557.9

Continued on next page

306 Chapter 10. Performance

imgaug Documentation, Release 0.3.0

Table 1 – continued from previous page
Sequential (2xIdentity, random_order) 903.3 25450.9 8697.9 44898.0
SomeOf (1-3, 3xIdentity) 226.2 3800.6 2114.2 5298.8
SomeOf (1-3, 3xIdentity, random_order) 220.9 3717.7 2037.7 6109.3
OneOf (3xIdentity) 533.9 7941.3 4486.2 9188.2
Sometimes (Identity) 367.3 12894.4 3763.7 16674.9
WithChannels ([1,2], Identity) 541.2 4932.7 3668.9 5067.2
Identity 1364.5 26741.2 11791.9 41261.7
Noop 1341.4 27020.1 11611.5 43892.6
Lambda (return input) 1262.1 24919.0 10837.8 45355.8
AssertLambda (return True) 1244.8 26346.3 10864.2 41681.0
AssertShape (None, H, W, None) 1068.8 14590.1 9860.2 39299.2
ChannelShuffle (0.5) 418.4 3159.3 3285.1 6240.3
Add 137.7 595.5 1972.4 3917.6
AddElementwise 201.3 307.5 909.8 1038.9
AdditiveGaussianNoise 167.5 218.5 695.9 764.6
AdditiveLaplaceNoise 147.2 185.2 419.3 446.9
AdditivePoissonNoise 122.5 151.0 294.5 305.2
Multiply 240.3 770.4 2156.3 4443.5
MultiplyElementwise 188.0 276.9 876.7 972.0
Cutout (1 iter, constant fill) 151.0 1288.6 1723.9 11726.9
Dropout (1-5%) 225.9 353.6 995.3 1155.3
CoarseDropout (1-5%, size=1-10%) 133.4 172.6 1039.0 1219.8
Dropout2d (10%) 324.1 5696.8 3569.2 23901.3
TotalDropout (10%) 450.4 19944.9 4948.5 39754.0
ReplaceElementwise 129.9 161.9 676.8 760.5
ImpulseNoise 112.4 135.2 469.9 499.1
SaltAndPepper 118.9 141.1 643.7 711.4
CoarseSaltAndPepper 86.9 98.6 666.4 725.9
Salt 99.8 114.2 590.8 639.7
CoarseSalt 78.6 86.5 606.6 659.1
Pepper 97.9 105.7 589.5 640.8
CoarsePepper 78.7 86.1 605.5 660.8
Invert (10%) 266.5 5468.8 2992.8 22669.1
JpegCompression (50-99%) 81.9 103.7 420.6 458.5
Cartoon 6.0 5.8 7.1 6.6
BlendAlpha (Identity) 128.7 402.0 810.2 993.7
BlendAlphaElementwise (Identity) 130.7 207.0 450.3 453.7
BlendAlphaSimplexNoise (Identity) 24.7 28.3 175.4 186.9
BlendAlphaFrequencyNoise (Identity) 33.2 36.5 210.8 221.4
BlendAlphaSomeColors (Identity) 64.2 161.0 330.7 450.6
BlendAlphaHorizontalL.Grad. (Identity) 87.5 238.1 416.3 533.4
BlendAlphaVerticalL.Grad. (Identity) 87.9 231.9 407.5 508.0
BlendAlphaRegularGrid (Identity) 85.0 230.2 398.7 503.6
BlendAlphaCheckerboard (Identity) 86.0 200.2 399.0 487.2
GaussianBlur (sigma=(1,5)) 191.7 532.7 1528.9 2530.2
AverageBlur 245.4 1474.4 2021.4 4530.9
MedianBlur 129.8 257.4 267.7 304.9
BilateralBlur 101.3 269.3 281.9 346.3
MotionBlur 56.2 64.1 541.7 579.6
MeanShiftBlur 1.4 1.4 1.3 1.1

Continued on next page

10.2. Images 307

imgaug Documentation, Release 0.3.0

Table 1 – continued from previous page
RandAugment (n=2, m=(6,12)) 24.0 128.1 222.4 488.9
WithColorspace (HSV, Identity) 291.6 974.1 1691.5 2141.7
WithBrightnessChannels (Identity) 43.5 736.9 1097.9 1605.2
MultiplyAndAddToBrightness 71.4 251.4 665.1 1043.4
MultiplyBrightness 113.4 396.8 850.6 1237.8
AddToBrightness 109.3 347.8 841.2 1200.0
WithHueAndSaturation 168.1 334.5 687.6 719.3
MultiplyHueAndSaturation 82.5 152.1 440.5 481.0
MultiplyHue 74.3 150.1 438.3 489.6
MultiplySaturation 57.6 150.4 442.1 498.4
RemoveSaturation 70.9 150.6 433.1 509.1
AddToHueAndSaturation 131.1 443.1 828.5 1151.9
AddToHue 150.2 455.8 858.3 1153.3
AddToSaturation 139.9 460.5 865.3 1151.9
ChangeColorspace (HSV) 257.9 923.8 2258.6 3962.7
Grayscale 143.1 308.5 632.4 759.7
KMeansColorQuantization (2-16 colors) 30.3 37.5 183.5 197.3
UniformColorQuantization (2-16 colors) 127.9 354.5 1512.0 2601.1
UniformColorQuant.NBits (1-7 bits) 142.7 357.3 1508.6 2575.1
Posterize (1-7 bits) 136.4 356.7 1506.4 2579.3
GammaContrast 169.9 304.3 1832.4 2471.9
SigmoidContrast 153.9 234.2 1551.7 2046.2
LogContrast 183.9 303.1 1819.4 2455.2
LinearContrast 214.2 391.9 2048.0 2965.7
AllChannelsHistogramEqualization 519.5 1559.9 1858.7 2271.9
HistogramEqualization 268.5 892.9 1470.4 1801.0
AllChannelsCLAHE 112.9 326.2 878.5 1475.8
CLAHE 112.7 442.1 824.7 1446.8
Convolve (3x3) 430.6 1442.0 2833.3 4043.5
Sharpen 176.7 261.5 1282.2 1542.9
Emboss 176.9 262.5 1334.3 1604.0
EdgeDetect 234.2 392.3 1696.6 2056.0
DirectedEdgeDetect 90.3 107.5 827.8 886.4
Canny 54.6 103.9 280.3 349.6
Fliplr (p=100%) 446.1 2507.3 3359.3 6261.2
Flipud (p=100%) 564.7 9721.4 5475.0 13807.5
Affine (order=0, constant) 75.8 255.3 856.4 1934.4
Affine (order=1, constant) 75.5 236.2 773.5 1539.2
Affine (order=3, constant) 69.3 194.6 473.5 680.5
Affine (order=1, edge) 68.1 229.4 744.3 1493.8
Affine (order=1, constant, skimage) 39.2 73.6 180.0 203.1
PiecewiseAffine (4x4, order=1, constant) 3.9 4.3 25.6 25.4
PiecewiseAffine (4x4, order=0, constant) 4.3 4.5 30.6 30.4
PiecewiseAffine (4x4, order=1, edge) 4.1 4.4 25.4 25.3
PiecewiseAffine (8x8, order=1, constant) 0.9 0.9 8.4 8.2
PerspectiveTransform 96.5 473.9 885.5 1789.6
PerspectiveTransform (keep_size) 92.5 313.1 688.3 1144.2
ElasticTransformation (order=0, constant) 82.5 158.3 543.1 668.8
ElasticTransformation (order=1, constant) 80.6 149.2 499.7 606.4
ElasticTransformation (order=1, nearest) 80.5 150.1 494.4 606.1

Continued on next page

308 Chapter 10. Performance

imgaug Documentation, Release 0.3.0

Table 1 – continued from previous page
ElasticTransformation (order=1, reflect) 81.5 149.1 500.4 604.1
Rot90 273.5 3981.3 3416.2 23912.1
Rot90 (keep_size) 265.8 2193.9 1983.7 3528.7
WithPolarWarping (Identity) 259.1 639.9 948.2 1076.6
Jigsaw (rows/cols=(3,8), 1 step) 62.5 107.0 728.7 1119.5
AveragePooling 97.1 175.8 434.7 506.6
AveragePooling (keep_size) 91.1 148.5 392.8 461.7
MaxPooling 100.7 187.6 460.6 545.0
MaxPooling (keep_size) 92.7 158.6 431.4 493.4
MinPooling 102.7 187.6 467.5 549.5
MinPooling (keep_size) 95.1 157.5 426.1 501.6
MedianPooling 94.3 171.6 557.5 690.0
MedianPooling (keep_size) 90.1 146.4 513.8 612.0
imgcorruptlike.GaussianNoise((1,5)) 70.9 130.5 180.7 191.7
imgcorruptlike.ShotNoise((1,5)) 52.0 68.0 83.9 85.6
imgcorruptlike.ImpulseNoise((1,5)) 62.6 89.1 143.0 150.0
imgcorruptlike.SpeckleNoise((1,5)) 81.5 130.8 175.4 187.9
imgcorruptlike.GaussianBlur((1,5)) 72.0 114.9 195.8 215.4
imgcorruptlike.GlassBlur((1,5)) 2.0 2.3 2.1 2.2
imgcorruptlike.DefocusBlur((1,5)) 56.8 82.6 134.5 136.4
imgcorruptlike.MotionBlur((1,5)) 19.2 22.6 62.5 62.6
imgcorruptlike.ZoomBlur((1,5)) 8.0 9.1 11.6 11.3
imgcorruptlike.Fog((1,5)) 33.1 50.9 171.0 178.4
imgcorruptlike.Frost((1,5)) 10.0 11.2 113.2 116.8
imgcorruptlike.Snow((1,5)) 26.1 29.3 68.9 67.8
imgcorruptlike.Spatter((1,5)) 54.2 69.0 135.7 141.3
imgcorruptlike.Contrast((1,5)) 113.7 206.4 364.7 420.1
imgcorruptlike.Brightness((1,5)) 38.1 46.2 48.1 54.2
imgcorruptlike.Saturate((1,5)) 34.7 46.0 48.4 54.0
imgcorruptlike.JpegCompression((1,5)) 82.7 165.2 473.9 549.1
imgcorruptlike.Pixelate((1,5)) 141.5 321.1 1013.5 1443.7
imgcorruptlike.ElasticTransform((1,5)) 36.1 44.1 56.2 58.6
pillike.Solarize (p=1.0) 183.2 843.5 1801.5 4531.2
pillike.Posterize (1-7 bits) 120.7 360.9 1449.0 2578.7
pillike.Equalize 163.9 288.2 1349.4 1651.2
pillike.Autocontrast 69.5 98.6 748.8 860.6
pillike.EnhanceColor 190.3 587.5 937.4 1223.3
pillike.EnhanceContrast 164.2 370.0 842.4 1048.7
pillike.EnhanceBrightness 212.9 630.2 1017.1 1318.0
pillike.EnhanceSharpness 178.8 422.3 590.4 685.5
pillike.FilterBlur 233.6 375.4 459.2 484.6
pillike.FilterSmooth 327.7 588.8 911.2 1006.7
pillike.FilterSmoothMore 250.2 374.5 465.4 483.8
pillike.FilterEdgeEnhance 288.4 530.9 817.9 890.3
pillike.FilterEdgeEnhanceMore 293.1 523.0 791.9 854.0
pillike.FilterFindEdges 297.9 530.3 756.3 817.9
pillike.FilterContour 285.2 523.1 746.7 803.2
pillike.FilterEmboss 282.2 586.0 910.7 1000.1
pillike.FilterSharpen 256.6 579.5 868.7 945.4
pillike.FilterDetail 304.5 586.4 880.1 970.5

Continued on next page

10.2. Images 309

imgaug Documentation, Release 0.3.0

Table 1 – continued from previous page
pillike.Affine 66.3 302.8 709.5 1787.3
Superpixels (max_size=64, cubic) 9.4 10.4 118.4 121.8
Superpixels (max_size=64, linear) 9.9 10.4 118.7 122.6
Superpixels (max_size=128, linear) 8.0 10.6 49.5 49.2
Superpixels (max_size=224, linear) 7.6 10.6 19.5 19.1
UniformVoronoi (250-1000k points, linear) 2.7 3.6 12.1 12.0
RegularGridVoronoi (16-31 rows/cols) 3.5 3.6 12.0 12.1
RelativeRegularGridVoronoi (7%-14% rows/cols) 3.7 3.7 4.0 4.0
Resize (nearest) 186.3 735.5 1988.3 4347.1
Resize (linear) 176.0 629.9 1537.8 2701.5
Resize (cubic) 177.0 559.4 1187.7 1804.3
CropAndPad 118.9 700.3 1422.4 5080.6
CropAndPad (edge) 118.9 705.6 1449.5 5085.0
CropAndPad (keep_size) 104.7 376.3 1018.1 1863.5
Crop 153.0 1293.5 1974.8 8596.2
Crop (keep_size) 130.8 501.6 1275.2 2401.9
Pad 122.2 678.8 1384.0 4678.5
Pad (edge) 118.7 683.5 1390.6 4572.7
Pad (keep_size) 101.6 371.7 954.2 1708.9
PadToFixedSize 130.8 916.5 1653.7 5908.8
CropToFixedSize 228.9 3102.1 2756.7 11098.3
KeepSizeByResize (CropToFixedSize(nearest)) 139.8 880.7 1471.7 3604.7
KeepSizeByResize (CropToFixedSize(linear)) 134.2 761.3 1230.6 2456.9
KeepSizeByResize (CropToFixedSize(cubic)) 133.0 660.3 1002.8 1682.4
FastSnowyLandscape 116.8 243.5 483.0 542.8
Clouds 16.9 20.3 61.7 61.1
Fog 31.3 33.9 98.3 99.5
CloudLayer 30.7 33.0 99.1 98.9
Snowflakes 14.2 15.1 91.3 85.5
SnowflakesLayer 28.5 30.3 173.5 173.2
Rain 11.1 11.6 58.5 54.2
RainLayer 22.0 23.5 110.4 112.1

In images/sec:

64x64x3, uint8 224x224x3, uint8
Augmenter B=1 B=128 B=1 B=128
Sequential (2xIdentity) 11885.5 262413.9 8547.0 36186.5
Sequential (2xIdentity, random_order) 9635.6 271476.0 7573.7 39094.8
SomeOf (1-3, 3xIdentity) 2412.6 40539.6 1840.9 4613.9
SomeOf (1-3, 3xIdentity, random_order) 2356.3 39655.4 1774.3 5319.7
OneOf (3xIdentity) 5695.0 84707.6 3906.3 8000.6
Sometimes (Identity) 3917.9 137540.7 3277.2 14519.7
WithChannels ([1,2], Identity) 5772.9 52615.6 3194.7 4412.2
Identity 14554.8 285239.9 10267.7 35928.5
Noop 14308.5 288214.7 10110.7 38219.4
Lambda (return input) 13462.3 265802.2 9437.0 39493.5
AssertLambda (return True) 13277.6 281027.4 9460.0 36293.6
AssertShape (None, H, W, None) 11400.9 155628.0 8585.7 34219.7
ChannelShuffle (0.5) 4462.7 33699.4 2860.5 5433.8

Continued on next page

310 Chapter 10. Performance

imgaug Documentation, Release 0.3.0

Table 2 – continued from previous page
Add 1468.7 6351.5 1717.5 3411.2
AddElementwise 2147.0 3279.9 792.2 904.6
AdditiveGaussianNoise 1787.2 2330.6 605.9 665.8
AdditiveLaplaceNoise 1570.5 1975.4 365.1 389.2
AdditivePoissonNoise 1306.5 1610.3 256.5 265.7
Multiply 2563.5 8217.8 1877.6 3869.2
MultiplyElementwise 2005.8 2953.5 763.4 846.4
Cutout (1 iter, constant fill) 1611.1 13745.5 1501.1 10211.1
Dropout (1-5%) 2409.4 3771.3 866.7 1006.0
CoarseDropout (1-5%, size=1-10%) 1423.1 1840.8 904.7 1062.1
Dropout2d (10%) 3457.4 60765.5 3107.9 20812.0
TotalDropout (10%) 4804.7 212745.7 4308.9 34615.7
ReplaceElementwise 1385.7 1727.3 589.3 662.2
ImpulseNoise 1199.5 1442.0 409.2 434.6
SaltAndPepper 1267.9 1504.9 560.5 619.4
CoarseSaltAndPepper 926.8 1051.4 580.3 632.1
Salt 1064.4 1218.0 514.5 557.0
CoarseSalt 838.3 923.2 528.2 573.9
Pepper 1043.9 1127.7 513.3 558.0
CoarsePepper 839.9 918.5 527.3 575.4
Invert (10%) 2842.5 58334.2 2606.0 19739.1
JpegCompression (50-99%) 873.3 1106.0 366.2 399.3
Cartoon 64.0 61.6 6.2 5.8
BlendAlpha (Identity) 1373.3 4288.0 705.5 865.3
BlendAlphaElementwise (Identity) 1393.6 2207.6 392.1 395.1
BlendAlphaSimplexNoise (Identity) 263.7 302.2 152.8 162.7
BlendAlphaFrequencyNoise (Identity) 354.2 389.8 183.6 192.8
BlendAlphaSomeColors (Identity) 684.8 1717.7 288.0 392.4
BlendAlphaHorizontalL.Grad. (Identity) 933.1 2539.4 362.5 464.4
BlendAlphaVerticalL.Grad. (Identity) 937.3 2473.5 354.8 442.3
BlendAlphaRegularGrid (Identity) 906.5 2455.6 347.2 438.5
BlendAlphaCheckerboard (Identity) 917.6 2135.5 347.4 424.2
GaussianBlur (sigma=(1,5)) 2045.3 5681.7 1331.3 2203.2
AverageBlur 2617.3 15727.3 1760.1 3945.2
MedianBlur 1384.8 2745.8 233.1 265.5
BilateralBlur 1080.3 2872.0 245.5 301.5
MotionBlur 599.6 683.8 471.6 504.7
MeanShiftBlur 15.3 14.5 1.1 1.0
RandAugment (n=2, m=(6,12)) 255.7 1366.3 193.7 425.7
WithColorspace (HSV, Identity) 3110.5 10389.9 1472.9 1864.8
WithBrightnessChannels (Identity) 464.3 7860.5 956.0 1397.7
MultiplyAndAddToBrightness 761.1 2682.0 579.1 908.5
MultiplyBrightness 1209.1 4232.3 740.7 1077.8
AddToBrightness 1165.7 3710.0 732.5 1044.9
WithHueAndSaturation 1793.2 3568.3 598.7 626.3
MultiplyHueAndSaturation 880.0 1622.2 383.5 418.8
MultiplyHue 792.7 1601.0 381.6 426.3
MultiplySaturation 614.6 1604.2 384.9 434.0
RemoveSaturation 756.1 1606.7 377.1 443.3
AddToHueAndSaturation 1398.0 4726.3 721.5 1003.0

Continued on next page

10.2. Images 311

imgaug Documentation, Release 0.3.0

Table 2 – continued from previous page
AddToHue 1602.0 4862.4 747.3 1004.3
AddToSaturation 1491.8 4912.4 753.4 1003.0
ChangeColorspace (HSV) 2750.6 9853.8 1966.7 3450.5
Grayscale 1526.8 3290.8 550.6 661.5
KMeansColorQuantization (2-16 colors) 323.3 400.4 159.7 171.8
UniformColorQuantization (2-16 colors) 1364.2 3781.6 1316.6 2264.9
UniformColorQuant.NBits (1-7 bits) 1521.9 3811.1 1313.6 2242.3
Posterize (1-7 bits) 1455.0 3805.0 1311.7 2245.9
GammaContrast 1812.4 3245.3 1595.6 2152.4
SigmoidContrast 1641.5 2498.6 1351.1 1781.8
LogContrast 1962.1 3233.2 1584.2 2137.8
LinearContrast 2285.2 4180.7 1783.3 2582.4
AllChannelsHistogramEqualization 5540.9 16639.1 1618.4 1978.2
HistogramEqualization 2863.9 9524.3 1280.3 1568.2
AllChannelsCLAHE 1204.0 3480.0 765.0 1285.1
CLAHE 1202.2 4716.2 718.1 1259.8
Convolve (3x3) 4593.4 15381.1 2467.1 3520.9
Sharpen 1885.1 2789.7 1116.5 1343.5
Emboss 1887.4 2799.9 1161.9 1396.6
EdgeDetect 2497.6 4184.9 1477.3 1790.2
DirectedEdgeDetect 963.3 1146.6 720.8 771.8
Canny 582.2 1108.6 244.0 304.4
Fliplr (p=100%) 4758.0 26744.7 2925.1 5452.0
Flipud (p=100%) 6023.3 103695.3 4767.3 12022.8
Affine (order=0, constant) 808.8 2723.2 745.7 1684.4
Affine (order=1, constant) 805.8 2519.9 673.5 1340.2
Affine (order=3, constant) 739.2 2075.6 412.3 592.5
Affine (order=1, edge) 726.5 2447.5 648.1 1300.7
Affine (order=1, constant, skimage) 417.8 785.3 156.7 176.8
PiecewiseAffine (4x4, order=1, constant) 41.9 46.4 22.3 22.1
PiecewiseAffine (4x4, order=0, constant) 45.4 47.9 26.7 26.5
PiecewiseAffine (4x4, order=1, edge) 43.6 46.4 22.1 22.1
PiecewiseAffine (8x8, order=1, constant) 9.6 10.0 7.3 7.2
PerspectiveTransform 1029.6 5054.7 771.1 1558.3
PerspectiveTransform (keep_size) 986.5 3340.2 599.4 996.3
ElasticTransformation (order=0, constant) 880.3 1688.1 472.9 582.4
ElasticTransformation (order=1, constant) 859.3 1591.7 435.1 528.0
ElasticTransformation (order=1, nearest) 858.2 1601.2 430.5 527.7
ElasticTransformation (order=1, reflect) 868.9 1590.0 435.7 526.0
Rot90 2917.1 42467.5 2974.6 20821.4
Rot90 (keep_size) 2835.5 23402.1 1727.3 3072.6
WithPolarWarping (Identity) 2764.2 6825.5 825.7 937.4
Jigsaw (rows/cols=(3,8), 1 step) 666.4 1141.2 634.5 974.8
AveragePooling 1035.7 1875.7 378.5 441.2
AveragePooling (keep_size) 971.3 1584.3 342.0 402.0
MaxPooling 1074.4 2000.8 401.1 474.5
MaxPooling (keep_size) 988.8 1691.9 375.7 429.7
MinPooling 1095.3 2000.8 407.1 478.5
MinPooling (keep_size) 1014.9 1679.8 371.0 436.7
MedianPooling 1006.0 1830.6 485.5 600.8

Continued on next page

312 Chapter 10. Performance

imgaug Documentation, Release 0.3.0

Table 2 – continued from previous page
MedianPooling (keep_size) 961.1 1561.4 447.4 532.9
imgcorruptlike.GaussianNoise((1,5)) 756.7 1391.8 157.4 166.9
imgcorruptlike.ShotNoise((1,5)) 554.9 725.7 73.0 74.5
imgcorruptlike.ImpulseNoise((1,5)) 667.6 950.0 124.5 130.6
imgcorruptlike.SpeckleNoise((1,5)) 869.7 1395.3 152.7 163.6
imgcorruptlike.GaussianBlur((1,5)) 768.0 1225.9 170.5 187.6
imgcorruptlike.GlassBlur((1,5)) 21.7 25.0 1.8 1.9
imgcorruptlike.DefocusBlur((1,5)) 606.1 881.0 117.1 118.8
imgcorruptlike.MotionBlur((1,5)) 204.5 241.3 54.5 54.6
imgcorruptlike.ZoomBlur((1,5)) 85.7 97.2 10.1 9.9
imgcorruptlike.Fog((1,5)) 352.7 543.3 148.9 155.3
imgcorruptlike.Frost((1,5)) 107.0 120.0 98.6 101.7
imgcorruptlike.Snow((1,5)) 278.7 312.6 60.0 59.1
imgcorruptlike.Spatter((1,5)) 578.1 735.7 118.1 123.0
imgcorruptlike.Contrast((1,5)) 1212.6 2201.8 317.5 365.8
imgcorruptlike.Brightness((1,5)) 406.3 493.3 41.9 47.2
imgcorruptlike.Saturate((1,5)) 369.8 490.8 42.1 47.1
imgcorruptlike.JpegCompression((1,5)) 882.6 1761.9 412.6 478.1
imgcorruptlike.Pixelate((1,5)) 1509.0 3425.1 882.5 1257.1
imgcorruptlike.ElasticTransform((1,5)) 384.6 470.0 48.9 51.0
pillike.Solarize (p=1.0) 1954.2 8997.3 1568.6 3945.5
pillike.Posterize (1-7 bits) 1288.0 3849.2 1261.7 2245.4
pillike.Equalize 1748.5 3074.6 1175.0 1437.8
pillike.Autocontrast 741.4 1052.1 652.0 749.3
pillike.EnhanceColor 2029.5 6266.6 816.2 1065.2
pillike.EnhanceContrast 1751.2 3946.7 733.6 913.2
pillike.EnhanceBrightness 2271.3 6722.4 885.6 1147.7
pillike.EnhanceSharpness 1907.0 4504.8 514.1 596.9
pillike.FilterBlur 2491.3 4004.4 399.8 422.0
pillike.FilterSmooth 3495.0 6280.4 793.5 876.6
pillike.FilterSmoothMore 2669.2 3995.1 405.2 421.2
pillike.FilterEdgeEnhance 3076.8 5662.9 712.2 775.2
pillike.FilterEdgeEnhanceMore 3126.6 5579.1 689.6 743.6
pillike.FilterFindEdges 3177.4 5656.8 658.6 712.2
pillike.FilterContour 3042.2 5580.0 650.2 699.4
pillike.FilterEmboss 3010.1 6251.0 793.0 870.8
pillike.FilterSharpen 2737.3 6181.6 756.4 823.2
pillike.FilterDetail 3248.1 6255.5 766.3 845.1
pillike.Affine 707.5 3229.4 617.8 1556.3
Superpixels (max_size=64, cubic) 100.2 111.0 103.1 106.1
Superpixels (max_size=64, linear) 106.0 111.4 103.4 106.7
Superpixels (max_size=128, linear) 84.9 112.9 43.1 42.8
Superpixels (max_size=224, linear) 81.6 113.1 17.0 16.7
UniformVoronoi (250-1000k points, linear) 28.4 38.8 10.5 10.4
RegularGridVoronoi (16-31 rows/cols) 37.7 38.7 10.4 10.5
RelativeRegularGridVoronoi (7%-14% rows/cols) 39.2 39.0 3.4 3.5
Resize (nearest) 1987.7 7844.9 1731.3 3785.2
Resize (linear) 1877.8 6718.6 1339.0 2352.3
Resize (cubic) 1887.5 5966.6 1034.2 1571.1
CropAndPad 1268.3 7470.3 1238.6 4423.9

Continued on next page

10.2. Images 313

imgaug Documentation, Release 0.3.0

Table 2 – continued from previous page
CropAndPad (edge) 1268.3 7526.5 1262.1 4427.7
CropAndPad (keep_size) 1117.2 4013.7 886.5 1622.6
Crop 1632.5 13797.2 1719.6 7485.2
Crop (keep_size) 1395.5 5350.3 1110.3 2091.5
Pad 1303.7 7240.5 1205.1 4073.8
Pad (edge) 1266.5 7290.4 1210.8 3981.6
Pad (keep_size) 1084.1 3964.9 830.9 1488.0
PadToFixedSize 1394.9 9776.5 1439.9 5145.1
CropToFixedSize 2441.5 33089.5 2400.4 9663.8
KeepSizeByResize (CropToFixedSize(nearest)) 1491.3 9393.7 1281.5 3138.8
KeepSizeByResize (CropToFixedSize(linear)) 1431.7 8121.0 1071.5 2139.3
KeepSizeByResize (CropToFixedSize(cubic)) 1418.5 7043.0 873.2 1464.9
FastSnowyLandscape 1246.1 2597.6 420.6 472.6
Clouds 180.6 216.2 53.7 53.2
Fog 334.1 361.5 85.6 86.7
CloudLayer 327.1 352.4 86.3 86.2
Snowflakes 151.5 161.2 79.5 74.5
SnowflakesLayer 304.2 323.6 151.1 150.8
Rain 118.4 123.9 50.9 47.2
RainLayer 234.6 251.1 96.1 97.6

10.3 Heatmaps

Numbers below are for heatmaps on large images, i.e. 224x224x3. Smaller images were skipped for brevity. The
heatmaps themselves can be small (64x64xN) or large (224x224xN), with N denoting the number of heatmaps per
HeatmapsOnImage instance (i.e. the number of channels in the heatmaps array), for which below 1 and 5 are used.
B=1 denotes a batch size of 1 , B=128 one of 128.

mbit/sec for 64x64x5 or 224x224x5 heatmaps on 224x224x3 images:

64x64x5 on 224x224x3 224x224x5 on 224x224x3
Augmenter B=1 B=128 B=1 B=128
Sequential (2xIdentity) 1184.9 5580.5 10238.2 18880.1
Sequential (2xIdentity, random_order) 1104.8 5543.8 9429.3 18711.0
SomeOf (1-3, 3xIdentity) 720.2 5165.0 6854.4 18491.2
SomeOf (1-3, 3xIdentity, random_order) 706.3 5160.3 6742.9 18378.7
OneOf (3xIdentity) 1025.9 5388.7 9095.4 18752.7
Sometimes (Identity) 831.1 5479.9 7836.0 18087.9
WithChannels ([1,2], Identity) 901.2 2622.7 6464.3 7555.7
Identity 1329.3 5606.5 10585.6 18165.5
Noop 1351.5 5611.4 10479.4 18100.9
Lambda (return input) 1297.5 5567.3 10284.4 18183.9
AssertLambda (return True) 1300.8 5567.1 10235.6 18390.9
AssertShape (None, H, W, None) 1271.6 5431.1 10001.8 18122.9
ChannelShuffle (0.5) 1351.2 5589.4 10447.6 18398.7
Add 1360.6 5590.4 10432.7 18313.5
AddElementwise 1361.6 5640.5 10443.3 18461.2
AdditiveGaussianNoise 1351.0 5616.6 10528.6 18322.0
AdditiveLaplaceNoise 1362.5 5568.4 10364.0 18428.9

Continued on next page

314 Chapter 10. Performance

imgaug Documentation, Release 0.3.0

Table 3 – continued from previous page
AdditivePoissonNoise 1359.3 5620.1 10447.9 18302.7
Multiply 1349.5 5619.9 10354.5 18464.5
MultiplyElementwise 1351.1 5580.9 10203.0 18475.7
Cutout (1 iter, constant fill) 1349.3 5584.4 10434.1 18855.2
Dropout (1-5%) 1371.0 5635.7 10357.0 18710.0
CoarseDropout (1-5%, size=1-10%) 1344.5 5618.2 10530.4 18843.6
Dropout2d (10%) 859.7 5068.6 7527.2 18211.5
TotalDropout (10%) 965.1 5453.2 8083.1 17953.0
ReplaceElementwise 1359.0 5603.3 10451.3 18728.0
ImpulseNoise 1359.5 5602.0 10516.4 18677.8
SaltAndPepper 1352.8 5635.6 10447.3 18837.6
CoarseSaltAndPepper 1356.7 5614.1 10310.9 18774.5
Salt 1348.9 5576.4 10497.3 18706.0
CoarseSalt 1339.5 5584.0 10521.0 18413.7
Pepper 1365.9 5583.9 10475.6 18299.0
CoarsePepper 1352.6 6526.4 10546.9 18453.0
Invert (10%) 1364.9 6532.4 10436.1 18373.2
JpegCompression (50-99%) 1366.4 6563.1 10513.6 18392.1
Cartoon 1340.7 6543.2 10352.2 18300.8
BlendAlpha (Identity) 662.3 2880.4 5086.3 11840.4
BlendAlphaElementwise (Identity) 298.6 451.2 1251.4 1356.3
BlendAlphaSimplexNoise (Identity) 100.7 122.9 800.4 890.9
BlendAlphaFrequencyNoise (Identity) 125.3 147.0 882.5 973.2
BlendAlphaSomeColors (Identity) n/a n/a n/a n/a
BlendAlphaHorizontalL.Grad. (Identity) 259.0 534.5 1243.2 1467.4
BlendAlphaVerticalL.Grad. (Identity) 253.6 491.5 1219.2 1435.7
BlendAlphaRegularGrid (Identity) 242.7 479.7 1200.4 1430.1
BlendAlphaCheckerboard (Identity) 246.2 461.2 1212.2 1406.5
GaussianBlur (sigma=(1,5)) 1274.8 6491.3 10490.6 26259.7
AverageBlur 1266.5 6470.4 10485.1 26336.5
MedianBlur 1274.3 6516.3 10496.8 26060.9
BilateralBlur 1277.1 6503.2 10455.4 26262.4
MotionBlur 1261.7 6515.3 10305.2 26288.1
MeanShiftBlur 1285.3 6645.9 10363.5 26386.9
RandAugment (n=2, m=(6,12)) n/a n/a n/a n/a
WithColorspace (HSV, Identity) 1185.0 6766.3 10008.5 26301.1
WithBrightnessChannels (Identity) 1192.7 6776.9 10012.8 26110.1
MultiplyAndAddToBrightness 1072.6 6750.4 9290.9 26234.2
MultiplyBrightness 1176.3 6767.6 9863.5 26148.5
AddToBrightness 1117.8 6759.0 9902.6 26310.4
WithHueAndSaturation 1152.0 6768.5 10050.7 26305.8
MultiplyHueAndSaturation 1170.8 6808.5 9967.6 26312.0
MultiplyHue 868.0 3343.3 6367.6 9554.2
MultiplySaturation 861.3 3353.0 6426.9 9911.0
RemoveSaturation 875.9 3337.8 6363.9 10280.3
AddToHueAndSaturation 1304.3 6766.2 10446.2 18294.3
AddToHue 1339.0 6785.4 10526.2 18075.2
AddToSaturation 1336.5 6799.2 10456.1 18036.2
ChangeColorspace (HSV) 1278.9 6776.7 10554.9 17845.5
Grayscale 1298.5 6832.6 10475.2 17750.9

Continued on next page

10.3. Heatmaps 315

imgaug Documentation, Release 0.3.0

Table 3 – continued from previous page
KMeansColorQuantization (2-16 colors) 1285.0 6794.2 10472.9 17924.0
UniformColorQuantization (2-16 colors) 1286.6 6813.7 10553.4 17893.7
UniformColorQuant.NBits (1-7 bits) 1309.5 6819.9 10343.9 18027.2
Posterize (1-7 bits) 1357.7 6843.1 10515.6 17936.6
GammaContrast 1337.8 6800.4 10495.7 18009.0
SigmoidContrast 1337.0 6806.4 10466.6 17873.3
LogContrast 1344.0 6762.3 10463.7 17979.1
LinearContrast 1349.4 6793.7 10413.8 17880.6
AllChannelsHistogramEqualization 1365.5 6783.6 10488.7 17966.1
HistogramEqualization 1364.7 6801.1 10477.2 18043.7
AllChannelsCLAHE 1330.2 6800.5 10415.1 18008.3
CLAHE 1372.3 6833.8 10539.7 18011.7
Convolve (3x3) 1356.2 6806.5 10419.5 17923.5
Sharpen 1339.8 6799.7 10392.9 17963.2
Emboss 1354.7 6767.9 10413.8 17964.7
EdgeDetect 1368.3 6769.3 10518.3 18015.8
DirectedEdgeDetect 1358.6 6795.3 10466.6 17960.0
Canny 1344.4 6789.5 10480.2 17991.9
Fliplr (p=100%) 1064.6 6145.1 8835.8 17531.4
Flipud (p=100%) 1080.3 6538.2 8888.0 17864.5
Affine (order=0, constant) 255.7 654.9 1134.6 1380.3
Affine (order=1, constant) 264.3 654.2 1139.9 1380.2
Affine (order=3, constant) 262.5 654.2 1129.1 1379.6
Affine (order=1, edge) 260.1 654.5 1137.4 1382.3
Affine (order=1, constant, skimage) 161.4 267.1 372.0 396.9
PiecewiseAffine (4x4, order=1, constant) 19.3 20.6 51.5 51.9
PiecewiseAffine (4x4, order=0, constant) 19.5 20.4 51.0 51.9
PiecewiseAffine (4x4, order=1, edge) 19.4 20.4 51.3 52.1
PiecewiseAffine (8x8, order=1, constant) 5.6 5.6 31.3 31.8
PerspectiveTransform 258.5 925.1 1411.7 2010.3
PerspectiveTransform (keep_size) 225.5 603.7 1094.5 1435.9
ElasticTransformation (order=0, constant) 69.4 97.6 1217.6 1466.5
ElasticTransformation (order=1, constant) 70.5 97.6 1204.3 1469.5
ElasticTransformation (order=1, nearest) 70.0 96.1 1211.0 1471.5
ElasticTransformation (order=1, reflect) 70.3 96.0 1215.7 1442.0
Rot90 748.1 5247.6 7075.9 24324.3
Rot90 (keep_size) 574.6 2012.9 3971.2 6407.7
WithPolarWarping (Identity) 622.5 1869.3 2621.8 2846.1
Jigsaw (rows/cols=(3,8), 1 step) 117.7 171.8 1500.0 1745.7
AveragePooling 516.2 1850.0 4782.4 11003.4
AveragePooling (keep_size) 1243.4 6670.4 10415.7 18658.7
MaxPooling 528.5 1844.9 4879.3 11378.2
MaxPooling (keep_size) 1274.8 6704.8 10582.7 18947.4
MinPooling 521.7 1871.9 4895.7 11346.4
MinPooling (keep_size) 1273.7 6721.3 10444.5 18924.3
MedianPooling 523.9 1870.4 4888.3 11389.8
MedianPooling (keep_size) 1265.8 6728.4 10477.3 19011.2
imgcorruptlike.GaussianNoise((1,5)) 1279.1 6750.4 10470.0 19034.0
imgcorruptlike.ShotNoise((1,5)) 1277.7 6764.5 10524.5 19094.6
imgcorruptlike.ImpulseNoise((1,5)) 1252.8 6745.3 10458.3 18995.2

Continued on next page

316 Chapter 10. Performance

imgaug Documentation, Release 0.3.0

Table 3 – continued from previous page
imgcorruptlike.SpeckleNoise((1,5)) 1262.7 6708.5 10519.9 19177.5
imgcorruptlike.GaussianBlur((1,5)) 1271.5 6695.1 10375.6 19022.0
imgcorruptlike.GlassBlur((1,5)) 1279.0 6740.8 10482.6 19049.7
imgcorruptlike.DefocusBlur((1,5)) 1264.1 6725.7 10457.5 19217.5
imgcorruptlike.MotionBlur((1,5)) 1285.1 6735.1 10389.7 19075.6
imgcorruptlike.ZoomBlur((1,5)) 1281.2 6754.2 10308.4 19113.0
imgcorruptlike.Fog((1,5)) 1277.6 6663.9 10386.9 19102.4
imgcorruptlike.Frost((1,5)) 1280.2 6737.7 10449.3 19018.7
imgcorruptlike.Snow((1,5)) 1264.4 6732.5 10613.1 19058.9
imgcorruptlike.Spatter((1,5)) 1248.5 6735.6 10394.4 19034.4
imgcorruptlike.Contrast((1,5)) 1251.7 6737.4 10483.9 19127.2
imgcorruptlike.Brightness((1,5)) 1266.7 6748.6 10519.9 19071.4
imgcorruptlike.Saturate((1,5)) 1270.4 6771.8 10566.0 19137.2
imgcorruptlike.JpegCompression((1,5)) 1256.7 6735.9 10589.2 19063.4
imgcorruptlike.Pixelate((1,5)) 1282.2 6739.7 10463.6 19135.8
imgcorruptlike.ElasticTransform((1,5)) 1255.9 6715.8 10436.7 19070.7
pillike.Solarize (p=1.0) 1274.0 6747.8 10415.5 19055.4
pillike.Posterize (1-7 bits) 1278.4 6738.6 10475.7 19121.8
pillike.Equalize 1274.1 6758.1 10450.9 18984.7
pillike.Autocontrast 1259.0 6723.7 10419.1 19153.8
pillike.EnhanceColor 1272.0 6719.8 10397.4 19100.6
pillike.EnhanceContrast 1257.2 6720.5 10479.4 19114.6
pillike.EnhanceBrightness 1267.2 6732.6 10512.5 19060.7
pillike.EnhanceSharpness 1241.9 6735.0 10433.6 19169.2
pillike.FilterBlur 1259.5 6661.7 10495.7 19037.5
pillike.FilterSmooth 1247.8 6718.1 10483.4 19175.0
pillike.FilterSmoothMore 1240.1 6690.4 10318.6 19040.7
pillike.FilterEdgeEnhance 1265.3 6717.4 10390.9 19204.5
pillike.FilterEdgeEnhanceMore 1270.1 6728.4 10098.6 19124.4
pillike.FilterFindEdges 1266.7 6751.5 10353.5 19197.6
pillike.FilterContour 1249.3 6694.9 10333.1 19034.4
pillike.FilterEmboss 1267.5 6767.2 10476.8 19171.0
pillike.FilterSharpen 1271.6 6737.6 10398.5 19048.9
pillike.FilterDetail 1281.0 6780.6 10496.7 19178.6
pillike.Affine n/a n/a n/a n/a
Superpixels (max_size=64, cubic) 1295.0 6561.1 10527.2 19141.9
Superpixels (max_size=64, linear) 1257.2 6569.5 10486.4 19180.4
Superpixels (max_size=128, linear) 1260.1 6512.3 10486.7 19117.8
Superpixels (max_size=224, linear) 1280.0 6589.3 10361.3 19276.4
UniformVoronoi (250-1000k points, linear) 1289.5 6565.9 10375.7 19086.6
RegularGridVoronoi (16-31 rows/cols) 1284.1 6565.6 10567.1 19060.5
RelativeRegularGridVoronoi (7%-14% rows/cols) 1282.7 6580.6 10424.6 19091.2
Resize (nearest) 485.9 1426.2 3312.5 5714.1
Resize (linear) 500.5 1344.2 3064.6 5086.9
Resize (cubic) 492.0 1267.1 2730.4 4282.9
CropAndPad 417.4 1488.9 2927.0 5460.7
CropAndPad (edge) 414.1 1486.4 2919.0 5424.1
CropAndPad (keep_size) 337.4 855.3 1956.8 2668.5
Crop 529.6 2379.2 5026.1 13314.0
Crop (keep_size) 406.8 1097.0 2568.4 4182.3

Continued on next page

10.3. Heatmaps 317

imgaug Documentation, Release 0.3.0

Table 3 – continued from previous page
Pad 405.3 1367.0 2601.9 4112.4
Pad (edge) 402.4 1365.7 2615.3 4084.5
Pad (keep_size) 329.1 801.9 1703.2 2199.6
PadToFixedSize 441.9 1683.2 2947.0 5516.7
CropToFixedSize 630.4 2987.1 5543.8 14467.0
KeepSizeByResize (CropToFixedSize(nearest)) 402.9 1293.7 2947.5 5232.6
KeepSizeByResize (CropToFixedSize(linear)) 398.9 1223.9 2707.1 4705.7
KeepSizeByResize (CropToFixedSize(cubic)) 395.7 1160.9 2440.0 4000.6
FastSnowyLandscape 1266.6 6468.7 10481.2 27221.8
Clouds 719.1 5982.0 6979.2 26382.3
Fog 1284.1 6527.3 10390.2 27196.8
CloudLayer 1268.0 6527.0 10328.0 27134.4
Snowflakes 717.6 5974.3 6852.2 26335.0
SnowflakesLayer 1282.2 6503.1 10732.7 27190.9
Rain 723.3 5951.5 6901.8 26338.2
RainLayer 1189.0 6438.2 10457.1 26940.0

Number of heatmap instances per sec for 64x64x5 or 224x224x5 heatmaps on 224x224x3 images:

64x64x5 on 224x224x3 224x224x5 on 224x224x3
Augmenter B=1 B=128 B=1 B=128
Sequential (2xIdentity) 9479.6 44643.9 6686.2 12329.9
Sequential (2xIdentity, random_order) 8838.1 44350.4 6157.9 12219.4
SomeOf (1-3, 3xIdentity) 5761.4 41319.8 4476.3 12075.9
SomeOf (1-3, 3xIdentity, random_order) 5650.8 41282.8 4403.5 12002.4
OneOf (3xIdentity) 8207.1 43109.2 5939.9 12246.6
Sometimes (Identity) 6648.8 43839.3 5117.4 11812.5
WithChannels ([1,2], Identity) 7209.9 20981.2 4221.6 4934.3
Identity 10634.7 44851.8 6913.0 11863.2
Noop 10812.0 44891.4 6843.7 11821.0
Lambda (return input) 10379.6 44538.3 6716.4 11875.2
AssertLambda (return True) 10406.7 44536.9 6684.5 12010.4
AssertShape (None, H, W, None) 10172.8 43448.8 6531.8 11835.3
ChannelShuffle (0.5) 10809.8 44715.3 6822.9 12015.4
Add 10884.9 44723.0 6813.2 11959.8
AddElementwise 10892.6 45124.3 6820.1 12056.3
AdditiveGaussianNoise 10807.8 44932.5 6875.8 11965.4
AdditiveLaplaceNoise 10899.7 44547.2 6768.3 12035.2
AdditivePoissonNoise 10874.6 44960.6 6823.1 11952.8
Multiply 10796.3 44959.0 6762.1 12058.5
MultiplyElementwise 10808.7 44647.6 6663.2 12065.8
Cutout (1 iter, constant fill) 10794.6 44675.1 6814.1 12313.6
Dropout (1-5%) 10967.9 45085.7 6763.8 12218.8
CoarseDropout (1-5%, size=1-10%) 10756.2 44945.9 6877.0 12306.0
Dropout2d (10%) 6877.6 40548.7 4915.7 11893.2
TotalDropout (10%) 7721.0 43625.5 5278.8 11724.4
ReplaceElementwise 10871.7 44826.6 6825.3 12230.5
ImpulseNoise 10875.7 44816.0 6867.9 12197.7
SaltAndPepper 10822.3 45085.0 6822.7 12302.1
CoarseSaltAndPepper 10853.6 44912.4 6733.7 12260.9

Continued on next page

318 Chapter 10. Performance

imgaug Documentation, Release 0.3.0

Table 4 – continued from previous page
Salt 10791.0 44611.6 6855.3 12216.2
CoarseSalt 10716.2 44671.6 6870.8 12025.3
Pepper 10927.1 44671.0 6841.2 11950.4
CoarsePepper 10821.1 52210.9 6887.8 12050.9
Invert (10%) 10919.3 52259.6 6815.4 11998.8
JpegCompression (50-99%) 10931.5 52505.0 6866.0 12011.2
Cartoon 10725.2 52345.4 6760.6 11951.6
BlendAlpha (Identity) 5298.2 23043.2 3321.7 7732.5
BlendAlphaElementwise (Identity) 2388.4 3609.9 817.2 885.7
BlendAlphaSimplexNoise (Identity) 805.7 983.0 522.7 581.8
BlendAlphaFrequencyNoise (Identity) 1002.4 1175.6 576.3 635.6
BlendAlphaSomeColors (Identity) n/a n/a n/a n/a
BlendAlphaHorizontalL.Grad. (Identity) 2072.0 4275.7 811.9 958.3
BlendAlphaVerticalL.Grad. (Identity) 2029.2 3931.6 796.2 937.6
BlendAlphaRegularGrid (Identity) 1941.8 3837.9 784.0 933.9
BlendAlphaCheckerboard (Identity) 1969.7 3689.2 791.6 918.6
GaussianBlur (sigma=(1,5)) 10198.4 51930.5 6851.0 17149.2
AverageBlur 10132.1 51763.5 6847.4 17199.4
MedianBlur 10194.0 52130.6 6855.1 17019.4
BilateralBlur 10216.7 52025.7 6828.0 17151.0
MotionBlur 10093.6 52122.1 6730.0 17167.8
MeanShiftBlur 10282.4 53167.2 6768.0 17232.3
RandAugment (n=2, m=(6,12)) n/a n/a n/a n/a
WithColorspace (HSV, Identity) 9479.7 54130.4 6536.1 17176.2
WithBrightnessChannels (Identity) 9541.3 54215.5 6539.0 17051.5
MultiplyAndAddToBrightness 8581.1 54003.0 6067.5 17132.6
MultiplyBrightness 9410.6 54140.9 6441.5 17076.6
AddToBrightness 8942.4 54072.0 6467.0 17182.3
WithHueAndSaturation 9215.7 54148.2 6563.7 17179.3
MultiplyHueAndSaturation 9366.5 54467.8 6509.5 17183.4
MultiplyHue 6943.9 26746.8 4158.4 6239.5
MultiplySaturation 6890.2 26823.7 4197.1 6472.5
RemoveSaturation 7006.9 26702.7 4156.0 6713.7
AddToHueAndSaturation 10434.8 54129.4 6822.0 11947.3
AddToHue 10711.8 54283.0 6874.2 11804.2
AddToSaturation 10692.0 54393.9 6828.5 11778.8
ChangeColorspace (HSV) 10231.2 54213.2 6893.0 11654.2
Grayscale 10387.7 54661.1 6841.0 11592.4
KMeansColorQuantization (2-16 colors) 10280.3 54353.4 6839.4 11705.5
UniformColorQuantization (2-16 colors) 10292.9 54509.9 6892.0 11685.7
UniformColorQuant.NBits (1-7 bits) 10476.1 54559.5 6755.2 11772.9
Posterize (1-7 bits) 10861.3 54744.7 6867.4 11713.7
GammaContrast 10702.7 54403.1 6854.3 11761.0
SigmoidContrast 10696.1 54451.1 6835.3 11672.4
LogContrast 10751.8 54098.5 6833.4 11741.5
LinearContrast 10795.1 54349.9 6800.9 11677.1
AllChannelsHistogramEqualization 10924.1 54268.6 6849.7 11733.0
HistogramEqualization 10917.2 54409.1 6842.2 11783.6
AllChannelsCLAHE 10641.3 54403.8 6801.7 11760.6
CLAHE 10978.3 54670.0 6883.1 11762.7

Continued on next page

10.3. Heatmaps 319

imgaug Documentation, Release 0.3.0

Table 4 – continued from previous page
Convolve (3x3) 10849.8 54451.7 6804.5 11705.1
Sharpen 10718.5 54397.6 6787.2 11731.0
Emboss 10838.0 54143.0 6800.8 11732.0
EdgeDetect 10946.7 54154.6 6869.1 11765.4
DirectedEdgeDetect 10868.6 54362.6 6835.3 11729.0
Canny 10755.1 54316.1 6844.2 11749.8
Fliplr (p=100%) 8516.7 49161.0 5770.3 11449.1
Flipud (p=100%) 8642.8 52305.2 5804.4 11666.6
Affine (order=0, constant) 2045.6 5238.8 741.0 901.4
Affine (order=1, constant) 2114.6 5233.6 744.4 901.3
Affine (order=3, constant) 2100.4 5233.6 737.4 901.0
Affine (order=1, edge) 2080.8 5236.2 742.8 902.7
Affine (order=1, constant, skimage) 1291.6 2137.1 242.9 259.2
PiecewiseAffine (4x4, order=1, constant) 154.3 164.8 33.6 33.9
PiecewiseAffine (4x4, order=0, constant) 155.8 163.5 33.3 33.9
PiecewiseAffine (4x4, order=1, edge) 155.2 163.4 33.5 34.0
PiecewiseAffine (8x8, order=1, constant) 44.8 44.9 20.4 20.7
PerspectiveTransform 2068.0 7401.0 921.9 1312.8
PerspectiveTransform (keep_size) 1804.2 4829.3 714.8 937.7
ElasticTransformation (order=0, constant) 555.2 780.9 795.2 957.7
ElasticTransformation (order=1, constant) 564.2 780.9 786.5 959.7
ElasticTransformation (order=1, nearest) 559.9 769.1 790.9 961.0
ElasticTransformation (order=1, reflect) 562.3 768.3 793.9 941.7
Rot90 5985.0 41980.6 4621.0 15885.2
Rot90 (keep_size) 4596.8 16103.2 2593.4 4184.6
WithPolarWarping (Identity) 4979.9 14954.7 1712.2 1858.7
Jigsaw (rows/cols=(3,8), 1 step) 941.8 1374.1 979.6 1140.1
AveragePooling 4129.7 14799.8 3123.2 7185.9
AveragePooling (keep_size) 9947.3 53363.1 6802.1 12185.3
MaxPooling 4227.7 14759.2 3186.5 7430.7
MaxPooling (keep_size) 10198.2 53638.1 6911.1 12373.8
MinPooling 4173.4 14975.5 3197.2 7409.9
MinPooling (keep_size) 10189.7 53770.8 6820.9 12358.7
MedianPooling 4191.0 14963.4 3192.3 7438.3
MedianPooling (keep_size) 10126.2 53827.5 6842.3 12415.4
imgcorruptlike.GaussianNoise((1,5)) 10233.1 54003.5 6837.6 12430.4
imgcorruptlike.ShotNoise((1,5)) 10221.4 54116.1 6873.2 12469.9
imgcorruptlike.ImpulseNoise((1,5)) 10022.6 53962.0 6829.9 12405.0
imgcorruptlike.SpeckleNoise((1,5)) 10101.6 53668.1 6870.1 12524.1
imgcorruptlike.GaussianBlur((1,5)) 10172.3 53560.8 6775.9 12422.5
imgcorruptlike.GlassBlur((1,5)) 10231.6 53926.2 6845.8 12440.6
imgcorruptlike.DefocusBlur((1,5)) 10112.5 53805.7 6829.4 12550.2
imgcorruptlike.MotionBlur((1,5)) 10280.8 53881.1 6785.1 12457.6
imgcorruptlike.ZoomBlur((1,5)) 10249.5 54033.7 6732.0 12481.9
imgcorruptlike.Fog((1,5)) 10220.8 53311.2 6783.3 12475.1
imgcorruptlike.Frost((1,5)) 10241.5 53901.9 6824.1 12420.4
imgcorruptlike.Snow((1,5)) 10115.0 53859.8 6931.0 12446.7
imgcorruptlike.Spatter((1,5)) 9988.2 53884.5 6788.2 12430.6
imgcorruptlike.Contrast((1,5)) 10013.3 53899.3 6846.6 12491.3
imgcorruptlike.Brightness((1,5)) 10133.9 53989.0 6870.2 12454.8

Continued on next page

320 Chapter 10. Performance

imgaug Documentation, Release 0.3.0

Table 4 – continued from previous page
imgcorruptlike.Saturate((1,5)) 10163.1 54174.7 6900.2 12497.8
imgcorruptlike.JpegCompression((1,5)) 10053.6 53886.8 6915.4 12449.6
imgcorruptlike.Pixelate((1,5)) 10257.9 53917.3 6833.4 12496.9
imgcorruptlike.ElasticTransform((1,5)) n/a n/a n/a n/a
pillike.Solarize (p=1.0) 10192.1 53982.3 6802.0 12444.3
pillike.Posterize (1-7 bits) 10227.5 53909.2 6841.3 12487.7
pillike.Equalize 10192.7 54064.7 6825.1 12398.2
pillike.Autocontrast 10071.7 53789.6 6804.3 12508.6
pillike.EnhanceColor 10176.0 53758.3 6790.1 12473.9
pillike.EnhanceContrast 10057.3 53764.1 6843.7 12483.0
pillike.EnhanceBrightness 10137.6 53860.6 6865.3 12447.8
pillike.EnhanceSharpness 9935.5 53879.9 6813.8 12518.6
pillike.FilterBlur 10075.9 53293.9 6854.4 12432.7
pillike.FilterSmooth 9982.0 53744.7 6846.3 12522.5
pillike.FilterSmoothMore 9920.8 53523.5 6738.7 12434.8
pillike.FilterEdgeEnhance 10122.4 53739.0 6785.9 12541.7
pillike.FilterEdgeEnhanceMore 10161.0 53826.9 6595.0 12489.4
pillike.FilterFindEdges 10133.6 54011.7 6761.5 12537.2
pillike.FilterContour 9994.2 53559.4 6748.1 12430.6
pillike.FilterEmboss 10139.8 54137.7 6842.0 12519.8
pillike.FilterSharpen 10172.6 53900.8 6790.9 12440.1
pillike.FilterDetail 10248.3 54244.5 6855.0 12524.8
pillike.Affine n/a n/a n/a n/a
Superpixels (max_size=64, cubic) 10359.8 52488.8 6874.9 12500.8
Superpixels (max_size=64, linear) 10057.4 52556.2 6848.3 12526.0
Superpixels (max_size=128, linear) 10080.4 52098.7 6848.5 12485.1
Superpixels (max_size=224, linear) 10239.8 52714.2 6766.6 12588.7
UniformVoronoi (250-1000k points, linear) 10315.7 52527.3 6775.9 12464.7
RegularGridVoronoi (16-31 rows/cols) 10273.0 52524.5 6901.0 12447.7
RelativeRegularGridVoronoi (7%-14% rows/cols) 10261.5 52644.6 6807.9 12467.7
Resize (nearest) 3887.2 11409.5 2163.3 3731.6
Resize (linear) 4004.2 10753.6 2001.4 3322.1
Resize (cubic) 3936.0 10136.8 1783.1 2797.0
CropAndPad 3339.4 11911.4 1911.5 3566.2
CropAndPad (edge) 3312.9 11891.2 1906.3 3542.2
CropAndPad (keep_size) 2699.4 6842.7 1277.9 1742.7
Crop 4236.7 19033.3 3282.4 8694.9
Crop (keep_size) 3254.2 8776.2 1677.3 2731.3
Pad 3242.5 10935.9 1699.2 2685.6
Pad (edge) 3219.3 10925.4 1708.0 2667.4
Pad (keep_size) 2633.0 6415.0 1112.3 1436.5
PadToFixedSize 3535.1 13465.6 1924.5 3602.7
CropToFixedSize 5043.4 23896.6 3620.4 9447.9
KeepSizeByResize (CropToFixedSize(nearest)) 3223.5 10349.5 1924.9 3417.2
KeepSizeByResize (CropToFixedSize(linear)) 3191.6 9791.4 1767.9 3073.1
KeepSizeByResize (CropToFixedSize(cubic)) 3165.5 9287.2 1593.5 2612.6
FastSnowyLandscape 10132.9 51749.5 6844.8 17777.5
Clouds 5753.1 47856.2 4557.8 17229.3
Fog 10272.6 52218.0 6785.4 17761.2
CloudLayer 10143.9 52216.4 6744.8 17720.4

Continued on next page

10.3. Heatmaps 321

imgaug Documentation, Release 0.3.0

Table 4 – continued from previous page
Snowflakes 5740.8 47794.5 4474.9 17198.4
SnowflakesLayer 10257.8 52025.2 7009.1 17757.3
Rain 5786.5 47612.3 4507.3 17200.5
RainLayer 9512.3 51505.4 6829.1 17593.5

10.4 Keypoints and Bounding Boxes

Numbers below are for keypoints on small and large images. Each KeypointsOnImage instance contained 10
Keypoint instances. B=1 denotes a batch size of 1 , B=128 one of 128.

The numbers for bounding boxes can be derived by dividing each value by 4.

Number of augmented Keypoint instances per sec (divide by 10 for KeypointsOnImage instances):

10 KPs on 224x224x3
Augmenter B=1 B=128
Sequential (2xIdentity) 37012.5 1082118.9
Sequential (2xIdentity, random_order) 29576.2 1018050.4
SomeOf (1-3, 3xIdentity) 14592.0 524940.8
SomeOf (1-3, 3xIdentity, random_order) 14223.8 518189.2
OneOf (3xIdentity) 26817.8 734837.0
Sometimes (Identity) 18553.2 818134.7
WithChannels ([1,2], Identity) 33973.0 569703.3
Identity 42157.2 1072697.7
Noop 42000.7 1069077.8
Lambda (return input) 38945.8 1036321.0
AssertLambda (return True) 37957.5 1032700.9
AssertShape (None, H, W, None) 34536.2 805366.0
ChannelShuffle (0.5) 41079.3 1064524.5
Add 41118.5 1065848.9
AddElementwise 40655.1 1059295.9
AdditiveGaussianNoise 40977.6 1048931.1
AdditiveLaplaceNoise 40870.1 1064200.9
AdditivePoissonNoise 40427.3 1056247.5
Multiply 40921.6 1054364.0
MultiplyElementwise 40417.9 1065871.4
Cutout (1 iter, constant fill) 41902.8 1063992.8
Dropout (1-5%) 40515.3 1052003.2
CoarseDropout (1-5%, size=1-10%) 40723.5 1057345.9
Dropout2d (10%) 15761.6 460892.5
TotalDropout (10%) 19089.1 817259.6
ReplaceElementwise 40863.7 996760.1
ImpulseNoise 41210.6 983126.4
SaltAndPepper 42135.2 993933.0
CoarseSaltAndPepper 41175.5 1003854.8
Salt 41061.6 1001330.9
CoarseSalt 40894.0 988559.6
Pepper 41267.4 1006313.5
CoarsePepper 41782.6 1005808.2

Continued on next page

322 Chapter 10. Performance

imgaug Documentation, Release 0.3.0

Table 5 – continued from previous page
Invert (10%) 41179.3 1013027.7
JpegCompression (50-99%) 41222.5 1002183.3
Cartoon 41742.7 1016170.7
BlendAlpha (Identity) 13638.3 231006.1
BlendAlphaElementwise (Identity) 7628.0 15529.5
BlendAlphaSimplexNoise (Identity) 1805.8 2281.7
BlendAlphaFrequencyNoise (Identity) 2417.1 2942.4
BlendAlphaSomeColors (Identity) n/a n/a
BlendAlphaHorizontalL.Grad. (Identity) 6762.3 24122.5
BlendAlphaVerticalL.Grad. (Identity) 6420.3 19841.8
BlendAlphaRegularGrid (Identity) 6007.6 18590.6
BlendAlphaCheckerboard (Identity) 6039.8 16668.2
GaussianBlur (sigma=(1,5)) 40927.0 1086402.0
AverageBlur 41359.6 1067578.3
MedianBlur 41554.1 1071704.2
BilateralBlur 41461.5 1077808.8
MotionBlur 41110.4 1076676.1
MeanShiftBlur 41129.7 1062169.5
RandAugment (n=2, m=(6,12)) n/a n/a
WithColorspace (HSV, Identity) 36815.8 1046132.3
WithBrightnessChannels (Identity) 36561.2 1039062.1
MultiplyAndAddToBrightness 28022.1 964196.3
MultiplyBrightness 35559.8 1017404.7
AddToBrightness 35527.7 1022234.8
WithHueAndSaturation 35777.0 1024870.5
MultiplyHueAndSaturation 35910.5 1021646.0
MultiplyHue 29659.9 592502.1
MultiplySaturation 28923.3 600158.0
RemoveSaturation 29378.7 598766.6
AddToHueAndSaturation 40986.2 1119725.2
AddToHue 41381.9 1103111.1
AddToSaturation 41058.4 1114935.0
ChangeColorspace (HSV) 40768.4 1117990.4
Grayscale 41099.1 1100846.1
KMeansColorQuantization (2-16 colors) 42215.3 1103010.2
UniformColorQuantization (2-16 colors) 41109.3 1112418.4
UniformColorQuant.NBits (1-7 bits) 41959.8 1096977.3
Posterize (1-7 bits) 41053.5 1095550.6
GammaContrast 41231.7 1080049.3
SigmoidContrast 40382.1 1100256.5
LogContrast 40291.1 1106150.6
LinearContrast 41104.0 1107891.5
AllChannelsHistogramEqualization 40714.5 1080249.2
HistogramEqualization 41734.9 1090530.2
AllChannelsCLAHE 41319.9 1100346.7
CLAHE 41405.8 1114551.1
Convolve (3x3) 41350.9 1102244.4
Sharpen 40292.7 1104893.9
Emboss 41969.9 1100852.1
EdgeDetect 40670.9 1103836.8

Continued on next page

10.4. Keypoints and Bounding Boxes 323

imgaug Documentation, Release 0.3.0

Table 5 – continued from previous page
DirectedEdgeDetect 40743.0 1106445.4
Canny 40905.1 1091215.8
Fliplr (p=100%) 23140.1 706230.7
Flipud (p=100%) 23031.6 699545.0
Affine (order=0, constant) 6562.1 33646.8
Affine (order=1, constant) 6531.6 33854.2
Affine (order=3, constant) 6551.7 33967.8
Affine (order=1, edge) 6539.0 34790.0
Affine (order=1, constant, skimage) 6545.8 34800.9
PiecewiseAffine (4x4, order=1, constant) 124.5 128.0
PiecewiseAffine (4x4, order=0, constant) 124.9 125.9
PiecewiseAffine (4x4, order=1, edge) 124.5 126.0
PiecewiseAffine (8x8, order=1, constant) 56.8 57.1
PerspectiveTransform 7538.8 65378.6
PerspectiveTransform (keep_size) 6866.2 34643.2
ElasticTransformation (order=0, constant) 1443.7 1698.9
ElasticTransformation (order=1, constant) 1403.2 1699.2
ElasticTransformation (order=1, nearest) 1387.6 1703.0
ElasticTransformation (order=1, reflect) 1438.2 1724.1
Rot90 15168.5 332321.6
Rot90 (keep_size) 14909.9 326491.3
WithPolarWarping (Identity) 15354.0 103429.7
Jigsaw (rows/cols=(3,8), 1 step) 5414.4 11859.6
AveragePooling 10527.7 58352.0
AveragePooling (keep_size) 40770.0 1077687.6
MaxPooling 10744.3 57821.0
MaxPooling (keep_size) 40547.7 1083825.7
MinPooling 10595.1 57142.4
MinPooling (keep_size) 40991.0 1081313.9
MedianPooling 10725.2 57799.0
MedianPooling (keep_size) 40305.6 1084803.9
imgcorruptlike.GaussianNoise((1,5)) 40730.9 1087593.4
imgcorruptlike.ShotNoise((1,5)) 41105.6 1074974.5
imgcorruptlike.ImpulseNoise((1,5)) 40888.7 1092987.1
imgcorruptlike.SpeckleNoise((1,5)) 40711.9 1070581.5
imgcorruptlike.GaussianBlur((1,5)) 40999.5 1082354.5
imgcorruptlike.GlassBlur((1,5)) 41458.0 1080668.9
imgcorruptlike.DefocusBlur((1,5)) 40992.6 1078547.8
imgcorruptlike.MotionBlur((1,5)) 42025.0 1043556.9
imgcorruptlike.ZoomBlur((1,5)) 40322.1 1090790.9
imgcorruptlike.Fog((1,5)) 41586.4 1074558.5
imgcorruptlike.Frost((1,5)) 40853.3 1090004.7
imgcorruptlike.Snow((1,5)) 40003.9 1086178.6
imgcorruptlike.Spatter((1,5)) 41532.1 1076336.5
imgcorruptlike.Contrast((1,5)) 40690.3 1089199.7
imgcorruptlike.Brightness((1,5)) 41673.2 1078498.0
imgcorruptlike.Saturate((1,5)) 40142.6 1082613.8
imgcorruptlike.JpegCompression((1,5)) 41298.2 1090813.8
imgcorruptlike.Pixelate((1,5)) 40576.9 1078943.8
imgcorruptlike.ElasticTransform((1,5)) n/a n/a

Continued on next page

324 Chapter 10. Performance

imgaug Documentation, Release 0.3.0

Table 5 – continued from previous page
pillike.Solarize (p=1.0) 40884.9 1050872.0
pillike.Posterize (1-7 bits) 41180.4 1079403.7
pillike.Equalize 40595.3 1093551.1
pillike.Autocontrast 40986.2 1083557.4
pillike.EnhanceColor 41340.6 1095687.7
pillike.EnhanceContrast 41217.6 1082945.4
pillike.EnhanceBrightness 41036.4 1084161.3
pillike.EnhanceSharpness 41666.4 1102461.7
pillike.FilterBlur 40530.9 1093928.5
pillike.FilterSmooth 41571.7 1092077.1
pillike.FilterSmoothMore 40467.9 1099664.6
pillike.FilterEdgeEnhance 40796.9 1084941.3
pillike.FilterEdgeEnhanceMore 41247.9 1092474.1
pillike.FilterFindEdges 41696.2 1096042.6
pillike.FilterContour 40493.4 1092456.3
pillike.FilterEmboss 41637.7 1099112.3
pillike.FilterSharpen 41646.0 1098764.4
pillike.FilterDetail 40681.9 1104490.8
pillike.Affine n/a n/a
Superpixels (max_size=64, cubic) 42058.7 1086970.3
Superpixels (max_size=64, linear) 40705.6 1090370.0
Superpixels (max_size=128, linear) 41916.8 1093384.5
Superpixels (max_size=224, linear) 41026.1 1056588.1
UniformVoronoi (250-1000k points, linear) 41827.0 1070845.2
RegularGridVoronoi (16-31 rows/cols) 40995.0 1074150.0
RelativeRegularGridVoronoi (7%-14% rows/cols) 41378.2 1109759.1
Resize (nearest) 11282.7 53402.6
Resize (linear) 11297.8 53518.4
Resize (cubic) 11210.7 52994.5
CropAndPad 8939.7 79988.7
CropAndPad (edge) 8870.1 79660.3
CropAndPad (keep_size) 7565.8 33852.5
Crop 10042.0 80279.6
Crop (keep_size) 8376.0 34519.8
Pad 8946.2 79155.3
Pad (edge) 8950.1 79899.8
Pad (keep_size) 7589.9 34261.0
PadToFixedSize 10459.6 255851.2
CropToFixedSize 13165.0 269638.4
KeepSizeByResize (CropToFixedSize(nearest)) 8923.0 55861.6
KeepSizeByResize (CropToFixedSize(linear)) 8876.8 55959.4
KeepSizeByResize (CropToFixedSize(cubic)) 8877.9 56122.5
FastSnowyLandscape 39966.1 1080643.5
Clouds 14326.3 548492.1
Fog 41600.9 1069986.2
CloudLayer 40820.5 1085618.5
Snowflakes 14110.5 536123.0
SnowflakesLayer 40336.6 1086376.4
Rain 13720.2 533951.5
RainLayer 40263.1 1086607.3

10.4. Keypoints and Bounding Boxes 325

imgaug Documentation, Release 0.3.0

326 Chapter 10. Performance

CHAPTER 11

dtype support

The function augment_images(), which all augmenters in imgaug offer, works by default with numpy arrays. In
most cases, these arrays will have the numpy dtype uint8, i.e. the images will have values in the range [0, 255].
This is the datatype returned by most image loading functions. Sometimes however you may want to augment other
datatypes, e.g. float64. While all augmenters support uint8, the support for other datatypes varies. The tables
further below show which datatype is supported by which augmenter (alongside the dtype support in some helper
functions). The API of each augmenter may contain more details.

Note: Whenever possible it is suggested to use uint8 as that is the most thoroughly tested dtype. In general, the use
of large dtypes (i.e. uint64, int64, float128) is discouraged, even when they are marked as supported. That is
because writing correct tests for these dtypes can be difficult as no larger dtypes are available to which values can be
temporarily cast. Additionally, when using inputs for which precise discrete values are important (e.g. segmentation
maps, where an accidental change by 1would break the map), medium sized dtypes (uint32, int32) should be used
with caution. This is because other libraries may convert temporarily to float64, which could lead to inaccuracies
for some numbers.

11.1 Legend

Support level (color of table cells):

• Green: Datatype is considered supported by the augmenter.

• Yellow: Limited support for the datatype, e.g. due to inaccuracies around large values. See the API for the
respective augmenter for more details.

• Red: Datatype is not supported by the augmenter.

Test level (symbols in table cells):

• +++: Datatype support is thoroughly tested (via unittests or integration tests).

• ++: Datatype support is tested, though not thoroughly.

• +: Datatype support is indirectly tested via tests for other augmenters.

• -: Datatype support is not tested.

327

imgaug Documentation, Release 0.3.0

• ?: Unknown support level for the datatype.

11.2 imgaug helper functions

Fig. 1: Dtype support of helper functions in imgaug, e.g. import imgaug; imgaug.
imresize_single_image(array, size).

328 Chapter 11. dtype support

imgaug Documentation, Release 0.3.0

Fig. 2: Image dtypes supported by augmenters and helper functions in imgaug.augmenters.meta.

11.12. imgaug.augmenters.edges 329

imgaug Documentation, Release 0.3.0

Fig. 3: Image dtypes supported by augmenters and helper functions in imgaug.augmenters.arithmetic.

330 Chapter 11. dtype support

imgaug Documentation, Release 0.3.0

Fig. 4: Image dtypes supported by augmenters and helper functions in imgaug.augmenters.blend.

Fig. 5: Image dtypes supported by augmenters and helper functions in imgaug.augmenters.blur.

Fig. 6: Image dtypes supported by augmenters and helper functions in imgaug.augmenters.collections.

11.12. imgaug.augmenters.edges 331

imgaug Documentation, Release 0.3.0

Fig. 7: Image dtypes supported by augmenters and helper functions in imgaug.augmenters.color.

332 Chapter 11. dtype support

imgaug Documentation, Release 0.3.0

Fig. 8: Image dtypes supported by augmenters and helper functions in imgaug.augmenters.contrast.

Fig. 9: Image dtypes supported by augmenters and helper functions in imgaug.augmenters.convolutional.

Fig. 10: Image dtypes supported by augmenters and helper functions in imgaug.augmenters.debug.

Fig. 11: Image dtypes supported by augmenters and helper functions in imgaug.augmenters.edges.

11.12. imgaug.augmenters.edges 333

imgaug Documentation, Release 0.3.0

11.3 imgaug.augmenters.meta

11.4 imgaug.augmenters.arithmetic

11.5 imgaug.augmenters.blend

11.6 imgaug.augmenters.blur

11.7 imgaug.augmenters.collections

11.8 imgaug.augmenters.color

11.9 imgaug.augmenters.contrast

11.10 imgaug.augmenters.convolutional

11.11 imgaug.augmenters.debug

11.12 imgaug.augmenters.edges

11.13 imgaug.augmenters.flip

Fig. 12: Image dtypes supported by augmenters and helper functions in imgaug.augmenters.flip.

334 Chapter 11. dtype support

imgaug Documentation, Release 0.3.0

Fig. 13: Image dtypes supported by augmenters and helper functions in imgaug.augmenters.geometric.

11.13. imgaug.augmenters.flip 335

imgaug Documentation, Release 0.3.0

Fig. 14: Image dtypes supported by augmenters and helper functions in imgaug.augmenters.
imgcorruptlike.

336 Chapter 11. dtype support

imgaug Documentation, Release 0.3.0

Fig. 15: Image dtypes supported by augmenters and helper functions in imgaug.augmenters.pillike.

11.13. imgaug.augmenters.flip 337

imgaug Documentation, Release 0.3.0

Fig. 16: Image dtypes supported by augmenters and helper functions in imgaug.augmenters.segmentation.

11.14 imgaug.augmenters.geometric

11.15 imgaug.augmenters.imgcorruptlike

11.16 imgaug.augmenters.pillike

11.17 imgaug.augmenters.segmentation

11.18 imgaug.augmenters.size

11.19 imgaug.augmenters.weather

338 Chapter 11. dtype support

imgaug Documentation, Release 0.3.0

Fig. 17: Image dtypes supported by augmenters and helper functions in imgaug.augmenters.size.

11.19. imgaug.augmenters.weather 339

imgaug Documentation, Release 0.3.0

Fig. 18: Image dtypes supported by augmenters and helper functions in imgaug.augmenters.weather.

340 Chapter 11. dtype support

CHAPTER 12

Jupyter Notebooks

Several jupyter notebooks are available that provide tutorials about imgaug’s functionality. They are hosted at imgaug-
doc/notebooks. The notebooks can be downloaded to interactively modify the examples.

List of Notebooks:

• A01 - Load and Augment an Image

• A03 - Multicore Augmentation

• B01 - Augment Keypoints (aka Landmarks)

• B02 - Augment Bounding Boxes

• B03 - Augment Polygons

• B06 - Augment Line Strings

• B04 - Augment Heatmaps

• B05 - Augment Segmentation Maps

• C01 - Using Probability Distributions as Parameters

• C02 - Using imgaug with more Control Flow

• C03 - Stochastic and Deterministic Augmentation

• C04 - Copying Random States and Using Multiple Augmentation Sequences

341

https://github.com/aleju/imgaug-doc/tree/master/notebooks
https://github.com/aleju/imgaug-doc/tree/master/notebooks
https://nbviewer.jupyter.org/github/aleju/imgaug-doc/blob/master/notebooks/A01%20-%20Load%20and%20Augment%20an%20Image.ipynb
https://nbviewer.jupyter.org/github/aleju/imgaug-doc/blob/master/notebooks/A03%20-%20Multicore%20Augmentation.ipynb
https://nbviewer.jupyter.org/github/aleju/imgaug-doc/blob/master/notebooks/B01%20-%20Augment%20Keypoints.ipynb
https://nbviewer.jupyter.org/github/aleju/imgaug-doc/blob/master/notebooks/B02%20-%20Augment%20Bounding%20Boxes.ipynb
https://nbviewer.jupyter.org/github/aleju/imgaug-doc/blob/master/notebooks/B03%20-%20Augment%%20Polygons.ipynb
https://nbviewer.jupyter.org/github/aleju/imgaug-doc/blob/master/notebooks/B06%20-%20Augment%20Line%20Strings.ipynb
https://nbviewer.jupyter.org/github/aleju/imgaug-doc/blob/master/notebooks/B04%20-%20Augment%20Heatmaps.ipynb
https://nbviewer.jupyter.org/github/aleju/imgaug-doc/blob/master/notebooks/B05%20-%20Augment%20Segmentation%20Maps.ipynb
https://nbviewer.jupyter.org/github/aleju/imgaug-doc/blob/master/notebooks/C01%20-%20Using%20Probability%20Distributions%20as%20Parameters.ipynb
https://nbviewer.jupyter.org/github/aleju/imgaug-doc/blob/master/notebooks/C02%20-%20Using%20imgaug%20with%20more%20Control%20Flow.ipynb
https://nbviewer.jupyter.org/github/aleju/imgaug-doc/blob/master/notebooks/C03%20-%20Stochastic%20and%20Deterministic%20Augmentation.ipynb
https://nbviewer.jupyter.org/github/aleju/imgaug-doc/blob/master/notebooks/C04%20-%20Copying%20Random%20States%20and%20Using%20Multiple%20Augmentation%20Sequences.ipynb

imgaug Documentation, Release 0.3.0

342 Chapter 12. Jupyter Notebooks

CHAPTER 13

API

13.1 imgaug

Collection of basic functions used throughout imgaug.

imgaug.imgaug.BackgroundAugmenter(*args, **kwargs)

imgaug.imgaug.Batch(*args, **kwargs)

imgaug.imgaug.BatchLoader(*args, **kwargs)

imgaug.imgaug.BoundingBox(*args, **kwargs)

imgaug.imgaug.BoundingBoxesOnImage(*args, **kwargs)

exception imgaug.imgaug.DeprecationWarning
Bases: Warning

Warning for deprecated calls.

Since python 2.7 DeprecatedWarning is silent by default. So we define our own DeprecatedWarning here so that
it is not silent by default.

imgaug.imgaug.HeatmapsOnImage(*args, **kwargs)

class imgaug.imgaug.HooksHeatmaps(activator=None, propagator=None, preprocessor=None,
postprocessor=None)

Bases: imgaug.imgaug.HooksImages

Class to intervene with heatmap augmentation runs.

This is e.g. useful to dynamically deactivate some augmenters.

This class is currently the same as the one for images. This may or may not change in the future.

Methods

343

imgaug Documentation, Release 0.3.0

is_activated(self, images, augmenter, . . .) Estimate whether an augmenter may be executed.
is_propagating(self, images, augmenter, . . .) Estimate whether an augmenter may call its children.
postprocess(self, images, augmenter, parents) Postprocess input data per augmenter after augmen-

tation.
preprocess(self, images, augmenter, parents) Preprocess input data per augmenter before augmen-

tation.

class imgaug.imgaug.HooksImages(activator=None, propagator=None, preprocessor=None, post-
processor=None)

Bases: object

Class to intervene with image augmentation runs.

This is e.g. useful to dynamically deactivate some augmenters.

Parameters

• activator (None or callable, optional) – A function that gives permission to execute an
augmenter. The expected interface is:

``f(images, augmenter, parents, default)``

where images are the input images to augment, augmenter is the instance of the aug-
menter to execute, parents are previously executed augmenters and default is an ex-
pected default value to be returned if the activator function does not plan to make a decision
for the given inputs.

• propagator (None or callable, optional) – A function that gives permission to propagate
the augmentation further to the children of an augmenter. This happens after the activator.
In theory, an augmenter may augment images itself (if allowed by the activator) and then
execute child augmenters afterwards (if allowed by the propagator). If the activator returned
False, the propagation step will never be executed. The expected interface is:

``f(images, augmenter, parents, default)``

with all arguments having identical meaning to the activator.

• preprocessor (None or callable, optional) – A function to call before an augmenter per-
formed any augmentations. The interface is:

f(images, augmenter, parents)

with all arguments having identical meaning to the activator. It is expected to return the
input images, optionally modified.

• postprocessor (None or callable, optional) – A function to call after an augmenter per-
formed augmentations. The interface is the same as for the preprocessor.

Examples

>>> import numpy as np
>>> import imgaug as ia
>>> import imgaug.augmenters as iaa
>>> seq = iaa.Sequential([
>>> iaa.GaussianBlur(3.0, name="blur"),
>>> iaa.Dropout(0.05, name="dropout"),
>>> iaa.Affine(translate_px=-5, name="affine")

(continues on next page)

344 Chapter 13. API

imgaug Documentation, Release 0.3.0

(continued from previous page)

>>>])
>>> images = [np.zeros((10, 10), dtype=np.uint8)]
>>>
>>> def activator(images, augmenter, parents, default):
>>> return False if augmenter.name in ["blur", "dropout"] else default
>>>
>>> seq_det = seq.to_deterministic()
>>> images_aug = seq_det.augment_images(images)
>>> heatmaps = [np.random.rand(*(3, 10, 10))]
>>> heatmaps_aug = seq_det.augment_images(
>>> heatmaps,
>>> hooks=ia.HooksImages(activator=activator)
>>>)

This augments images and their respective heatmaps in the same way. The heatmaps however are only modified
by Affine, not by GaussianBlur or Dropout.

Methods

is_activated(self, images, augmenter, . . .) Estimate whether an augmenter may be executed.
is_propagating(self, images, augmenter, . . .) Estimate whether an augmenter may call its children.
postprocess(self, images, augmenter, parents) Postprocess input data per augmenter after augmen-

tation.
preprocess(self, images, augmenter, parents) Preprocess input data per augmenter before augmen-

tation.

is_activated(self, images, augmenter, parents, default)
Estimate whether an augmenter may be executed.

This also affects propagation of data to child augmenters.

Returns If True, the augmenter may be executed. Otherwise False.

Return type bool

is_propagating(self, images, augmenter, parents, default)
Estimate whether an augmenter may call its children.

This function decides whether an augmenter with children is allowed to call these in order to further
augment the inputs. Note that if the augmenter itself performs augmentations (before/after calling its
children), these may still be executed, even if this method returns False.

Returns If True, the augmenter may propagate data to its children. Otherwise False.

Return type bool

postprocess(self, images, augmenter, parents)
Postprocess input data per augmenter after augmentation.

Returns The input images, optionally modified.

Return type (N,H,W,C) ndarray or (N,H,W) ndarray or list of (H,W,C) ndarray or list of (H,W)
ndarray

preprocess(self, images, augmenter, parents)
Preprocess input data per augmenter before augmentation.

Returns The input images, optionally modified.

13.1. imgaug 345

imgaug Documentation, Release 0.3.0

Return type (N,H,W,C) ndarray or (N,H,W) ndarray or list of (H,W,C) ndarray or list of (H,W)
ndarray

class imgaug.imgaug.HooksKeypoints(activator=None, propagator=None, preprocessor=None,
postprocessor=None)

Bases: imgaug.imgaug.HooksImages

Class to intervene with keypoint augmentation runs.

This is e.g. useful to dynamically deactivate some augmenters.

This class is currently the same as the one for images. This may or may not change in the future.

Methods

is_activated(self, images, augmenter, . . .) Estimate whether an augmenter may be executed.
is_propagating(self, images, augmenter, . . .) Estimate whether an augmenter may call its children.
postprocess(self, images, augmenter, parents) Postprocess input data per augmenter after augmen-

tation.
preprocess(self, images, augmenter, parents) Preprocess input data per augmenter before augmen-

tation.

imgaug.imgaug.Keypoint(*args, **kwargs)

imgaug.imgaug.KeypointsOnImage(*args, **kwargs)

imgaug.imgaug.MultiPolygon(*args, **kwargs)

imgaug.imgaug.Polygon(*args, **kwargs)

imgaug.imgaug.PolygonsOnImage(*args, **kwargs)

imgaug.imgaug.SegmentationMapsOnImage(*args, **kwargs)

imgaug.imgaug.angle_between_vectors(v1, v2)
Calculcate the angle in radians between vectors v1 and v2.

From http://stackoverflow.com/questions/2827393/angles-between-two-n-dimensional-vectors-in-python

Parameters

• v1 ((N,) ndarray) – First vector.

• v2 ((N,) ndarray) – Second vector.

Returns Angle in radians.

Return type float

Examples

>>> angle_between_vectors(np.float32([1, 0, 0]), np.float32([0, 1, 0]))
1.570796...

>>> angle_between_vectors(np.float32([1, 0, 0]), np.float32([1, 0, 0]))
0.0

>>> angle_between_vectors(np.float32([1, 0, 0]), np.float32([-1, 0, 0]))
3.141592...

346 Chapter 13. API

http://stackoverflow.com/questions/2827393/angles-between-two-n-dimensional-vectors-in-python

imgaug Documentation, Release 0.3.0

imgaug.imgaug.apply_lut(image, table)
Map an input image to a new one using a lookup table.

Added in 0.4.0.

Supported dtypes:

See apply_lut_().

Parameters

• image (ndarray) – See apply_lut_().

• table (ndarray or list of ndarray) – See apply_lut_().

Returns Image after mapping via lookup table.

Return type ndarray

imgaug.imgaug.apply_lut_(image, table)
Map an input image in-place to a new one using a lookup table.

Added in 0.4.0.

Supported dtypes:

• uint8: yes; fully tested

• uint16: no

• uint32: no

• uint64: no

• int8: no

• int16: no

• int32: no

• int64: no

• float16: no

• float32: no

• float64: no

• float128: no

• bool: no

Parameters

• image (ndarray) – Image of dtype uint8 and shape (H,W) or (H,W,C).

• table (ndarray or list of ndarray) – Table of dtype uint8 containing the mapping from old
to new values. Either a list of C (256,) arrays or a single array of shape (256,) or
(256, C) or (1, 256, C). In case of (256,) the same table is used for all channels,
otherwise a channelwise table is used and C is expected to match the number of channels.

Returns Image after mapping via lookup table. This might be the same array instance as provided
via image.

Return type ndarray

13.1. imgaug 347

imgaug Documentation, Release 0.3.0

imgaug.imgaug.avg_pool(arr, block_size, pad_mode=’reflect’, pad_cval=128, preserve_dtype=True,
cval=None)

Resize an array using average pooling.

Defaults to pad_mode="reflect" to ensure that padded values do not affect the average.

Supported dtypes:

See pool().

Parameters

• arr ((H,W) ndarray or (H,W,C) ndarray) – Image-like array to pool. See pool() for
details.

• block_size (int or tuple of int or tuple of int) – Size of each block of values to pool. See
pool() for details.

• pad_mode (str, optional) – Padding mode to use if the array cannot be divided by block_size
without remainder. See pad() for details.

• pad_cval (number, optional) – Padding value. See pool() for details.

• preserve_dtype (bool, optional) – Whether to preserve the input array dtype. See pool()
for details.

• cval (None or number, optional) – Deprecated. Old name for pad_cval.

Returns Array after average pooling.

Return type (H’,W’) ndarray or (H’,W’,C’) ndarray

imgaug.imgaug.caller_name()
Return the name of the caller, e.g. a function.

Returns The name of the caller as a string

Return type str

imgaug.imgaug.compute_geometric_median(*args, **kwargs)

imgaug.imgaug.compute_line_intersection_point(x1, y1, x2, y2, x3, y3, x4, y4)
Compute the intersection point of two lines.

Taken from https://stackoverflow.com/a/20679579 .

Parameters

• x1 (number) – x coordinate of the first point on line 1. (The lines extends beyond this point.)

• y1 (number) – y coordinate of the first point on line 1. (The lines extends beyond this point.)

• x2 (number) – x coordinate of the second point on line 1. (The lines extends beyond this
point.)

• y2 (number) – y coordinate of the second point on line 1. (The lines extends beyond this
point.)

• x3 (number) – x coordinate of the first point on line 2. (The lines extends beyond this point.)

• y3 (number) – y coordinate of the first point on line 2. (The lines extends beyond this point.)

• x4 (number) – x coordinate of the second point on line 2. (The lines extends beyond this
point.)

• y4 (number) – y coordinate of the second point on line 2. (The lines extends beyond this
point.)

348 Chapter 13. API

https://stackoverflow.com/a/20679579

imgaug Documentation, Release 0.3.0

Returns The coordinate of the intersection point as a tuple (x, y). If the lines are parallel (no
intersection point or an infinite number of them), the result is False.

Return type tuple of number or bool

imgaug.imgaug.compute_paddings_for_aspect_ratio(*args, **kwargs)

imgaug.imgaug.compute_paddings_to_reach_exponents_of(*args, **kwargs)

imgaug.imgaug.compute_paddings_to_reach_multiples_of(*args, **kwargs)

imgaug.imgaug.copy_random_state(random_state, force_copy=False)
Deprecated. Use imgaug.random.copy_generator_unless_global_rng instead.

Copy an existing numpy (random number) generator.

Parameters

• random_state (numpy.random.Generator or numpy.random.RandomState) – The generator
to copy.

• force_copy (bool, optional) – If True, this function will always create a copy of every
random state. If False, it will not copy numpy’s default random state, but all other random
states.

Returns rs_copy – The copied random state.

Return type numpy.random.RandomState

imgaug.imgaug.current_random_state()
Deprecated. Use imgaug.random.get_global_rng instead.

Get or create the current global RNG of imgaug.

Note that the first call to this function will create a global RNG.

Returns The global RNG to use.

Return type imgaug.random.RNG

class imgaug.imgaug.deprecated(alt_func=None, behavior=’warn’, removed_version=None,
comment=None)

Bases: object

Decorator to mark deprecated functions with warning.

Adapted from <https://github.com/scikit-image/scikit-image/blob/master/skimage/_shared/utils.py>.

Parameters

• alt_func (None or str, optional) – If given, tell user what function to use instead.

• behavior ({‘warn’, ‘raise’}, optional) – Behavior during call to deprecated function: warn
means that the user is warned that the function is deprecated; raise means that an error is
raised.

• removed_version (None or str, optional) – The package version in which the deprecated
function will be removed.

• comment (None or str, optional) – An optional comment that will be appended to the warn-
ing message.

Methods

13.1. imgaug 349

https://github.com/scikit-image/scikit-image/blob/master/skimage/_shared/utils.py

imgaug Documentation, Release 0.3.0

__call__(self, func) Call self as a function.

imgaug.imgaug.derive_random_state(random_state)
Deprecated. Use imgaug.random.derive_generator_ instead.

Derive a child numpy random generator from another one.

Parameters random_state (numpy.random.Generator or numpy.random.RandomState) – The gen-
erator from which to derive a new child generator.

Returns In numpy <=1.16 a RandomState, in 1.17+ a Generator. In both cases a derived child
generator.

Return type numpy.random.Generator or numpy.random.RandomState

imgaug.imgaug.derive_random_states(random_state, n=1)
Deprecated. Use imgaug.random.derive_generators_ instead.

Derive child numpy random generators from another one.

Parameters

• random_state (numpy.random.Generator or numpy.random.RandomState) – The generator
from which to derive new child generators.

• n (int, optional) – Number of child generators to derive.

Returns In numpy <=1.16 a list of RandomState s, in 1.17+ a list of Generator s. In
both cases lists of derived child generators.

Return type list of numpy.random.Generator or list of numpy.random.RandomState

imgaug.imgaug.do_assert(condition, message=’Assertion failed.’)
Assert that a condition holds or raise an Exception otherwise.

This was added because assert statements are removed in optimized code. It replaced assert statements through-
out the library, but that was reverted again for readability and performance reasons.

Parameters

• condition (bool) – If False, an exception is raised.

• message (str, optional) – Error message.

imgaug.imgaug.draw_grid(images, rows=None, cols=None)
Combine multiple images into a single grid-like image.

Calling this function with four images of the same shape and rows=2, cols=2 will combine the four images
to a single image array of shape (2*H, 2*W, C), where H is the height of any of the images (analogous W)
and C is the number of channels of any image.

Calling this function with four images of the same shape and rows=4, cols=1 is analogous to calling numpy.
vstack() on the images.

Supported dtypes:

• uint8: yes; fully tested

• uint16: yes; fully tested

• uint32: yes; fully tested

• uint64: yes; fully tested

• int8: yes; fully tested

350 Chapter 13. API

imgaug Documentation, Release 0.3.0

• int16: yes; fully tested

• int32: yes; fully tested

• int64: yes; fully tested

• float16: yes; fully tested

• float32: yes; fully tested

• float64: yes; fully tested

• float128: yes; fully tested

• bool: yes; fully tested

Parameters

• images ((N,H,W,3) ndarray or iterable of (H,W,3) array) – The input images to convert to a
grid.

• rows (None or int, optional) – The number of rows to show in the grid. If None, it will be
automatically derived.

• cols (None or int, optional) – The number of cols to show in the grid. If None, it will be
automatically derived.

Returns Image of the generated grid.

Return type (H’,W’,3) ndarray

imgaug.imgaug.draw_text(img, y, x, text, color=(0, 255, 0), size=25)
Draw text on an image.

This uses by default DejaVuSans as its font, which is included in this library.

Supported dtypes:

• uint8: yes; fully tested

• uint16: no

• uint32: no

• uint64: no

• int8: no

• int16: no

• int32: no

• int64: no

• float16: no

• float32: yes; not tested

• float64: no

• float128: no

• bool: no

TODO check if other dtypes could be enabled

Parameters

13.1. imgaug 351

imgaug Documentation, Release 0.3.0

• img ((H,W,3) ndarray) – The image array to draw text on. Expected to be of dtype uint8
or float32 (expected value range is [0.0, 255.0]).

• y (int) – x-coordinate of the top left corner of the text.

• x (int) – y- coordinate of the top left corner of the text.

• text (str) – The text to draw.

• color (iterable of int, optional) – Color of the text to draw. For RGB-images this is expected
to be an RGB color.

• size (int, optional) – Font size of the text to draw.

Returns Input image with text drawn on it.

Return type (H,W,3) ndarray

imgaug.imgaug.dummy_random_state()
Deprecated. Use imgaug.random.convert_seed_to_rng instead.

Create a dummy random state using a seed of 1.

Returns The new random state.

Return type imgaug.random.RNG

imgaug.imgaug.flatten(nested_iterable)
Flatten arbitrarily nested lists/tuples.

Code partially taken from https://stackoverflow.com/a/10824420.

Parameters nested_iterable – A list or tuple of arbitrarily nested values.

Yields any – All values in nested_iterable, flattened.

imgaug.imgaug.forward_random_state(random_state)
Deprecated. Use imgaug.random.advance_generator_ instead.

Advance a numpy random generator’s internal state.

Parameters random_state (numpy.random.Generator or numpy.random.RandomState) – Genera-
tor of which to advance the internal state.

imgaug.imgaug.imresize_many_images(images, sizes=None, interpolation=None)
Resize each image in a list or array to a specified size.

Supported dtypes:

• uint8: yes; fully tested

• uint16: yes; tested

• uint32: no (1)

• uint64: no (2)

• int8: yes; tested (3)

• int16: yes; tested

• int32: limited; tested (4)

• int64: no (2)

• float16: yes; tested (5)

• float32: yes; tested

352 Chapter 13. API

https://stackoverflow.com/a/10824420

imgaug Documentation, Release 0.3.0

• float64: yes; tested

• float128: no (1)

• bool: yes; tested (6)

• (1) rejected by cv2.imresize

• (2) results too inaccurate

• (3) mapped internally to int16 when interpolation!=”nearest”

• (4) only supported for interpolation=”nearest”, other interpolations lead to cv2 error

• (5) mapped internally to float32

• (6) mapped internally to uint8

Parameters

• images ((N,H,W,[C]) ndarray or list of (H,W,[C]) ndarray) – Array of the images to resize.
Usually recommended to be of dtype uint8.

• sizes (float or iterable of int or iterable of float) – The new size of the images, given either
as a fraction (a single float) or as a (height, width) tuple of two integers or as a
(height fraction, width fraction) tuple of two floats.

• interpolation (None or str or int, optional) – The interpolation to use during resize. If int,
then expected to be one of:

– cv2.INTER_NEAREST (nearest neighbour interpolation)

– cv2.INTER_LINEAR (linear interpolation)

– cv2.INTER_AREA (area interpolation)

– cv2.INTER_CUBIC (cubic interpolation)

If str, then expected to be one of:

– nearest (identical to cv2.INTER_NEAREST)

– linear (identical to cv2.INTER_LINEAR)

– area (identical to cv2.INTER_AREA)

– cubic (identical to cv2.INTER_CUBIC)

If None, the interpolation will be chosen automatically. For size increases, area interpo-
lation will be picked and for size decreases, linear interpolation will be picked.

Returns Array of the resized images.

Return type (N,H’,W’,[C]) ndarray

Examples

>>> import imgaug as ia
>>> images = np.zeros((2, 8, 16, 3), dtype=np.uint8)
>>> images_resized = ia.imresize_many_images(images, 2.0)
>>> images_resized.shape
(2, 16, 32, 3)

Convert two RGB images of height 8 and width 16 to images of height 2*8=16 and width 2*16=32.

13.1. imgaug 353

imgaug Documentation, Release 0.3.0

>>> images_resized = ia.imresize_many_images(images, (2.0, 4.0))
>>> images_resized.shape
(2, 16, 64, 3)

Convert two RGB images of height 8 and width 16 to images of height 2*8=16 and width 4*16=64.

>>> images_resized = ia.imresize_many_images(images, (16, 32))
>>> images_resized.shape
(2, 16, 32, 3)

Converts two RGB images of height 8 and width 16 to images of height 16 and width 32.

imgaug.imgaug.imresize_single_image(image, sizes, interpolation=None)
Resize a single image.

Supported dtypes:

See imresize_many_images().

Parameters

• image ((H,W,C) ndarray or (H,W) ndarray) – Array of the image to resize. Usually recom-
mended to be of dtype uint8.

• sizes (float or iterable of int or iterable of float) – See imresize_many_images().

• interpolation (None or str or int, optional) – See imresize_many_images().

Returns The resized image.

Return type (H’,W’,C) ndarray or (H’,W’) ndarray

imgaug.imgaug.imshow(image, backend=’matplotlib’)
Show an image in a window.

Supported dtypes:

• uint8: yes; not tested

• uint16: ?

• uint32: ?

• uint64: ?

• int8: ?

• int16: ?

• int32: ?

• int64: ?

• float16: ?

• float32: ?

• float64: ?

• float128: ?

• bool: ?

Parameters

• image ((H,W,3) ndarray) – Image to show.

354 Chapter 13. API

imgaug Documentation, Release 0.3.0

• backend ({‘matplotlib’, ‘cv2’}, optional) – Library to use to show the image. May be either
matplotlib or OpenCV (‘cv2’). OpenCV tends to be faster, but apparently causes more
technical issues.

imgaug.imgaug.is_callable(val)
Check whether a variable is a callable, e.g. a function.

Parameters val – The variable to check.

Returns True if the variable is a callable. Otherwise False.

Return type bool

imgaug.imgaug.is_float_array(val)
Check whether a variable is a numpy float array.

Parameters val – The variable to check.

Returns True if the variable is a numpy float array. Otherwise False.

Return type bool

imgaug.imgaug.is_generator(val)
Check whether a variable is a generator.

Parameters val – The variable to check.

Returns True is the variable is a generator. Otherwise False.

Return type bool

imgaug.imgaug.is_integer_array(val)
Check whether a variable is a numpy integer array.

Parameters val – The variable to check.

Returns True if the variable is a numpy integer array. Otherwise False.

Return type bool

imgaug.imgaug.is_iterable(val)
Checks whether a variable is iterable.

Parameters val – The variable to check.

Returns True if the variable is an iterable. Otherwise False.

Return type bool

imgaug.imgaug.is_np_array(val)
Check whether a variable is a numpy array.

Parameters val – The variable to check.

Returns True if the variable is a numpy array. Otherwise False.

Return type bool

imgaug.imgaug.is_np_scalar(val)
Check whether a variable is a numpy scalar.

Parameters val – The variable to check.

Returns True if the variable is a numpy scalar. Otherwise False.

Return type bool

13.1. imgaug 355

imgaug Documentation, Release 0.3.0

imgaug.imgaug.is_single_bool(val)
Check whether a variable is a bool.

Parameters val – The variable to check.

Returns True if the variable is a bool. Otherwise False.

Return type bool

imgaug.imgaug.is_single_float(val)
Check whether a variable is a float.

Parameters val – The variable to check.

Returns True if the variable is a float. Otherwise False.

Return type bool

imgaug.imgaug.is_single_integer(val)
Check whether a variable is an int.

Parameters val – The variable to check.

Returns True if the variable is an int. Otherwise False.

Return type bool

imgaug.imgaug.is_single_number(val)
Check whether a variable is a number, i.e. an int or float.

Parameters val – The variable to check.

Returns True if the variable is a number. Otherwise False.

Return type bool

imgaug.imgaug.is_string(val)
Check whether a variable is a string.

Parameters val – The variable to check.

Returns True if the variable is a string. Otherwise False.

Return type bool

imgaug.imgaug.max_pool(arr, block_size, pad_mode=’edge’, pad_cval=0, preserve_dtype=True,
cval=None)

Resize an array using max-pooling.

Defaults to pad_mode="edge" to ensure that padded values do not affect the maximum, even if the dtype
was something else than uint8.

Supported dtypes:

See pool().

Parameters

• arr ((H,W) ndarray or (H,W,C) ndarray) – Image-like array to pool. See pool() for
details.

• block_size (int or tuple of int or tuple of int) – Size of each block of values to pool. See
pool() for details.

• pad_mode (str, optional) – Padding mode to use if the array cannot be divided by block_size
without remainder. See pad() for details.

• pad_cval (number, optional) – Padding value. See pool() for details.

356 Chapter 13. API

imgaug Documentation, Release 0.3.0

• preserve_dtype (bool, optional) – Whether to preserve the input array dtype. See pool()
for details.

• cval (None or number, optional) – Deprecated. Old name for pad_cval.

Returns Array after max-pooling.

Return type (H’,W’) ndarray or (H’,W’,C’) ndarray

imgaug.imgaug.median_pool(arr, block_size, pad_mode=’reflect’, pad_cval=128, pre-
serve_dtype=True)

Resize an array using median-pooling.

Defaults to pad_mode="reflect" to ensure that padded values do not affect the average.

Supported dtypes:

See pool().

Parameters

• arr ((H,W) ndarray or (H,W,C) ndarray) – Image-like array to pool. See pool() for
details.

• block_size (int or tuple of int or tuple of int) – Size of each block of values to pool. See
pool() for details.

• pad_mode (str, optional) – Padding mode to use if the array cannot be divided by block_size
without remainder. See pad() for details.

• pad_cval (number, optional) – Padding value. See pool() for details.

• preserve_dtype (bool, optional) – Whether to preserve the input array dtype. See pool()
for details.

Returns Array after min-pooling.

Return type (H’,W’) ndarray or (H’,W’,C’) ndarray

imgaug.imgaug.min_pool(arr, block_size, pad_mode=’edge’, pad_cval=255, preserve_dtype=True)
Resize an array using min-pooling.

Defaults to pad_mode="edge" to ensure that padded values do not affect the minimum, even if the dtype
was something else than uint8.

Supported dtypes:

See pool().

Parameters

• arr ((H,W) ndarray or (H,W,C) ndarray) – Image-like array to pool. See pool() for
details.

• block_size (int or tuple of int or tuple of int) – Size of each block of values to pool. See
pool() for details.

• pad_mode (str, optional) – Padding mode to use if the array cannot be divided by block_size
without remainder. See pad() for details.

• pad_cval (number, optional) – Padding value. See pool() for details.

• preserve_dtype (bool, optional) – Whether to preserve the input array dtype. See pool()
for details.

13.1. imgaug 357

imgaug Documentation, Release 0.3.0

Returns Array after min-pooling.

Return type (H’,W’) ndarray or (H’,W’,C’) ndarray

imgaug.imgaug.new_random_state(seed=None, fully_random=False)
Deprecated. Use imgaug.random.convert_seed_to_rng instead.

Create a new numpy random number generator.

Parameters

• seed (None or int, optional) – The seed value to use. If None and fully_random is False,
the seed will be derived from the global RNG. If fully_random is True, the seed will be
provided by the OS.

• fully_random (bool, optional) – Whether the seed will be provided by the OS.

Returns In numpy <=1.16 a RandomState, in 1.17+ a Generator. Both are initialized with the
provided seed.

Return type numpy.random.Generator or numpy.random.RandomState

imgaug.imgaug.normalize_random_state(random_state)
Deprecated. Use imgaug.random.normalize_generator instead.

Normalize various inputs to a numpy random generator.

Parameters random_state (None or int or numpy.random.Generator or
numpy.random.BitGenerator or numpy.random.bit_generator.SeedSequence or
numpy.random.RandomState) – See normalize_generator().

Returns In numpy <=1.16 a RandomState, in 1.17+ a Generator (even if the input was a
RandomState).

Return type numpy.random.Generator or numpy.random.RandomState

imgaug.imgaug.pad(*args, **kwargs)

imgaug.imgaug.pad_to_aspect_ratio(*args, **kwargs)

imgaug.imgaug.pad_to_multiples_of(*args, **kwargs)

imgaug.imgaug.pool(arr, block_size, func, pad_mode=’constant’, pad_cval=0, preserve_dtype=True,
cval=None)

Resize an array by pooling values within blocks.

Supported dtypes:

• uint8: yes; fully tested

• uint16: yes; tested

• uint32: yes; tested (2)

• uint64: no (1)

• int8: yes; tested

• int16: yes; tested

• int32: yes; tested (2)

• int64: no (1)

• float16: yes; tested

• float32: yes; tested

358 Chapter 13. API

imgaug Documentation, Release 0.3.0

• float64: yes; tested

• float128: yes; tested (2)

• bool: yes; tested

• (1) results too inaccurate (at least when using np.average as func)

• (2) Note that scikit-image documentation says that the wrapped pooling function converts inputs
to float64. Actual tests showed no indication of that happening (at least when using
preserve_dtype=True).

Parameters

• arr ((H,W) ndarray or (H,W,C) ndarray) – Image-like array to pool. Ideally of datatype
float64.

• block_size (int or tuple of int) –

Spatial size of each group of values to pool, aka kernel size.

– If a single int, then a symmetric block of that size along height and width will be used.

– If a tuple of two values, it is assumed to be the block size along height and width of the
image-like, with pooling happening per channel.

– If a tuple of three values, it is assumed to be the block size along height, width and
channels.

• func (callable) – Function to apply to a given block in order to convert it to a single number,
e.g. numpy.average(), numpy.min(), numpy.max().

• pad_mode (str, optional) – Padding mode to use if the array cannot be divided by block_size
without remainder. See pad() for details.

• pad_cval (number, optional) – Value to use for padding if mode is constant. See
numpy.pad() for details.

• preserve_dtype (bool, optional) – Whether to convert the array back to the input datatype
if it is changed away from that in the pooling process.

• cval (None or number, optional) – Deprecated. Old name for pad_cval.

Returns Array after pooling.

Return type (H’,W’) ndarray or (H’,W’,C’) ndarray

imgaug.imgaug.quokka(size=None, extract=None)
Return an image of a quokka as a numpy array.

Parameters

• size (None or float or tuple of int, optional) – Size of the output image. Input into
imresize_single_image(). Usually expected to be a tuple (H, W), where H
is the desired height and W is the width. If None, then the image will not be resized.

• extract (None or ‘square’ or tuple of number or imgaug.augmentables.bbs.BoundingBox or
imgaug.augmentables.bbs.BoundingBoxesOnImage) –

Subarea of the quokka image to extract:

– If None, then the whole image will be used.

– If str square, then a squared area (x: 0 to max 643, y: 0 to max
643) will be extracted from the image.

13.1. imgaug 359

imgaug Documentation, Release 0.3.0

– If a tuple, then expected to contain four number s denoting (x1, y1, x2, y2).

– If a BoundingBox, then that bounding box’s area will be extracted from the image.

– If a BoundingBoxesOnImage, then expected to contain exactly one bounding box
and a shape matching the full image dimensions (i.e. (643, 960, *)). Then the one
bounding box will be used similar to BoundingBox above.

Returns The image array of dtype uint8.

Return type (H,W,3) ndarray

imgaug.imgaug.quokka_bounding_boxes(size=None, extract=None)
Return example bounding boxes on the standard example quokke image.

Currently only a single bounding box is returned that covers the quokka.

Parameters

• size (None or float or tuple of int or tuple of float, optional) – Size of the output image
on which the BBs are placed. If None, then the BBs are not projected to any new size
(positions on the original image are used). float s lead to relative size changes, int s to
absolute sizes in pixels.

• extract (None or ‘square’ or tuple of number or imgaug.augmentables.bbs.BoundingBox or
imgaug.augmentables.bbs.BoundingBoxesOnImage) – Subarea to extract from the image.
See quokka().

Returns Example BBs on the quokka image.

Return type imgaug.augmentables.bbs.BoundingBoxesOnImage

imgaug.imgaug.quokka_heatmap(size=None, extract=None)
Return a heatmap (here: depth map) for the standard example quokka image.

Parameters

• size (None or float or tuple of int, optional) – See quokka().

• extract (None or ‘square’ or tuple of number or imgaug.augmentables.bbs.BoundingBox or
imgaug.augmentables.bbs.BoundingBoxesOnImage) – See quokka().

Returns Depth map as an heatmap object. Values close to 0.0 denote objects that are close to the
camera. Values close to 1.0 denote objects that are furthest away (among all shown objects).

Return type imgaug.augmentables.heatmaps.HeatmapsOnImage

imgaug.imgaug.quokka_keypoints(size=None, extract=None)
Return example keypoints on the standard example quokke image.

The keypoints cover the eyes, ears, nose and paws.

Parameters

• size (None or float or tuple of int or tuple of float, optional) – Size of the output image on
which the keypoints are placed. If None, then the keypoints are not projected to any new
size (positions on the original image are used). float s lead to relative size changes, int
s to absolute sizes in pixels.

• extract (None or ‘square’ or tuple of number or imgaug.augmentables.bbs.BoundingBox or
imgaug.augmentables.bbs.BoundingBoxesOnImage) – Subarea to extract from the image.
See quokka().

Returns Example keypoints on the quokka image.

Return type imgaug.augmentables.kps.KeypointsOnImage

360 Chapter 13. API

imgaug Documentation, Release 0.3.0

imgaug.imgaug.quokka_polygons(size=None, extract=None)
Returns example polygons on the standard example quokke image.

The result contains one polygon, covering the quokka’s outline.

Parameters

• size (None or float or tuple of int or tuple of float, optional) – Size of the output image on
which the polygons are placed. If None, then the polygons are not projected to any new
size (positions on the original image are used). float s lead to relative size changes, int
s to absolute sizes in pixels.

• extract (None or ‘square’ or tuple of number or imgaug.augmentables.bbs.BoundingBox or
imgaug.augmentables.bbs.BoundingBoxesOnImage) – Subarea to extract from the image.
See quokka().

Returns Example polygons on the quokka image.

Return type imgaug.augmentables.polys.PolygonsOnImage

imgaug.imgaug.quokka_segmentation_map(size=None, extract=None)
Return a segmentation map for the standard example quokka image.

Parameters

• size (None or float or tuple of int, optional) – See quokka().

• extract (None or ‘square’ or tuple of number or imgaug.augmentables.bbs.BoundingBox or
imgaug.augmentables.bbs.BoundingBoxesOnImage) – See quokka().

Returns Segmentation map object.

Return type imgaug.augmentables.segmaps.SegmentationMapsOnImage

imgaug.imgaug.quokka_square(size=None)
Return an (square) image of a quokka as a numpy array.

Parameters size (None or float or tuple of int, optional) – Size of the output image. Input into
imresize_single_image(). Usually expected to be a tuple (H, W), where H is the
desired height and W is the width. If None, then the image will not be resized.

Returns The image array of dtype uint8.

Return type (H,W,3) ndarray

imgaug.imgaug.seed(entropy=None, seedval=None)
Set the seed of imgaug’s global RNG.

The global RNG controls most of the “randomness” in imgaug.

The global RNG is the default one used by all augmenters. Under special circumstances (e.g. when an augmenter
is switched to deterministic mode), the global RNG is replaced with a local one. The state of that replacement
may be dependent on the global RNG’s state at the time of creating the child RNG.

Note: This function is not yet marked as deprecated, but might be in the future. The preferred way to seed
imgaug is via seed().

Parameters

• entropy (int) – The seed value to use.

• seedval (None or int, optional) – Deprecated since 0.4.0.

13.1. imgaug 361

imgaug Documentation, Release 0.3.0

imgaug.imgaug.show_grid(images, rows=None, cols=None)
Combine multiple images into a single image and plot the result.

This will show a window of the results of draw_grid().

Supported dtypes:

minimum of (draw_grid(), imshow()

)

Parameters

• images ((N,H,W,3) ndarray or iterable of (H,W,3) array) – See draw_grid().

• rows (None or int, optional) – See draw_grid().

• cols (None or int, optional) – See draw_grid().

imgaug.imgaug.warn(msg, category=<class ’UserWarning’>, stacklevel=2)
Generate a a warning with stacktrace.

Parameters

• msg (str) – The message of the warning.

• category (class) – The class of the warning to produce.

• stacklevel (int, optional) – How many steps above this function to “jump” in the stacktrace
when displaying file and line number of the error message. Usually 2.

imgaug.imgaug.warn_deprecated(msg, stacklevel=2)
Generate a non-silent deprecation warning with stacktrace.

The used warning is imgaug.imgaug.DeprecationWarning.

Parameters

• msg (str) – The message of the warning.

• stacklevel (int, optional) – How many steps above this function to “jump” in the stacktrace
when displaying file and line number of the error message. Usually 2

13.2 imgaug.parameters

Classes and methods to use for parameters of augmenters.

This module contains e.g. classes representing probability distributions (guassian, poisson etc.), classes representing
noise sources and methods to normalize parameter-related user inputs.

class imgaug.parameters.Absolute(other_param)
Bases: imgaug.parameters.StochasticParameter

Convert the samples of another parameter to their absolute values.

Parameters other_param (imgaug.parameters.StochasticParameter) – Other parameter which’s
sampled values are to be modified.

362 Chapter 13. API

imgaug Documentation, Release 0.3.0

Examples

>>> import imgaug.parameters as iap
>>> param = iap.Absolute(iap.Uniform(-1.0, 1.0))

Convert a uniform distribution from [-1.0, 1.0) to [0.0, 1.0].

Methods

copy(self) Create a shallow copy of this parameter.
deepcopy(self) Create a deep copy of this parameter.
draw_distribution_graph(self[, title, size,
. . .])

Generate an image visualizing the parameter’s sam-
ple distribution.

draw_sample(self[, random_state]) Draws a single sample value from this parameter.
draw_samples(self, size[, random_state]) Draw one or more samples from the parameter.

class imgaug.parameters.Add(other_param, val, elementwise=False)
Bases: imgaug.parameters.StochasticParameter

Add to the samples of another stochastic parameter.

Parameters

• other_param (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter) – Samples of val will be added to samples of
this parameter. Let S be the requested shape of samples, then the datatype behaviour is as
follows:

– If a single number, this number will be used as a constant value to fill an array of shape
S.

– If a tuple of two number s (a, b), an array of shape S will be filled with uniformly
sampled values from the continuous interval [a, b).

– If a list of number, an array of shape S will be filled with randomly picked values
from the list.

– If a StochasticParameter, that parameter will be queried once per call to generate
an array of shape S.

“per call” denotes a call of Add.draw_sample() or Add.draw_samples().

• val (number or tuple of two number or list of number or im-
gaug.parameters.StochasticParameter) – Value to add to the samples of other_param.
Datatype behaviour is analogous to other_param, though if elementwise=False (the
default), only a single sample will be generated per call instead of S.

• elementwise (bool, optional) – Controls the sampling behaviour of val. If set to False, a
single samples will be requested from val and used as the constant multiplier. If set to True,
samples of shape S will be requested from val and added elementwise with the samples of
other_param.

Examples

>>> import imgaug.parameters as iap
>>> param = iap.Add(Uniform(0.0, 1.0), 1.0)

13.2. imgaug.parameters 363

imgaug Documentation, Release 0.3.0

Convert a uniform distribution from [0.0, 1.0) to [1.0, 2.0).

Methods

copy(self) Create a shallow copy of this parameter.
deepcopy(self) Create a deep copy of this parameter.
draw_distribution_graph(self[, title, size,
. . .])

Generate an image visualizing the parameter’s sam-
ple distribution.

draw_sample(self[, random_state]) Draws a single sample value from this parameter.
draw_samples(self, size[, random_state]) Draw one or more samples from the parameter.

class imgaug.parameters.Beta(alpha, beta, epsilon=0.0001)
Bases: imgaug.parameters.StochasticParameter

Parameter that resembles a (continuous) beta distribution.

Parameters

• alpha (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter) – alpha parameter of the beta distribution. Expected
value range is (0, inf). Values below 0 are automatically clipped to 0+epsilon.

– If a single number, this number will be used as a constant value.

– If a tuple of two number s (a, b), the value will be sampled from the continuous
interval [a, b) once per call.

– If a list of number, a random value will be picked from the list once per call.

– If a StochasticParameter, that parameter will be queried once per call.

“per call” denotes a call of Beta.draw_sample() or Beta.draw_samples().

• beta (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter) – Beta parameter of the beta distribution. Analogous
to alpha.

• epsilon (number) – Clipping parameter. If alpha or beta end up <=0, they are clipped to
0+epsilon.

Examples

>>> import imgaug.parameters as iap
>>> param = iap.Beta(0.4, 0.6)

Create a beta distribution with alpha=0.4 and beta=0.6.

Methods

copy(self) Create a shallow copy of this parameter.
deepcopy(self) Create a deep copy of this parameter.
draw_distribution_graph(self[, title, size,
. . .])

Generate an image visualizing the parameter’s sam-
ple distribution.

draw_sample(self[, random_state]) Draws a single sample value from this parameter.
Continued on next page

364 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 7 – continued from previous page
draw_samples(self, size[, random_state]) Draw one or more samples from the parameter.

class imgaug.parameters.Binomial(p)
Bases: imgaug.parameters.StochasticParameter

Binomial distribution.

Parameters p (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter) – Probability of the binomial distribution. Expected to
be in the interval [0.0, 1.0].

• If a single number, this number will be used as a constant value.

• If a tuple of two number s (a, b), the value will be sampled from the continuous
interval [a, b) once per call.

• If a list of number, a random value will be picked from the list once per call.

• If a StochasticParameter, that parameter will be queried once per call.

“per call” denotes a call of Binomial.draw_sample() or Binomial.
draw_samples().

Examples

>>> import imgaug.parameters as iap
>>> param = iap.Binomial(Uniform(0.01, 0.2))

Create a binomial distribution that uses a varying probability between 0.01 and 0.2, randomly and uniformly
estimated once per sampling call.

Methods

copy(self) Create a shallow copy of this parameter.
deepcopy(self) Create a deep copy of this parameter.
draw_distribution_graph(self[, title, size,
. . .])

Generate an image visualizing the parameter’s sam-
ple distribution.

draw_sample(self[, random_state]) Draws a single sample value from this parameter.
draw_samples(self, size[, random_state]) Draw one or more samples from the parameter.

class imgaug.parameters.ChiSquare(df)
Bases: imgaug.parameters.StochasticParameter

Parameter that resembles a (continuous) chi-square distribution.

This is a wrapper around numpy’s numpy.random.chisquare().

Parameters df (int or tuple of two int or list of int or imgaug.parameters.StochasticParameter) –

Degrees of freedom. Expected value range is [1, inf).

• If a single int, this int will be used as a constant value.

• If a tuple of two int s (a, b), the value will be sampled from the discrete interval
[a..b] once per call.

• If a list of int, a random value will be picked from the list once per call.

13.2. imgaug.parameters 365

imgaug Documentation, Release 0.3.0

• If a StochasticParameter, that parameter will be queried once per call.

“per call” denotes a call of ChiSquare.draw_sample() or ChiSquare.
draw_samples().

Examples

>>> import imgaug.parameters as iap
>>> param = iap.ChiSquare(df=2)

Create a chi-square distribution with two degrees of freedom.

Methods

copy(self) Create a shallow copy of this parameter.
deepcopy(self) Create a deep copy of this parameter.
draw_distribution_graph(self[, title, size,
. . .])

Generate an image visualizing the parameter’s sam-
ple distribution.

draw_sample(self[, random_state]) Draws a single sample value from this parameter.
draw_samples(self, size[, random_state]) Draw one or more samples from the parameter.

class imgaug.parameters.Choice(a, replace=True, p=None)
Bases: imgaug.parameters.StochasticParameter

Parameter that samples value from a list of allowed values.

Parameters

• a (iterable) – List of allowed values. Usually expected to be int s, float s or str s.
May also contain StochasticParameter s. Each StochasticParameter that is
randomly picked will automatically be replaced by a sample of itself (or by N samples if the
parameter was picked N times).

• replace (bool, optional) – Whether to perform sampling with or without replacing.

• p (None or iterable of number, optional) – Probabilities of each element in a. Must have the
same length as a (if provided).

Examples

>>> import imgaug.parameters as iap
>>> param = iap.Choice([5, 17, 25], p=[0.25, 0.5, 0.25])
>>> sample = param.draw_sample()
>>> assert sample in [5, 17, 25]

Create and sample from a parameter, which will produce with 50% probability the sample 17 and in the other
50% of all cases the sample 5 or 25..

Methods

copy(self) Create a shallow copy of this parameter.
Continued on next page

366 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 10 – continued from previous page
deepcopy(self) Create a deep copy of this parameter.
draw_distribution_graph(self[, title, size,
. . .])

Generate an image visualizing the parameter’s sam-
ple distribution.

draw_sample(self[, random_state]) Draws a single sample value from this parameter.
draw_samples(self, size[, random_state]) Draw one or more samples from the parameter.

class imgaug.parameters.Clip(other_param, minval=None, maxval=None)
Bases: imgaug.parameters.StochasticParameter

Clip another parameter to a defined value range.

Parameters

• other_param (imgaug.parameters.StochasticParameter) – The other parameter, which’s
values are to be clipped.

• minval (None or number, optional) – The minimum value to use. If None, no minimum
will be used.

• maxval (None or number, optional) – The maximum value to use. If None, no maximum
will be used.

Examples

>>> import imgaug.parameters as iap
>>> param = iap.Clip(Normal(0, 1.0), minval=-2.0, maxval=2.0)

Create a standard gaussian distribution, which’s values never go below -2.0 or above 2.0. Note that this will
lead to small “bumps” of higher probability at -2.0 and 2.0, as values below/above these will be clipped to
them. For smoother limitations on gaussian distributions, see TruncatedNormal.

Methods

copy(self) Create a shallow copy of this parameter.
deepcopy(self) Create a deep copy of this parameter.
draw_distribution_graph(self[, title, size,
. . .])

Generate an image visualizing the parameter’s sam-
ple distribution.

draw_sample(self[, random_state]) Draws a single sample value from this parameter.
draw_samples(self, size[, random_state]) Draw one or more samples from the parameter.

class imgaug.parameters.Deterministic(value)
Bases: imgaug.parameters.StochasticParameter

Parameter that is a constant value.

If N values are sampled from this parameter, it will return N times V, where V is the constant value.

Parameters value (number or str or imgaug.parameters.StochasticParameter) – A constant value
to use. A string may be provided to generate arrays of strings. If this is a StochasticParameter, a
single value will be sampled from it exactly once and then used as the constant value.

13.2. imgaug.parameters 367

imgaug Documentation, Release 0.3.0

Examples

>>> import imgaug.parameters as iap
>>> param = iap.Deterministic(10)
>>> param.draw_sample()
10

Will always sample the value 10.

Methods

copy(self) Create a shallow copy of this parameter.
deepcopy(self) Create a deep copy of this parameter.
draw_distribution_graph(self[, title, size,
. . .])

Generate an image visualizing the parameter’s sam-
ple distribution.

draw_sample(self[, random_state]) Draws a single sample value from this parameter.
draw_samples(self, size[, random_state]) Draw one or more samples from the parameter.

class imgaug.parameters.DeterministicList(values)
Bases: imgaug.parameters.StochasticParameter

Parameter that repeats elements from a list in the given order.

E.g. of samples of shape (A, B, C) are requested, this parameter will return the first A*B*C elements,
reshaped to (A, B, C) from the provided list. If the list contains less than A*B*C elements, it will (by
default) be tiled until it is long enough (i.e. the sampling will start again at the first element, if necessary
multiple times).

Added in 0.4.0.

Parameters values (ndarray or iterable of number) – An iterable of values to sample from in the
order within the iterable.

Methods

copy(self) Create a shallow copy of this parameter.
deepcopy(self) Create a deep copy of this parameter.
draw_distribution_graph(self[, title, size,
. . .])

Generate an image visualizing the parameter’s sam-
ple distribution.

draw_sample(self[, random_state]) Draws a single sample value from this parameter.
draw_samples(self, size[, random_state]) Draw one or more samples from the parameter.

class imgaug.parameters.DiscreteUniform(a, b)
Bases: imgaug.parameters.StochasticParameter

Uniform distribution over the discrete interval [a..b].

Parameters

• a (int or tuple of int or list of int or imgaug.parameters.StochasticParameter) – Lower bound
of the interval. If a>b, a and b will automatically be flipped. If a==b, all generated values
will be identical to a.

– If a single int, this int will be used as a constant value.

368 Chapter 13. API

imgaug Documentation, Release 0.3.0

– If a tuple of two int s (a, b), the value will be sampled from the discrete interval
[a..b] once per call.

– If a list of int, a random value will be picked from the list once per call.

– If a StochasticParameter, that parameter will be queried once per call.

“per call” denotes a call of DiscreteUniform.draw_sample() or
DiscreteUniform.draw_samples().

• b (int or imgaug.parameters.StochasticParameter) – Upper bound of the interval. Analo-
gous to a.

Examples

>>> import imgaug.parameters as iap
>>> param = iap.DiscreteUniform(10, Choice([20, 30, 40]))
>>> sample = param.draw_sample()
>>> assert 10 <= sample <= 40

Create a discrete uniform distribution which’s interval differs between calls and can be [10..20], [10..30]
or [10..40].

Methods

copy(self) Create a shallow copy of this parameter.
deepcopy(self) Create a deep copy of this parameter.
draw_distribution_graph(self[, title, size,
. . .])

Generate an image visualizing the parameter’s sam-
ple distribution.

draw_sample(self[, random_state]) Draws a single sample value from this parameter.
draw_samples(self, size[, random_state]) Draw one or more samples from the parameter.

class imgaug.parameters.Discretize(other_param, round=True)
Bases: imgaug.parameters.StochasticParameter

Convert a continuous distribution to a discrete one.

This will round the values and then cast them to integers. Values sampled from already discrete distributions are
not changed.

Parameters

• other_param (imgaug.parameters.StochasticParameter) – The other parameter, which’s
values are to be discretized.

• round (bool, optional) – Whether to round before converting to integer dtype.

Added in 0.4.0.

Examples

>>> import imgaug.parameters as iap
>>> param = iap.Discretize(iap.Normal(0, 1.0))

Create a discrete standard gaussian distribution.

13.2. imgaug.parameters 369

imgaug Documentation, Release 0.3.0

Methods

copy(self) Create a shallow copy of this parameter.
deepcopy(self) Create a deep copy of this parameter.
draw_distribution_graph(self[, title, size,
. . .])

Generate an image visualizing the parameter’s sam-
ple distribution.

draw_sample(self[, random_state]) Draws a single sample value from this parameter.
draw_samples(self, size[, random_state]) Draw one or more samples from the parameter.

class imgaug.parameters.Divide(other_param, val, elementwise=False)
Bases: imgaug.parameters.StochasticParameter

Divide the samples of another stochastic parameter.

This parameter will automatically prevent division by zero (uses 1.0) as the denominator in these cases.

Parameters

• other_param (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter) – Other parameter which’s sampled values are
to be divided by val. Let S be the requested shape of samples, then the datatype behaviour
is as follows:

– If a single number, this number will be used as a constant value to fill an array of shape
S.

– If a tuple of two number s (a, b), an array of shape S will be filled with uniformly
sampled values from the continuous interval [a, b).

– If a list of number, an array of shape S will be filled with randomly picked values
from the list.

– If a StochasticParameter, that parameter will be queried once per call to generate
an array of shape S.

“per call” denotes a call of Divide.draw_sample() or Divide.
draw_samples().

• val (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter) – Denominator to use. Datatype behaviour is
analogous to other_param, though if elementwise=False (the default), only a single
sample will be generated per call instead of S.

• elementwise (bool, optional) – Controls the sampling behaviour of val. If set to False,
a single samples will be requested from val and used as the constant denominator. If set
to True, samples of shape S will be requested from val and used to divide the samples of
other_param elementwise.

Examples

>>> import imgaug.parameters as iap
>>> param = iap.Divide(iap.Uniform(0.0, 1.0), 2)

Convert a uniform distribution [0.0, 1.0) to [0, 0.5).

370 Chapter 13. API

imgaug Documentation, Release 0.3.0

Methods

copy(self) Create a shallow copy of this parameter.
deepcopy(self) Create a deep copy of this parameter.
draw_distribution_graph(self[, title, size,
. . .])

Generate an image visualizing the parameter’s sam-
ple distribution.

draw_sample(self[, random_state]) Draws a single sample value from this parameter.
draw_samples(self, size[, random_state]) Draw one or more samples from the parameter.

class imgaug.parameters.ForceSign(other_param, positive, mode=’invert’,
reroll_count_max=2)

Bases: imgaug.parameters.StochasticParameter

Convert a parameter’s samples to either positive or negative values.

Parameters

• other_param (imgaug.parameters.StochasticParameter) – Other parameter which’s sam-
pled values are to be modified.

• positive (bool) – Whether to force all signs to be positive (True) or negative (False).

• mode ({‘invert’, ‘reroll’}, optional) – Method to change the signs. Valid values are invert
and reroll. invert means that wrong signs are simply flipped. reroll means that all
samples with wrong signs are sampled again, optionally many times, until they randomly
end up having the correct sign.

• reroll_count_max (int, optional) – If mode is set to reroll, this determines how often val-
ues may be rerolled before giving up and simply flipping the sign (as in mode="invert").
This shouldn’t be set too high, as rerolling is expensive.

Examples

>>> import imgaug.parameters as iap
>>> param = iap.ForceSign(iap.Poisson(1), positive=False)

Create a poisson distribution with alpha=1 that is flipped towards negative values.

Methods

copy(self) Create a shallow copy of this parameter.
deepcopy(self) Create a deep copy of this parameter.
draw_distribution_graph(self[, title, size,
. . .])

Generate an image visualizing the parameter’s sam-
ple distribution.

draw_sample(self[, random_state]) Draws a single sample value from this parameter.
draw_samples(self, size[, random_state]) Draw one or more samples from the parameter.

class imgaug.parameters.FrequencyNoise(exponent=(-4, 4), size_px_max=(4, 32), up-
scale_method=[’linear’, ’nearest’])

Bases: imgaug.parameters.StochasticParameter

Parameter to generate noise of varying frequencies.

This parameter expects to sample noise for 2d planes, i.e. for sizes (H, W, [C]) and will return a value in

13.2. imgaug.parameters 371

imgaug Documentation, Release 0.3.0

the range [0.0, 1.0] per spatial location in that plane.

The exponent controls the frequencies and therefore noise patterns. Small values (around -4.0) will result in
large blobs. Large values (around 4.0) will result in small, repetitive patterns.

The noise is sampled from low resolution planes and upscaled to the requested height and width. The size of the
low resolution plane may be defined (high values can be slow) and the interpolation method for upscaling can
be set.

Parameters

• exponent (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Exponent to use when scaling in
the frequency domain. Sane values are in the range -4 (large blobs) to 4 (small patterns).
To generate cloud-like structures, use roughly -2.

– If a single number, this number will be used as a constant value.

– If a tuple of two number s (a, b), the value will be sampled from the continuous
interval [a, b) once per call.

– If a list of number, a random value will be picked from the list once per call.

– If a StochasticParameter, that parameter will be queried once per call.

• size_px_max (int or tuple of int or list of int or imgaug.parameters.StochasticParameter,
optional) – Maximum height and width in pixels of the low resolution plane. Upon any
sampling call, the requested shape will be downscaled until the height or width (whichever
is larger) does not exceed this maximum value anymore. Then the noise will be sampled at
that shape and later upscaled back to the requested shape.

– If a single int, this int will be used as a constant value.

– If a tuple of two int s (a, b), the value will be sampled from the discrete interval
[a..b] once per call.

– If a list of int, a random value will be picked from the list once per call.

– If a StochasticParameter, that parameter will be queried once per call.

“per call” denotes a call of FrequencyNoise.draw_sample() or
FrequencyNoise.draw_samples().

• upscale_method (imgaug.ALL or str or list of str or im-
gaug.parameters.StochasticParameter, optional) – After generating the noise maps in
low resolution environments, they have to be upscaled to the originally requested shape (i.e.
usually the image size). This parameter controls the interpolation method to use. See also
imresize_many_images() for a description of possible values.

– If imgaug.ALL, then either nearest or linear or area or cubic is picked per
iteration (all same probability).

– If str, then that value will always be used as the method (must be nearest or linear
or area or cubic).

– If list of str, then a random value will be picked from that list per call.

– If StochasticParameter, then a random value will be sampled from that parameter
per call.

372 Chapter 13. API

imgaug Documentation, Release 0.3.0

Examples

>>> import imgaug.parameters as iap
>>> param = iap.FrequencyNoise(
>>> exponent=-2,
>>> size_px_max=(16, 32),
>>> upscale_method="linear")

Create a parameter that produces noise with cloud-like patterns.

Methods

copy(self) Create a shallow copy of this parameter.
deepcopy(self) Create a deep copy of this parameter.
draw_distribution_graph(self[, title, size,
. . .])

Generate an image visualizing the parameter’s sam-
ple distribution.

draw_sample(self[, random_state]) Draws a single sample value from this parameter.
draw_samples(self, size[, random_state]) Draw one or more samples from the parameter.

class imgaug.parameters.FromLowerResolution(other_param, size_percent=None,
size_px=None, method=’nearest’,
min_size=1)

Bases: imgaug.parameters.StochasticParameter

Parameter to sample from other parameters at lower image resolutions.

This parameter is intended to be used with parameters that would usually sample one value per pixel (or one
value per pixel and channel). Instead of sampling from the other parameter at full resolution, it samples at lower
resolution, e.g. 0.5*H x 0.5*W with H being the height and W being the width. After the low-resolution
sampling this parameter then upscales the result to HxW.

This parameter is intended to produce coarse samples. E.g. combining this with Binomial can lead to large
rectangular areas of 1 s and 0 s.

Parameters

• other_param (imgaug.parameters.StochasticParameter) – The other parameter which is to
be sampled on a coarser image.

• size_percent (None or number or iterable of number or im-
gaug.parameters.StochasticParameter, optional) – Size of the 2d sampling plane in
percent of the requested size. I.e. this is relative to the size provided in the call to
draw_samples(size). Lower values will result in smaller sampling planes, which are
then upsampled to size. This means that lower values will result in larger rectangles. The
size may be provided as a constant value or a tuple (a, b), which will automatically
be converted to the continuous uniform range [a, b) or a StochasticParameter,
which will be queried per call to FromLowerResolution.draw_sample() and
FromLowerResolution.draw_samples().

• size_px (None or number or iterable of numbers or im-
gaug.parameters.StochasticParameter, optional) – Size of the 2d sampling plane in pixels.
Lower values will result in smaller sampling planes, which are then upsampled to the input
size of draw_samples(size). This means that lower values will result in larger rectan-
gles. The size may be provided as a constant value or a tuple (a, b), which will automati-
cally be converted to the discrete uniform range [a..b] or a StochasticParameter,

13.2. imgaug.parameters 373

imgaug Documentation, Release 0.3.0

which will be queried once per call to FromLowerResolution.draw_sample()
and FromLowerResolution.draw_samples().

• method (str or int or imgaug.parameters.StochasticParameter, optional) – Upsam-
pling/interpolation method to use. This is used after the sampling is finished and the low
resolution plane has to be upsampled to the requested size in draw_samples(size,
...). The method may be the same as in imresize_many_images(). Usu-
ally nearest or linear are good choices. nearest will result in rectangles with
sharp edges and linear in rectangles with blurry and round edges. The method
may be provided as a StochasticParameter, which will be queried once per
call to FromLowerResolution.draw_sample() and FromLowerResolution.
draw_samples().

• min_size (int, optional) – Minimum size in pixels of the low resolution sampling plane.

Examples

>>> import imgaug.parameters as iap
>>> param = iap.FromLowerResolution(
>>> Binomial(0.05),
>>> size_px=(2, 16),
>>> method=Choice(["nearest", "linear"]))

Samples from a binomial distribution with p=0.05. The sampling plane will always have a size HxWxC with
H and W being independently sampled from [2..16] (i.e. it may range from 2x2xC up to 16x16xC max,
but may also be e.g. 4x8xC). The upsampling method will be nearest in 50% of all cases and linear
in the other 50 percent. The result will sometimes be rectangular patches of sharp 1 s surrounded by 0 s and
sometimes blurry blobs of 1``s, surrounded by values ``<1.0.

Methods

copy(self) Create a shallow copy of this parameter.
deepcopy(self) Create a deep copy of this parameter.
draw_distribution_graph(self[, title, size,
. . .])

Generate an image visualizing the parameter’s sam-
ple distribution.

draw_sample(self[, random_state]) Draws a single sample value from this parameter.
draw_samples(self, size[, random_state]) Draw one or more samples from the parameter.

class imgaug.parameters.IterativeNoiseAggregator(other_param, iterations=(1, 3), ag-
gregation_method=[’max’, ’avg’])

Bases: imgaug.parameters.StochasticParameter

Aggregate multiple iterations of samples from another parameter.

This is supposed to be used in conjunction with SimplexNoise or FrequencyNoise. If a shape S is
requested, it will request I times S samples from the underlying parameter, where I is the number of iterations.
The I arrays will be combined to a single array of shape S using an aggregation method, e.g. simple averaging.

Parameters

• other_param (StochasticParameter) – The other parameter from which to sample one or
more times.

• iterations (int or iterable of int or list of int or imgaug.parameters.StochasticParameter,
optional) –

374 Chapter 13. API

imgaug Documentation, Release 0.3.0

The number of iterations.

– If a single int, this int will be used as a constant value.

– If a tuple of two int s (a, b), the value will be sampled from the discrete interval
[a..b] once per call.

– If a list of int, a random value will be picked from the list once per call.

– If a StochasticParameter, that parameter will be queried once per call.

“per call” denotes a call of IterativeNoiseAggregator.draw_sample() or
IterativeNoiseAggregator.draw_samples().

• aggregation_method (imgaug.ALL or {‘min’, ‘avg’, ‘max’} or list of str or im-
gaug.parameters.StochasticParameter, optional) – The method to use to aggregate the sam-
ples of multiple iterations to a single output array. All methods combine several arrays of
shape S each to a single array of shape S and hence work elementwise. Known methods
are min (take the minimum over all iterations), max (take the maximum) and avg (take the
average).

– If an str, it must be one of the described methods and will be used for all calls..

– If a list of str, it must contain one or more of the described methods and a random
one will be samples once per call.

– If imgaug.ALL, then equivalent to the list ["min", "max", "avg"].

– If StochasticParameter, a value will be sampled from that parameter once per call
and must be one of the described methods..

“per call” denotes a call of IterativeNoiseAggregator.draw_sample() or
IterativeNoiseAggregator.draw_samples().

Examples

>>> import imgaug.parameters as iap
>>> noise = iap.IterativeNoiseAggregator(
>>> iap.SimplexNoise(),
>>> iterations=(2, 5),
>>> aggregation_method="max")

Create a parameter that – upon each call – generates 2 to 5 arrays of simplex noise with the same shape. Then
it combines these noise maps to a single map using elementwise maximum.

Methods

copy(self) Create a shallow copy of this parameter.
deepcopy(self) Create a deep copy of this parameter.
draw_distribution_graph(self[, title, size,
. . .])

Generate an image visualizing the parameter’s sam-
ple distribution.

draw_sample(self[, random_state]) Draws a single sample value from this parameter.
draw_samples(self, size[, random_state]) Draw one or more samples from the parameter.

class imgaug.parameters.Laplace(loc, scale)
Bases: imgaug.parameters.StochasticParameter

13.2. imgaug.parameters 375

imgaug Documentation, Release 0.3.0

Parameter that resembles a (continuous) laplace distribution.

This is a wrapper around numpy’s numpy.random.laplace().

Parameters

• loc (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter) – The position of the distribution peak, similar to
the mean in normal distributions.

– If a single number, this number will be used as a constant value.

– If a tuple of two number s (a, b), the value will be sampled from the continuous
interval [a, b) once per call.

– If a list of number, a random value will be picked from the list once per call.

– If a StochasticParameter, that parameter will be queried once per call.

“per call” denotes a call of Laplace.draw_sample() or Laplace.
draw_samples().

• scale (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter) – The exponential decay factor, similar to the
standard deviation in gaussian distributions. If this parameter reaches 0, the output array
will be filled with loc. Datatype behaviour is the analogous to loc.

Examples

>>> import imgaug.parameters as iap
>>> param = iap.Laplace(0, 1.0)

Create a laplace distribution, which’s peak is at 0 and decay is 1.0.

Methods

copy(self) Create a shallow copy of this parameter.
deepcopy(self) Create a deep copy of this parameter.
draw_distribution_graph(self[, title, size,
. . .])

Generate an image visualizing the parameter’s sam-
ple distribution.

draw_sample(self[, random_state]) Draws a single sample value from this parameter.
draw_samples(self, size[, random_state]) Draw one or more samples from the parameter.

class imgaug.parameters.Multiply(other_param, val, elementwise=False)
Bases: imgaug.parameters.StochasticParameter

Multiply the samples of another stochastic parameter.

Parameters

• other_param (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter) – Other parameter which’s sampled values are
to be multiplied with val. Let S be the requested shape of samples, then the datatype
behaviour is as follows:

– If a single number, this number will be used as a constant value to fill an array of shape
S.

376 Chapter 13. API

imgaug Documentation, Release 0.3.0

– If a tuple of two number s (a, b), an array of shape S will be filled with uniformly
sampled values from the continuous interval [a, b).

– If a list of number, an array of shape S will be filled with randomly picked values
from the list.

– If a StochasticParameter, that parameter will be queried once per call to generate
an array of shape S.

“per call” denotes a call of Multiply.draw_sample() or Multiply.
draw_samples().

• val (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter) – Multiplier to use. Datatype behaviour is
analogous to other_param, though if elementwise=False (the default), only a single
sample will be generated per call instead of S.

• elementwise (bool, optional) – Controls the sampling behaviour of val. If set to False,
a single samples will be requested from val and used as the constant multiplier. If set to
True, samples of shape S will be requested from val and multiplied elementwise with the
samples of other_param.

Examples

>>> import imgaug.parameters as iap
>>> param = iap.Multiply(iap.Uniform(0.0, 1.0), -1)

Convert a uniform distribution from [0.0, 1.0) to (-1.0, 0.0].

Methods

copy(self) Create a shallow copy of this parameter.
deepcopy(self) Create a deep copy of this parameter.
draw_distribution_graph(self[, title, size,
. . .])

Generate an image visualizing the parameter’s sam-
ple distribution.

draw_sample(self[, random_state]) Draws a single sample value from this parameter.
draw_samples(self, size[, random_state]) Draw one or more samples from the parameter.

imgaug.parameters.Negative(other_param, mode=’invert’, reroll_count_max=2)
Convert another parameter’s results to negative values.

Parameters

• other_param (imgaug.parameters.StochasticParameter) – Other parameter which’s sam-
pled values are to be modified.

• mode ({‘invert’, ‘reroll’}, optional) – How to change the signs. Valid values are invert
and reroll. invert means that wrong signs are simply flipped. reroll means that all
samples with wrong signs are sampled again, optionally many times, until they randomly
end up having the correct sign.

• reroll_count_max (int, optional) – If mode is set to reroll, this determines how often val-
ues may be rerolled before giving up and simply flipping the sign (as in mode="invert").
This shouldn’t be set too high, as rerolling is expensive.

13.2. imgaug.parameters 377

imgaug Documentation, Release 0.3.0

Examples

>>> import imgaug.parameters as iap
>>> param = iap.Negative(iap.Normal(0, 1), mode="reroll")

Create a gaussian distribution that has only negative values. If any positive value is sampled in the process, that
sample is resampled up to two times to get a negative one. If it isn’t negative after the second resampling step,
the sign is simply flipped.

class imgaug.parameters.Normal(loc, scale)
Bases: imgaug.parameters.StochasticParameter

Parameter that resembles a normal/gaussian distribution.

Parameters

• loc (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter) –

The mean of the normal distribution.

– If a single number, this number will be used as a constant value.

– If a tuple of two number s (a, b), the value will be sampled from the continuous
interval [a, b) once per call.

– If a list of number, a random value will be picked from the list once per call.

– If a StochasticParameter, that parameter will be queried once per call.

“per call” denotes a call of Laplace.draw_sample() or Laplace.
draw_samples().

• scale (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter) – The standard deviation of the normal distribution.
If this parameter reaches 0, the output array will be filled with loc. Datatype behaviour is
the analogous to loc.

Examples

>>> import imgaug.parameters as iap
>>> param = iap.Normal(Choice([-1.0, 1.0]), 1.0)

Create a gaussian distribution with a mean that differs by call. Samples values may sometimes follow N(-1.0,
1.0) and sometimes N(1.0, 1.0).

Methods

copy(self) Create a shallow copy of this parameter.
deepcopy(self) Create a deep copy of this parameter.
draw_distribution_graph(self[, title, size,
. . .])

Generate an image visualizing the parameter’s sam-
ple distribution.

draw_sample(self[, random_state]) Draws a single sample value from this parameter.
draw_samples(self, size[, random_state]) Draw one or more samples from the parameter.

378 Chapter 13. API

imgaug Documentation, Release 0.3.0

class imgaug.parameters.Poisson(lam)
Bases: imgaug.parameters.StochasticParameter

Parameter that resembles a poisson distribution.

A poisson distribution with lambda=0 has its highest probability at point 0 and decreases quickly from there.
Poisson distributions are discrete and never negative.

Parameters lam (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter) –

Lambda parameter of the poisson distribution.

• If a single number, this number will be used as a constant value.

• If a tuple of two number s (a, b), the value will be sampled from the continuous
interval [a, b) once per call.

• If a list of number, a random value will be picked from the list once per call.

• If a StochasticParameter, that parameter will be queried once per call.

“per call” denotes a call of Poisson.draw_sample() or Poisson.draw_samples().

Examples

>>> import imgaug.parameters as iap
>>> param = iap.Poisson(1)
>>> sample = param.draw_sample()
>>> assert sample >= 0

Create a poisson distribution with lambda=1 and sample a value from it.

Methods

copy(self) Create a shallow copy of this parameter.
deepcopy(self) Create a deep copy of this parameter.
draw_distribution_graph(self[, title, size,
. . .])

Generate an image visualizing the parameter’s sam-
ple distribution.

draw_sample(self[, random_state]) Draws a single sample value from this parameter.
draw_samples(self, size[, random_state]) Draw one or more samples from the parameter.

imgaug.parameters.Positive(other_param, mode=’invert’, reroll_count_max=2)
Convert another parameter’s results to positive values.

Parameters

• other_param (imgaug.parameters.StochasticParameter) – Other parameter which’s sam-
pled values are to be modified.

• mode ({‘invert’, ‘reroll’}, optional) – How to change the signs. Valid values are invert
and reroll. invert means that wrong signs are simply flipped. reroll means that all
samples with wrong signs are sampled again, optionally many times, until they randomly
end up having the correct sign.

• reroll_count_max (int, optional) – If mode is set to reroll, this determines how often val-
ues may be rerolled before giving up and simply flipping the sign (as in mode="invert").
This shouldn’t be set too high, as rerolling is expensive.

13.2. imgaug.parameters 379

imgaug Documentation, Release 0.3.0

Examples

>>> import imgaug.parameters as iap
>>> param = iap.Positive(iap.Normal(0, 1), mode="reroll")

Create a gaussian distribution that has only positive values. If any negative value is sampled in the process, that
sample is resampled up to two times to get a positive one. If it isn’t positive after the second resampling step,
the sign is simply flipped.

class imgaug.parameters.Power(other_param, val, elementwise=False)
Bases: imgaug.parameters.StochasticParameter

Exponentiate the samples of another stochastic parameter.

Parameters

• other_param (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter) – Other parameter which’s sampled values are
to be exponentiated by val. Let S be the requested shape of samples, then the datatype
behaviour is as follows:

– If a single number, this number will be used as a constant value to fill an array of shape
S.

– If a tuple of two number s (a, b), an array of shape S will be filled with uniformly
sampled values from the continuous interval [a, b).

– If a list of number, an array of shape S will be filled with randomly picked values
from the list.

– If a StochasticParameter, that parameter will be queried once per call to generate
an array of shape S.

“per call” denotes a call of Power.draw_sample() or Power.draw_samples().

• val (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter) – Value to use exponentiate the samples
of other_param. Datatype behaviour is analogous to other_param, though if
elementwise=False (the default), only a single sample will be generated per
call instead of S.

• elementwise (bool, optional) – Controls the sampling behaviour of val. If set to False,
a single samples will be requested from val and used as the constant multiplier. If set to
True, samples of shape S will be requested from val and used to exponentiate elementwise
the samples of other_param.

Examples

>>> import imgaug.parameters as iap
>>> param = iap.Power(iap.Uniform(0.0, 1.0), 2)

Converts a uniform range [0.0, 1.0) to a distribution that is peaked towards 1.0.

Methods

copy(self) Create a shallow copy of this parameter.
Continued on next page

380 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 25 – continued from previous page
deepcopy(self) Create a deep copy of this parameter.
draw_distribution_graph(self[, title, size,
. . .])

Generate an image visualizing the parameter’s sam-
ple distribution.

draw_sample(self[, random_state]) Draws a single sample value from this parameter.
draw_samples(self, size[, random_state]) Draw one or more samples from the parameter.

class imgaug.parameters.RandomSign(other_param, p_positive=0.5)
Bases: imgaug.parameters.StochasticParameter

Convert a parameter’s samples randomly to positive or negative values.

Parameters

• other_param (imgaug.parameters.StochasticParameter) – Other parameter which’s sam-
pled values are to be modified.

• p_positive (number) – Fraction of values that are supposed to be turned to positive values.

Examples

>>> import imgaug.parameters as iap
>>> param = iap.RandomSign(iap.Poisson(1))

Create a poisson distribution with alpha=1 that is mirrored/copied (not flipped) at the y-axis.

Methods

copy(self) Create a shallow copy of this parameter.
deepcopy(self) Create a deep copy of this parameter.
draw_distribution_graph(self[, title, size,
. . .])

Generate an image visualizing the parameter’s sam-
ple distribution.

draw_sample(self[, random_state]) Draws a single sample value from this parameter.
draw_samples(self, size[, random_state]) Draw one or more samples from the parameter.

class imgaug.parameters.Sigmoid(other_param, threshold=(-10, 10), activated=True, mul=1,
add=0)

Bases: imgaug.parameters.StochasticParameter

Apply a sigmoid function to the outputs of another parameter.

This is intended to be used in combination with SimplexNoise or FrequencyNoise. It pushes the noise
values away from ~0.5 and towards 0.0 or 1.0, making the noise maps more binary.

Parameters

• other_param (imgaug.parameters.StochasticParameter) – The other parameter to which
the sigmoid will be applied.

• threshold (number or tuple of number or iterable of number or im-
gaug.parameters.StochasticParameter, optional) – Sets the value of the sigmoid’s
saddle point, i.e. where values start to quickly shift from 0.0 to 1.0.

– If a single number, this number will be used as a constant value.

– If a tuple of two number s (a, b), the value will be sampled from the continuous
interval [a, b) once per call.

13.2. imgaug.parameters 381

imgaug Documentation, Release 0.3.0

– If a list of number, a random value will be picked from the list once per call.

– If a StochasticParameter, that parameter will be queried once per call.

“per call” denotes a call of Sigmoid.draw_sample() or Sigmoid.
draw_samples().

• activated (bool or number, optional) – Defines whether the sigmoid is activated. If this is
False, the results of other_param will not be altered. This may be set to a float p in
value range‘‘[0.0, 1.0]‘‘, which will result in activated being True in p percent of all calls.

• mul (number, optional) – The results of other_param will be multiplied with this value
before applying the sigmoid. For noise values (range [0.0, 1.0]) this should be set to
about 20.

• add (number, optional) – This value will be added to the results of other_param before
applying the sigmoid. For noise values (range [0.0, 1.0]) this should be set to about
-10.0, provided mul was set to 20.

Examples

>>> import imgaug.parameters as iap
>>> param = iap.Sigmoid(
>>> iap.SimplexNoise(),
>>> activated=0.5,
>>> mul=20,
>>> add=-10)

Applies a sigmoid to simplex noise in 50% of all calls. The noise results are modified to match the sigmoid’s
expected value range. The sigmoid’s outputs are in the range [0.0, 1.0].

Methods

copy(self) Create a shallow copy of this parameter.
create_for_noise(other_param[, threshold,
. . .])

Create a Sigmoid adjusted for noise parameters.

deepcopy(self) Create a deep copy of this parameter.
draw_distribution_graph(self[, title, size,
. . .])

Generate an image visualizing the parameter’s sam-
ple distribution.

draw_sample(self[, random_state]) Draws a single sample value from this parameter.
draw_samples(self, size[, random_state]) Draw one or more samples from the parameter.

static create_for_noise(other_param, threshold=(-10, 10), activated=True)
Create a Sigmoid adjusted for noise parameters.

“noise” here denotes SimplexNoise and FrequencyNoise.

Parameters

• other_param (imgaug.parameters.StochasticParameter) – See __init__().

• threshold (number or tuple of number or iterable of number or im-
gaug.parameters.StochasticParameter, optional) – See __init__().

• activated (bool or number, optional) – See __init__().

Returns A sigmoid adjusted to be used with noise.

382 Chapter 13. API

imgaug Documentation, Release 0.3.0

Return type Sigmoid

class imgaug.parameters.SimplexNoise(size_px_max=(2, 16), upscale_method=[’linear’,
’nearest’])

Bases: imgaug.parameters.StochasticParameter

Parameter that generates simplex noise of varying resolutions.

This parameter expects to sample noise for 2d planes, i.e. for sizes (H, W, [C]) and will return a value in
the range [0.0, 1.0] per spatial location in that plane.

The noise is sampled from low resolution planes and upscaled to the requested height and width. The size of the
low resolution plane may be defined (large values can be slow) and the interpolation method for upscaling can
be set.

Parameters

• size_px_max (int or tuple of int or list of int or imgaug.parameters.StochasticParameter,
optional) – Maximum height and width in pixels of the low resolution plane. Upon any
sampling call, the requested shape will be downscaled until the height or width (whichever
is larger) does not exceed this maximum value anymore. Then the noise will be sampled at
that shape and later upscaled back to the requested shape.

– If a single int, this int will be used as a constant value.

– If a tuple of two int s (a, b), the value will be sampled from the discrete interval
[a..b] once per call.

– If a list of int, a random value will be picked from the list once per call.

– If a StochasticParameter, that parameter will be queried once per call.

“per call” denotes a call of SimplexNoise.draw_sample() or SimplexNoise.
draw_samples().

• upscale_method (str or int or list of str or list of int or im-
gaug.parameters.StochasticParameter, optional) – After generating the noise maps in
low resolution environments, they have to be upscaled to the originally requested shape (i.e.
usually the image size). This parameter controls the interpolation method to use. See also
imresize_many_images() for a description of possible values.

– If imgaug.ALL, then either nearest or linear or area or cubic is picked per
iteration (all same probability).

– If str, then that value will always be used as the method (must be nearest or linear
or area or cubic).

– If list of str, then a random value will be picked from that list per call.

– If StochasticParameter, then a random value will be sampled from that parameter
per call.

Examples

>>> import imgaug.parameters as iap
>>> param = iap.SimplexNoise(upscale_method="linear")

Create a parameter that produces smooth simplex noise of varying sizes.

13.2. imgaug.parameters 383

imgaug Documentation, Release 0.3.0

>>> param = iap.SimplexNoise(
>>> size_px_max=(8, 16),
>>> upscale_method="nearest")

Create a parameter that produces rectangular simplex noise of rather high detail.

Methods

copy(self) Create a shallow copy of this parameter.
deepcopy(self) Create a deep copy of this parameter.
draw_distribution_graph(self[, title, size,
. . .])

Generate an image visualizing the parameter’s sam-
ple distribution.

draw_sample(self[, random_state]) Draws a single sample value from this parameter.
draw_samples(self, size[, random_state]) Draw one or more samples from the parameter.

class imgaug.parameters.StochasticParameter
Bases: object

Abstract parent class for all stochastic parameters.

Stochastic parameters are here all parameters from which values are supposed to be sampled. Usually the
sampled values are to a degree random. E.g. a stochastic parameter may be the uniform distribution over the
interval [-10, 10]. Samples from that distribution (and therefore the stochastic parameter) could be 5.2,
-3.7, -9.7, 6.4, etc.

Methods

copy(self) Create a shallow copy of this parameter.
deepcopy(self) Create a deep copy of this parameter.
draw_distribution_graph(self[, title, size,
. . .])

Generate an image visualizing the parameter’s sam-
ple distribution.

draw_sample(self[, random_state]) Draws a single sample value from this parameter.
draw_samples(self, size[, random_state]) Draw one or more samples from the parameter.

copy(self)
Create a shallow copy of this parameter.

Returns Shallow copy.

Return type imgaug.parameters.StochasticParameter

deepcopy(self)
Create a deep copy of this parameter.

Returns Deep copy.

Return type imgaug.parameters.StochasticParameter

draw_distribution_graph(self, title=None, size=(1000, 1000), bins=100)
Generate an image visualizing the parameter’s sample distribution.

Parameters

• title (None or False or str, optional) – Title of the plot. None is automatically replaced by
a title derived from str(param). If set to False, no title will be shown.

384 Chapter 13. API

imgaug Documentation, Release 0.3.0

• size (tuple of int) – Number of points to sample. This is always expected to have at
least two values. The first defines the number of sampling runs, the second (and further)
dimensions define the size assigned to each draw_samples() call. E.g. (10, 20,
15) will lead to 10 calls of draw_samples(size=(20, 15)). The results will be
merged to a single 1d array.

• bins (int) – Number of bins in the plot histograms.

Returns data – Image of the plot.

Return type (H,W,3) ndarray

draw_sample(self, random_state=None)
Draws a single sample value from this parameter.

Parameters random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – A seed or random number generator to use
during the sampling process. If None, the global RNG will be used. See also __init__()
for a similar parameter with more details.

Returns A single sample value.

Return type any

draw_samples(self, size, random_state=None)
Draw one or more samples from the parameter.

Parameters

• size (tuple of int or int) – Number of samples by dimension.

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – A seed or random number generator to
use during the sampling process. If None, the global RNG will be used. See also
__init__() for a similar parameter with more details.

Returns Sampled values. Usually a numpy ndarray of basically any dtype, though not strictly
limited to numpy arrays. Its shape is expected to match size.

Return type ndarray

class imgaug.parameters.Subtract(other_param, val, elementwise=False)
Bases: imgaug.parameters.StochasticParameter

Subtract from the samples of another stochastic parameter.

Parameters

• other_param (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter) – Samples of val will be subtracted from samples
of this parameter. Let S be the requested shape of samples, then the datatype behaviour is
as follows:

– If a single number, this number will be used as a constant value to fill an array of shape
S.

– If a tuple of two number s (a, b), an array of shape S will be filled with uniformly
sampled values from the continuous interval [a, b).

– If a list of number, an array of shape S will be filled with randomly picked values
from the list.

13.2. imgaug.parameters 385

imgaug Documentation, Release 0.3.0

– If a StochasticParameter, that parameter will be queried once per call to generate
an array of shape S.

“per call” denotes a call of Subtract.draw_sample() or Subtract.
draw_samples().

• val (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter) – Value to subtract from the other parameter.
Datatype behaviour is analogous to other_param, though if elementwise=False (the
default), only a single sample will be generated per call instead of S.

• elementwise (bool, optional) – Controls the sampling behaviour of val. If set to False,
a single samples will be requested from val and used as the constant multiplier. If set to
True, samples of shape S will be requested from val and subtracted elementwise from the
samples of other_param.

Examples

>>> import imgaug.parameters as iap
>>> param = iap.Subtract(iap.Uniform(0.0, 1.0), 1.0)

Convert a uniform distribution from [0.0, 1.0) to [-1.0, 0.0).

Methods

copy(self) Create a shallow copy of this parameter.
deepcopy(self) Create a deep copy of this parameter.
draw_distribution_graph(self[, title, size,
. . .])

Generate an image visualizing the parameter’s sam-
ple distribution.

draw_sample(self[, random_state]) Draws a single sample value from this parameter.
draw_samples(self, size[, random_state]) Draw one or more samples from the parameter.

class imgaug.parameters.TruncatedNormal(loc, scale, low=-inf, high=inf)
Bases: imgaug.parameters.StochasticParameter

Parameter that resembles a truncated normal distribution.

A truncated normal distribution is similar to a normal distribution, except the domain is smoothly bounded to a
min and max value.

This is a wrapper around scipy.stats.truncnorm().

Parameters

• loc (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter) –

The mean of the normal distribution.

– If a single number, this number will be used as a constant value.

– If a tuple of two number s (a, b), the value will be sampled from the continuous
interval [a, b) once per call.

– If a list of number, a random value will be picked from the list once per call.

– If a StochasticParameter, that parameter will be queried once per call.

386 Chapter 13. API

imgaug Documentation, Release 0.3.0

“per call” denotes a call of TruncatedNormal.draw_sample() or
TruncatedNormal.draw_samples().

• scale (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter) – The standard deviation of the normal distribution.
If this parameter reaches 0, the output array will be filled with loc. Datatype behaviour is
the same as for loc.

• low (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter) – The minimum value of the truncated normal
distribution. Datatype behaviour is the same as for loc.

• high (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter) – The maximum value of the truncated normal
distribution. Datatype behaviour is the same as for loc.

Examples

>>> import imgaug.parameters as iap
>>> param = iap.TruncatedNormal(0, 5.0, low=-10, high=10)
>>> samples = param.draw_samples(100, random_state=0)
>>> assert np.all(samples >= -10)
>>> assert np.all(samples <= 10)

Create a truncated normal distribution with its minimum at -10.0 and its maximum at 10.0.

Methods

copy(self) Create a shallow copy of this parameter.
deepcopy(self) Create a deep copy of this parameter.
draw_distribution_graph(self[, title, size,
. . .])

Generate an image visualizing the parameter’s sam-
ple distribution.

draw_sample(self[, random_state]) Draws a single sample value from this parameter.
draw_samples(self, size[, random_state]) Draw one or more samples from the parameter.

class imgaug.parameters.Uniform(a, b)
Bases: imgaug.parameters.StochasticParameter

Parameter that resembles a uniform distribution over [a, b).

Parameters

• a (number or tuple of number or list of number or imgaug.parameters.StochasticParameter)
– Lower bound of the interval. If a>b, a and b will automatically be flipped. If a==b, all
generated values will be identical to a.

– If a single number, this number will be used as a constant value.

– If a tuple of two number s (a, b), the value will be sampled from the continuous
interval [a, b) once per call.

– If a list of number, a random value will be picked from the list once per call.

– If a StochasticParameter, that parameter will be queried once per call.

“per call” denotes a call of Uniform.draw_sample() or Uniform.
draw_samples().

13.2. imgaug.parameters 387

imgaug Documentation, Release 0.3.0

• b (number or tuple of number or list of number or imgaug.parameters.StochasticParameter)
– Upper bound of the interval. Analogous to a.

Examples

>>> import imgaug.parameters as iap
>>> param = iap.Uniform(0, 10.0)
>>> sample = param.draw_sample()
>>> assert 0 <= sample < 10.0

Create and sample from a uniform distribution over [0, 10.0).

Methods

copy(self) Create a shallow copy of this parameter.
deepcopy(self) Create a deep copy of this parameter.
draw_distribution_graph(self[, title, size,
. . .])

Generate an image visualizing the parameter’s sam-
ple distribution.

draw_sample(self[, random_state]) Draws a single sample value from this parameter.
draw_samples(self, size[, random_state]) Draw one or more samples from the parameter.

class imgaug.parameters.Weibull(a)
Bases: imgaug.parameters.StochasticParameter

Parameter that resembles a (continuous) weibull distribution.

This is a wrapper around numpy’s numpy.random.weibull().

Parameters a (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter) –

Shape parameter of the distribution.

• If a single number, this number will be used as a constant value.

• If a tuple of two number s (a, b), the value will be sampled from the continuous
interval [a, b) once per call.

• If a list of number, a random value will be picked from the list once per call.

• If a StochasticParameter, that parameter will be queried once per call.

“per call” denotes a call of Weibull.draw_sample() or Weibull.draw_samples().

Examples

>>> import imgaug.parameters as iap
>>> param = iap.Weibull(a=0.5)

Create a weibull distribution with shape 0.5.

Methods

388 Chapter 13. API

imgaug Documentation, Release 0.3.0

copy(self) Create a shallow copy of this parameter.
deepcopy(self) Create a deep copy of this parameter.
draw_distribution_graph(self[, title, size,
. . .])

Generate an image visualizing the parameter’s sam-
ple distribution.

draw_sample(self[, random_state]) Draws a single sample value from this parameter.
draw_samples(self, size[, random_state]) Draw one or more samples from the parameter.

imgaug.parameters.both_np_float_if_one_is_float(a, b)

imgaug.parameters.draw_distributions_grid(params, rows=None, cols=None,
graph_sizes=(350, 350), sample_sizes=None,
titles=None)

imgaug.parameters.force_np_float_dtype(val)

imgaug.parameters.handle_categorical_string_param(param, name, valid_values=None)

imgaug.parameters.handle_continuous_param(param, name, value_range=None, tu-
ple_to_uniform=True, list_to_choice=True)

imgaug.parameters.handle_discrete_kernel_size_param(param, name, value_range=(1,
None), allow_floats=True)

imgaug.parameters.handle_discrete_param(param, name, value_range=None, tu-
ple_to_uniform=True, list_to_choice=True,
allow_floats=True)

imgaug.parameters.handle_probability_param(param, name, tuple_to_uniform=False,
list_to_choice=False)

imgaug.parameters.show_distributions_grid(params, rows=None, cols=None,
graph_sizes=(350, 350), sample_sizes=None,
titles=None)

13.3 imgaug.multicore

Classes and functions dealing with augmentation on multiple CPU cores.

class imgaug.multicore.BackgroundAugmenter(batch_loader, augseq, queue_size=50,
nb_workers=’auto’)

Bases: object

Deprecated. Augment batches in the background processes.

Deprecated. Use imgaug.multicore.Pool instead.

This is a wrapper around the multiprocessing module.

Parameters

• batch_loader (BatchLoader or multiprocessing.Queue) – BatchLoader object that loads the
data fed into the BackgroundAugmenter, or alternatively a Queue. If a Queue, then it must
be made sure that a final None in the Queue signals that the loading is finished and no more
batches will follow. Otherwise the BackgroundAugmenter will wait forever for the next
batch.

• augseq (Augmenter) – An augmenter to apply to all loaded images. This may be e.g. a
Sequential to apply multiple augmenters.

13.3. imgaug.multicore 389

imgaug Documentation, Release 0.3.0

• queue_size (int) – Size of the queue that is used to temporarily save the augmentation re-
sults. Larger values offer the background processes more room to save results when the
main process doesn’t load much, i.e. they can lead to smoother and faster training. For large
images, high values can block a lot of RAM though.

• nb_workers (‘auto’ or int) – Number of background workers to spawn. If auto, it will be
set to C-1, where C is the number of CPU cores.

Methods

get_batch(self) Returns a batch from the queue of augmented
batches.

terminate(self) Terminates all background processes immediately.

all_finished

all_finished(self)

get_batch(self)
Returns a batch from the queue of augmented batches.

If workers are still running and there are no batches in the queue, it will automatically wait for the next
batch.

Returns out – One batch or None if all workers have finished.

Return type None or imgaug.Batch

terminate(self)
Terminates all background processes immediately.

This will also free their RAM.

class imgaug.multicore.BatchLoader(load_batch_func, queue_size=50, nb_workers=1,
threaded=True)

Bases: object

Deprecated. Load batches in the background.

Deprecated. Use imgaug.multicore.Pool instead.

Loaded batches can be accesses using imgaug.BatchLoader.queue.

Parameters

• load_batch_func (callable or generator) – Generator or generator function (i.e. function
that yields Batch objects) or a function that returns a list of Batch objects. Background
loading automatically stops when the last batch was yielded or the last batch in the list was
reached.

• queue_size (int, optional) – Maximum number of batches to store in the queue. May be set
higher for small images and/or small batches.

• nb_workers (int, optional) – Number of workers to run in the background.

• threaded (bool, optional) – Whether to run the background processes using threads (True)
or full processes (False).

390 Chapter 13. API

imgaug Documentation, Release 0.3.0

Methods

all_finished(self) Determine whether the workers have finished the
loading process.

terminate(self) Stop all workers.

count_workers_alive

all_finished(self)
Determine whether the workers have finished the loading process.

Returns out – True if all workers have finished. Else False.

Return type bool

count_workers_alive(self)

terminate(self)
Stop all workers.

class imgaug.multicore.Pool(augseq, processes=None, maxtasksperchild=None, seed=None)
Bases: object

Wrapper around multiprocessing.Pool for multicore augmentation.

Parameters

• augseq (imgaug.augmenters.meta.Augmenter) – The augmentation sequence to apply to
batches.

• processes (None or int, optional) – The number of background workers, similar to the same
parameter in multiprocessing.Pool. If None, the number of the machine’s CPU cores will
be used (this counts hyperthreads as CPU cores). If this is set to a negative value p, then P
- abs(p) will be used, where P is the number of CPU cores. E.g. -1 would use all cores
except one (this is useful to e.g. reserve one core to feed batches to the GPU).

• maxtasksperchild (None or int, optional) – The number of tasks done per worker process
before the process is killed and restarted, similar to the same parameter in multiprocess-
ing.Pool. If None, worker processes will not be automatically restarted.

• seed (None or int, optional) – The seed to use for child processes. If None, a random seed
will be used.

Attributes

pool Return or create the multiprocessing.Pool instance.

Methods

close(self) Close the pool gracefully.
imap_batches(self, batches[, chunksize, . . .]) Augment batches from a generator.
imap_batches_unordered(self, batches[,
. . .])

Augment batches from a generator (without preser-
vation of order).

join(self) Wait for the workers to exit.
map_batches(self, batches[, chunksize]) Augment a list of batches.
map_batches_async(self, batches[, . . .]) Augment batches asynchonously.

Continued on next page

13.3. imgaug.multicore 391

imgaug Documentation, Release 0.3.0

Table 36 – continued from previous page
terminate(self) Terminate the pool immediately.

close(self)
Close the pool gracefully.

imap_batches(self, batches, chunksize=1, output_buffer_size=None)
Augment batches from a generator.

Pattern for output buffer constraint is from https://stackoverflow.com/a/47058399.

Parameters

• batches (generator of imgaug.augmentables.batches.Batch) – The batches to augment,
provided as a generator. Each call to the generator should yield exactly one batch.

• chunksize (None or int, optional) – Rough indicator of how many tasks should be sent to
each worker. Increasing this number can improve performance.

• output_buffer_size (None or int, optional) – Max number of batches to handle at the
same time in the whole pipeline (including already augmented batches that are waiting to
be requested). If the buffer size is reached, no new batches will be loaded from batches
until a produced (i.e. augmented) batch is consumed (i.e. requested from this method).
The buffer is unlimited if this is set to None. For large datasets, this should be set to an
integer value to avoid filling the whole RAM if loading+augmentation happens faster than
training.

New in version 0.3.0.

Yields imgaug.augmentables.batches.Batch – Augmented batch.

imap_batches_unordered(self, batches, chunksize=1, output_buffer_size=None)
Augment batches from a generator (without preservation of order).

Pattern for output buffer constraint is from https://stackoverflow.com/a/47058399.

Parameters

• batches (generator of imgaug.augmentables.batches.Batch) – The batches to augment,
provided as a generator. Each call to the generator should yield exactly one batch.

• chunksize (None or int, optional) – Rough indicator of how many tasks should be sent to
each worker. Increasing this number can improve performance.

• output_buffer_size (None or int, optional) – Max number of batches to handle at the
same time in the whole pipeline (including already augmented batches that are waiting to
be requested). If the buffer size is reached, no new batches will be loaded from batches
until a produced (i.e. augmented) batch is consumed (i.e. requested from this method).
The buffer is unlimited if this is set to None. For large datasets, this should be set to an
integer value to avoid filling the whole RAM if loading+augmentation happens faster than
training.

New in version 0.3.0.

Yields imgaug.augmentables.batches.Batch – Augmented batch.

join(self)
Wait for the workers to exit.

This may only be called after first calling close() or terminate().

map_batches(self, batches, chunksize=None)
Augment a list of batches.

392 Chapter 13. API

https://stackoverflow.com/a/47058399
https://stackoverflow.com/a/47058399

imgaug Documentation, Release 0.3.0

Parameters

• batches (list of imgaug.augmentables.batches.Batch) – The batches to augment.

• chunksize (None or int, optional) – Rough indicator of how many tasks should be sent to
each worker. Increasing this number can improve performance.

Returns Augmented batches.

Return type list of imgaug.augmentables.batches.Batch

map_batches_async(self, batches, chunksize=None, callback=None, error_callback=None)
Augment batches asynchonously.

Parameters

• batches (list of imgaug.augmentables.batches.Batch) – The batches to augment.

• chunksize (None or int, optional) – Rough indicator of how many tasks should be sent to
each worker. Increasing this number can improve performance.

• callback (None or callable, optional) – Function to call upon finish. See
multiprocessing.Pool.

• error_callback (None or callable, optional) – Function to call upon errors. See
multiprocessing.Pool.

Returns Asynchonous result. See multiprocessing.Pool.

Return type multiprocessing.MapResult

pool
Return or create the multiprocessing.Pool instance.

This creates a new instance upon the first call and afterwards returns that instance (until the property
_pool is set to None again).

Returns The multiprocessing.Pool used internally by this imgaug.multicore.
Pool.

Return type multiprocessing.Pool

terminate(self)
Terminate the pool immediately.

13.4 imgaug.dtypes

Functions to interact/analyze with numpy dtypes.

imgaug.dtypes.change_dtype_(arr, dtype, clip=True, round=True)

imgaug.dtypes.change_dtypes_(images, dtypes, clip=True, round=True)

imgaug.dtypes.clip_(array, min_value, max_value)

imgaug.dtypes.clip_to_dtype_value_range_(array, dtype, validate=True, vali-
date_values=None)

imgaug.dtypes.copy_dtypes_for_restore(images, force_list=False)

imgaug.dtypes.gate_dtypes(dtypes, allowed, disallowed, augmenter=None)

imgaug.dtypes.get_minimal_dtype(arrays, increase_itemsize_factor=1)

imgaug.dtypes.get_value_range_of_dtype(dtype)

13.4. imgaug.dtypes 393

imgaug Documentation, Release 0.3.0

imgaug.dtypes.increase_array_resolutions_(arrays, factor)

imgaug.dtypes.increase_itemsize_of_dtype(dtype, factor)

imgaug.dtypes.normalize_dtype(dtype)

imgaug.dtypes.normalize_dtypes(dtypes)

imgaug.dtypes.promote_array_dtypes_(arrays, dtypes=None, increase_itemsize_factor=1)

imgaug.dtypes.restore_dtypes_(images, dtypes, clip=True, round=True)

13.5 imgaug.random

Classes and functions related to pseudo-random number generation.

This module deals with the generation of pseudo-random numbers. It provides the RNG class, which is the primary
random number generator in imgaug. It also provides various utility functions related random number generation,
such as copying random number generators or setting their state.

The main benefit of this module is to hide the actually used random number generation classes and methods behin
imgaug-specific classes and methods. This allows to deal with numpy using two different interfaces (one old interface
in numpy <=1.16 and a new one in numpy 1.17+). It also allows to potentially switch to a different framework/library
in the future.

13.5.1 Definitions

• numpy generator or numpy random number generator: Usually an instance of numpy.random.Generator.
Can often also denote an instance of numpy.random.RandomState as both have almost the same interface.

• RandomState: An instance of numpy.random.RandomState. Note that outside of this module, the term “random
state” often roughly translates to “any random number generator with numpy-like interface in a given state”, i.e.
it can then include instances of numpy.random.Generator or RNG.

• RNG: An instance of RNG.

Examples

>>> import imgaug.random as iarandom
>>> rng = iarandom.RNG(1234)
>>> rng.integers(0, 1000)

Initialize a random number generator with seed 1234, then sample a single integer from the discrete interval [0,
1000). This will use a numpy.random.Generator in numpy 1.17+ and automatically fall back to numpy.
random.RandomState in numpy <=1.16.

class imgaug.random.RNG(generator)
Bases: object

Random number generator for imgaug.

This class is a wrapper around numpy.random.Generator and automatically falls back to numpy.
random.RandomState in case of numpy version 1.16 or lower. It allows to use numpy 1.17’s sampling
functions in 1.16 too and supports a variety of useful functions on the wrapped sampler, e.g. gettings its state or
copying it.

Not supported sampling functions of numpy <=1.16:

394 Chapter 13. API

imgaug Documentation, Release 0.3.0

• numpy.random.RandomState.rand()

• numpy.random.RandomState.randn()

• numpy.random.RandomState.randint()

• numpy.random.RandomState.random_integers()

• numpy.random.RandomState.random_sample()

• numpy.random.RandomState.ranf()

• numpy.random.RandomState.sample()

• numpy.random.RandomState.seed()

• numpy.random.RandomState.get_state()

• numpy.random.RandomState.set_state()

In choice(), the axis argument is not yet supported.

Parameters generator (None or int or RNG or numpy.random.Generator or
numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState)
– The numpy random number generator to use. In case of numpy version 1.17 or later, this
shouldn’t be a RandomState as that class is outdated. Behaviour for different datatypes:

• If None: The global RNG is wrapped by this RNG (they are then effectively identical, any
sampling on this RNG will affect the global RNG).

• If int: In numpy 1.17+, the value is used as a seed for a Generator wrapped by this
RNG. I.e. it will be provided as the entropy to a SeedSequence, which will then be used
for an SFC64 bit generator and wrapped by a Generator. In numpy <=1.16, the value is
used as a seed for a RandomState, which is then wrapped by this RNG.

• If RNG: That RNG’s generator attribute will be used as the generator for this RNG, i.e.
the same as RNG(other_rng.generator).

• If numpy.random.Generator: That generator will be wrapped.

• If numpy.random.BitGenerator: A numpy generator will be created (and wrapped
by this RNG) that contains the bit generator.

• If numpy.random.SeedSequence: A numpy generator will be created (and
wrapped by this RNG) that contains an SFC64 bit generator initialized with the given
SeedSequence.

• If numpy.random.RandomState: In numpy <=1.16, this RandomState will be
wrapped and used to sample random values. In numpy 1.17+, a seed will be derived from
this RandomState and a new numpy.generator.Generator based on an SFC64
bit generator will be created and wrapped by this RNG.

Attributes

state Get the state of this RNG.

Methods

advance_(self) Advance the RNG’s internal state in-place by one
step.

beta(self, a, b[, size]) Call numpy.random.Generator.beta().
Continued on next page

13.5. imgaug.random 395

imgaug Documentation, Release 0.3.0

Table 37 – continued from previous page
binomial(self, n, p[, size]) Call numpy.random.Generator.

binomial().
bytes(self, length) Call numpy.random.Generator.bytes().
chisquare(self, df[, size]) Call numpy.random.Generator.

chisquare().
choice(self, a[, size, replace, p]) Call numpy.random.Generator.choice().
copy(self) Create a copy of this RNG.
copy_unless_global_rng(self) Create a copy of this RNG unless it is the global

RNG.
create_fully_random() Create a new RNG, based on entropy provided from

the OS.
create_pseudo_random_() Create a new RNG in pseudo-random fashion.
derive_rng_(self) Create a child RNG.
derive_rngs_(self, n) Create n child RNGs.
dirichlet(self, alpha[, size]) Call numpy.random.Generator.

dirichlet().
duplicate(self, n) Create a list containing n times this RNG.
equals(self, other) Estimate whether this RNG and other have the same

state.
equals_global_rng(self) Estimate whether this RNG has the same state as the

global RNG.
exponential(self[, scale, size]) Call numpy.random.Generator.

exponential().
f(self, dfnum, dfden[, size]) Call numpy.random.Generator.f().
gamma(self, shape[, scale, size]) Call numpy.random.Generator.gamma().
generate_seed_(self) Sample a random seed.
generate_seeds_(self, n) Generate n random seed values.
geometric(self, p[, size]) Call numpy.random.Generator.

geometric().
gumbel(self[, loc, scale, size]) Call numpy.random.Generator.gumbel().
hypergeometric(self, ngood, nbad, nsample[,
. . .])

Call numpy.random.Generator.
hypergeometric().

integers(self, low[, high, size, dtype, . . .]) Call numpy’s integers() or randint().
is_global_rng(self) Estimate whether this RNG is identical to the global

RNG.
laplace(self[, loc, scale, size]) Call numpy.random.Generator.

laplace().
logistic(self[, loc, scale, size]) Call numpy.random.Generator.

logistic().
lognormal(self[, mean, sigma, size]) Call numpy.random.Generator.

lognormal().
logseries(self, p[, size]) Call numpy.random.Generator.

logseries().
multinomial(self, n, pvals[, size]) Call numpy.random.Generator.

multinomial().
multivariate_normal(self, mean, cov[, size,
. . .])

Call numpy.random.Generator.
multivariate_normal().

negative_binomial(self, n, p[, size]) Call numpy.random.Generator.
negative_binomial().

noncentral_chisquare(self, df, nonc[, size]) Call numpy.random.Generator.
noncentral_chisquare().

Continued on next page

396 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 37 – continued from previous page
noncentral_f(self, dfnum, dfden, nonc[, size]) Call numpy.random.Generator.

noncentral_f().
normal(self[, loc, scale, size]) Call numpy.random.Generator.normal().
pareto(self, a[, size]) Call numpy.random.Generator.pareto().
permutation(self, x) Call numpy.random.Generator.

permutation().
poisson(self[, lam, size]) Call numpy.random.Generator.

poisson().
power(self, a[, size]) Call numpy.random.Generator.power().
rand(self, *args) Call numpy.random.RandomState.rand().
randint(self, low[, high, size, dtype]) Call numpy.random.RandomState.

randint().
randn(self, *args) Call numpy.random.RandomState.

randn().
random(self, size[, dtype, out]) Call numpy’s random() or random_sample().
random_integers(self, low[, high, size]) Call numpy.random.RandomState.

random_integers().
random_sample(self, size) Call numpy.random.RandomState.

random_sample().
rayleigh(self[, scale, size]) Call numpy.random.Generator.

rayleigh().
reset_cache_(self) Reset all cache of this RNG.
set_state_(self, value) Set the state if the RNG in-place.
shuffle(self, x) Call numpy.random.Generator.

shuffle().
standard_cauchy(self[, size]) Call numpy.random.Generator.

standard_cauchy().
standard_exponential(self[, size, dtype,
. . .])

Call numpy.random.Generator.
standard_exponential().

standard_gamma(self, shape[, size, dtype, out]) Call numpy.random.Generator.
standard_gamma().

standard_normal(self[, size, dtype, out]) Call numpy.random.Generator.
standard_normal().

standard_t(self, df[, size]) Call numpy.random.Generator.
standard_t().

tomaxint(self[, size]) Call numpy.random.RandomState.
tomaxint().

triangular(self, left, mode, right[, size]) Call numpy.random.Generator.
triangular().

uniform(self[, low, high, size]) Call numpy.random.Generator.
uniform().

use_state_of_(self, other) Copy and use (in-place) the state of another RNG.
vonmises(self, mu, kappa[, size]) Call numpy.random.Generator.

vonmises().
wald(self, mean, scale[, size]) Call numpy.random.Generator.wald().
weibull(self, a[, size]) Call numpy.random.Generator.

weibull().
zipf(self, a[, size]) Call numpy.random.Generator.zipf().

advance_(self)
Advance the RNG’s internal state in-place by one step.

13.5. imgaug.random 397

imgaug Documentation, Release 0.3.0

This advances the underlying generator’s state.

Note: This simply samples one or more random values. This means that a call of this method will
not completely change the outputs of the next called sampling method. To achieve more drastic output
changes, call derive_rng_().

Returns The RNG itself.

Return type RNG

beta(self, a, b, size=None)
Call numpy.random.Generator.beta().

binomial(self, n, p, size=None)
Call numpy.random.Generator.binomial().

bytes(self, length)
Call numpy.random.Generator.bytes().

chisquare(self, df, size=None)
Call numpy.random.Generator.chisquare().

choice(self, a, size=None, replace=True, p=None)
Call numpy.random.Generator.choice().

copy(self)
Create a copy of this RNG.

Returns Copy of this RNG. The copy will produce the same random samples.

Return type RNG

copy_unless_global_rng(self)
Create a copy of this RNG unless it is the global RNG.

Returns Copy of this RNG unless it is the global RNG. In the latter case the RNG instance itself
will be returned without any changes.

Return type RNG

classmethod create_fully_random()
Create a new RNG, based on entropy provided from the OS.

Returns A new RNG. It is not derived from any other previously created RNG, nor does it
depend on the seeding of imgaug or numpy.

Return type RNG

classmethod create_pseudo_random_()
Create a new RNG in pseudo-random fashion.

A seed will be sampled from the current global RNG and used to initialize the new RNG.

This advandes the global RNG’s state.

Returns A new RNG, derived from the current global RNG.

Return type RNG

derive_rng_(self)
Create a child RNG.

This advances the underlying generator’s state.

398 Chapter 13. API

imgaug Documentation, Release 0.3.0

Returns A child RNG.

Return type RNG

derive_rngs_(self, n)
Create n child RNGs.

This advances the underlying generator’s state.

Parameters n (int) – Number of child RNGs to derive.

Returns Child RNGs.

Return type list of RNG

dirichlet(self, alpha, size=None)
Call numpy.random.Generator.dirichlet().

duplicate(self, n)
Create a list containing n times this RNG.

This method was mainly introduced as a replacement for previous calls of derive_rngs_(). These
calls turned out to be very slow in numpy 1.17+ and were hence replaced by simple duplication (except
for the cases where child RNGs absolutely had to be created). This RNG duplication method doesn’t help
very much against code repetition, but it does mark the points where it would be desirable to create child
RNGs for various reasons. Once deriving child RNGs is somehow sped up in the future, these calls can
again be easily found and replaced.

Parameters n (int) – Length of the output list.

Returns List containing n times this RNG (same instances, no copies).

Return type list of RNG

equals(self, other)
Estimate whether this RNG and other have the same state.

Returns True if this RNG’s generator and the generator of other have equal internal states.
False otherwise.

Return type bool

equals_global_rng(self)
Estimate whether this RNG has the same state as the global RNG.

Returns True is this RNG has the same state as the global RNG, i.e. it will lead to the same
sampled values given the same sampling method calls. The RNGs don’t have to be identical
object instances, which protects against e.g. copy effects. False otherwise.

Return type bool

exponential(self, scale=1.0, size=None)
Call numpy.random.Generator.exponential().

f(self, dfnum, dfden, size=None)
Call numpy.random.Generator.f().

gamma(self, shape, scale=1.0, size=None)
Call numpy.random.Generator.gamma().

generate_seed_(self)
Sample a random seed.

This advances the underlying generator’s state.

See SEED_MIN_VALUE and SEED_MAX_VALUE for the seed’s value range.

13.5. imgaug.random 399

imgaug Documentation, Release 0.3.0

Returns The sampled seed.

Return type int

generate_seeds_(self, n)
Generate n random seed values.

This advances the underlying generator’s state.

See SEED_MIN_VALUE and SEED_MAX_VALUE for the seed’s value range.

Parameters n (int) – Number of seeds to sample.

Returns 1D-array of int32 seeds.

Return type ndarray

geometric(self, p, size=None)
Call numpy.random.Generator.geometric().

gumbel(self, loc=0.0, scale=1.0, size=None)
Call numpy.random.Generator.gumbel().

hypergeometric(self, ngood, nbad, nsample, size=None)
Call numpy.random.Generator.hypergeometric().

integers(self, low, high=None, size=None, dtype=’int32’, endpoint=False)
Call numpy’s integers() or randint().

Note: Changed dtype argument default value from numpy’s int64 to int32.

is_global_rng(self)
Estimate whether this RNG is identical to the global RNG.

Returns True is this RNG’s underlying generator is identical to the global RNG’s underlying
generator. The RNGs themselves may be different, only the wrapped generator matters.
False otherwise.

Return type bool

laplace(self, loc=0.0, scale=1.0, size=None)
Call numpy.random.Generator.laplace().

logistic(self, loc=0.0, scale=1.0, size=None)
Call numpy.random.Generator.logistic().

lognormal(self, mean=0.0, sigma=1.0, size=None)
Call numpy.random.Generator.lognormal().

logseries(self, p, size=None)
Call numpy.random.Generator.logseries().

multinomial(self, n, pvals, size=None)
Call numpy.random.Generator.multinomial().

multivariate_normal(self, mean, cov, size=None, check_valid=’warn’, tol=1e-08)
Call numpy.random.Generator.multivariate_normal().

negative_binomial(self, n, p, size=None)
Call numpy.random.Generator.negative_binomial().

noncentral_chisquare(self, df, nonc, size=None)
Call numpy.random.Generator.noncentral_chisquare().

400 Chapter 13. API

imgaug Documentation, Release 0.3.0

noncentral_f(self, dfnum, dfden, nonc, size=None)
Call numpy.random.Generator.noncentral_f().

normal(self, loc=0.0, scale=1.0, size=None)
Call numpy.random.Generator.normal().

pareto(self, a, size=None)
Call numpy.random.Generator.pareto().

permutation(self, x)
Call numpy.random.Generator.permutation().

poisson(self, lam=1.0, size=None)
Call numpy.random.Generator.poisson().

power(self, a, size=None)
Call numpy.random.Generator.power().

rand(self, *args)
Call numpy.random.RandomState.rand().

Warning: This method is outdated in numpy. Use RNG.random() instead.

Added in 0.4.0.

randint(self, low, high=None, size=None, dtype=’int32’)
Call numpy.random.RandomState.randint().

Note: Changed dtype argument default value from numpy’s I to int32.

Warning: This method is outdated in numpy. Use RNG.integers() instead.

Added in 0.4.0.

randn(self, *args)
Call numpy.random.RandomState.randn().

Warning: This method is outdated in numpy. Use RNG.standard_normal() instead.

Added in 0.4.0.

random(self, size, dtype=’float32’, out=None)
Call numpy’s random() or random_sample().

Note: Changed dtype argument default value from numpy’s d to float32.

random_integers(self, low, high=None, size=None)
Call numpy.random.RandomState.random_integers().

13.5. imgaug.random 401

imgaug Documentation, Release 0.3.0

Warning: This method is outdated in numpy. Use RNG.integers() instead.

Added in 0.4.0.

random_sample(self, size)
Call numpy.random.RandomState.random_sample().

Warning: This method is outdated in numpy. Use RNG.uniform() instead.

Added in 0.4.0.

rayleigh(self, scale=1.0, size=None)
Call numpy.random.Generator.rayleigh().

reset_cache_(self)
Reset all cache of this RNG.

Returns The RNG itself.

Return type RNG

set_state_(self, value)
Set the state if the RNG in-place.

Parameters value (tuple or dict) – The new state of the RNG. Should correspond to the output
of the state property.

Returns The RNG itself.

Return type RNG

shuffle(self, x)
Call numpy.random.Generator.shuffle().

standard_cauchy(self, size=None)
Call numpy.random.Generator.standard_cauchy().

standard_exponential(self, size=None, dtype=’float32’, method=’zig’, out=None)
Call numpy.random.Generator.standard_exponential().

Note: Changed dtype argument default value from numpy’s d to float32.

standard_gamma(self, shape, size=None, dtype=’float32’, out=None)
Call numpy.random.Generator.standard_gamma().

Note: Changed dtype argument default value from numpy’s d to float32.

standard_normal(self, size=None, dtype=’float32’, out=None)
Call numpy.random.Generator.standard_normal().

Note: Changed dtype argument default value from numpy’s d to float32.

standard_t(self, df, size=None)
Call numpy.random.Generator.standard_t().

402 Chapter 13. API

imgaug Documentation, Release 0.3.0

state
Get the state of this RNG.

Returns The state of the RNG. In numpy 1.17+, the bit generator’s state will be returned. In
numpy <=1.16, the RandomState ‘s state is returned. In both cases the state is a copy.
In-place changes will not affect the RNG.

Return type tuple or dict

tomaxint(self, size=None)
Call numpy.random.RandomState.tomaxint().

Warning: This method is outdated in numpy. Use RNG.integers() instead.

Added in 0.4.0.

triangular(self, left, mode, right, size=None)
Call numpy.random.Generator.triangular().

uniform(self, low=0.0, high=1.0, size=None)
Call numpy.random.Generator.uniform().

use_state_of_(self, other)
Copy and use (in-place) the state of another RNG.

Note: It is often sensible to first verify that neither this RNG nor other are identical to the global RNG.

Parameters other (RNG) – The other RNG, which’s state will be copied.

Returns The RNG itself.

Return type RNG

vonmises(self, mu, kappa, size=None)
Call numpy.random.Generator.vonmises().

wald(self, mean, scale, size=None)
Call numpy.random.Generator.wald().

weibull(self, a, size=None)
Call numpy.random.Generator.weibull().

zipf(self, a, size=None)
Call numpy.random.Generator.zipf().

imgaug.random.advance_generator_(generator)
Advance a numpy random generator’s internal state in-place by one step.

This advances the generator’s state.

Note: This simply samples one or more random values. This means that a call of this method will not com-
pletely change the outputs of the next called sampling method. To achieve more drastic output changes, call
derive_generator_().

Parameters generator (numpy.random.Generator or numpy.random.RandomState) – Generator of
which to advance the internal state.

13.5. imgaug.random 403

imgaug Documentation, Release 0.3.0

imgaug.random.convert_seed_sequence_to_generator(seed_sequence)
Convert a seed sequence to a numpy (random number) generator.

Parameters seed_sequence (numpy.random.SeedSequence) – The seed value to use.

Returns Generator initialized with the provided seed sequence.

Return type numpy.random.Generator

imgaug.random.convert_seed_to_generator(entropy)
Convert a seed value to a numpy (random number) generator.

Parameters entropy (int) – The seed value to use.

Returns In numpy <=1.16 a RandomState, in 1.17+ a Generator. Both are initialized with the
provided seed.

Return type numpy.random.Generator or numpy.random.RandomState

imgaug.random.copy_generator(generator)
Copy an existing numpy (random number) generator.

Parameters generator (numpy.random.Generator or numpy.random.RandomState) – The generator
to copy.

Returns In numpy <=1.16 a RandomState, in 1.17+ a Generator. Both are copies of the input
argument.

Return type numpy.random.Generator or numpy.random.RandomState

imgaug.random.copy_generator_unless_global_generator(generator)
Copy a numpy generator unless it is the current global generator.

“global generator” here denotes the generator contained in the global RNG’s .generator attribute.

Parameters generator (numpy.random.Generator or numpy.random.RandomState) – The generator
to copy.

Returns In numpy <=1.16 a RandomState, in 1.17+ a Generator. Both are copies of the input
argument, unless that input is identical to the global generator. If it is identical, the instance
itself will be returned without copying it.

Return type numpy.random.Generator or numpy.random.RandomState

imgaug.random.create_fully_random_generator()
Create a new numpy (random) generator, derived from OS’s entropy.

Returns In numpy <=1.16 a RandomState, in 1.17+ a Generator. Both are initialized with
entropy requested from the OS. They are hence independent of entered seeds or the library’s
global RNG.

Return type numpy.random.Generator or numpy.random.RandomState

imgaug.random.create_pseudo_random_generator_()
Create a new numpy (random) generator, derived from the global RNG.

This function advances the global RNG’s state.

Returns In numpy <=1.16 a RandomState, in 1.17+ a Generator. Both are initialized with a
seed sampled from the global RNG.

Return type numpy.random.Generator or numpy.random.RandomState

imgaug.random.derive_generator_(generator)
Create a child numpy (random number) generator from an existing one.

404 Chapter 13. API

imgaug Documentation, Release 0.3.0

This advances the generator’s state.

Parameters generator (numpy.random.Generator or numpy.random.RandomState) – The generator
from which to derive a new child generator.

Returns In numpy <=1.16 a RandomState, in 1.17+ a Generator. In both cases a derived child
generator.

Return type numpy.random.Generator or numpy.random.RandomState

imgaug.random.derive_generators_(generator, n)
Create child numpy (random number) generators from an existing one.

Parameters

• generator (numpy.random.Generator or numpy.random.RandomState) – The generator
from which to derive new child generators.

• n (int) – Number of child generators to derive.

Returns In numpy <=1.16 a list of RandomState s, in 1.17+ a list of Generator s. In both
cases lists of derived child generators.

Return type list of numpy.random.Generator or list of numpy.random.RandomState

imgaug.random.generate_seed_(generator)
Sample a seed from the provided generator.

This function advances the generator’s state.

See SEED_MIN_VALUE and SEED_MAX_VALUE for the seed’s value range.

Parameters generator (numpy.random.Generator or numpy.random.RandomState) – The generator
from which to sample the seed.

Returns The sampled seed.

Return type int

imgaug.random.generate_seeds_(generator, n)
Sample n seeds from the provided generator.

This function advances the generator’s state.

Parameters

• generator (numpy.random.Generator or numpy.random.RandomState) – The generator
from which to sample the seed.

• n (int) – Number of seeds to sample.

Returns 1D-array of int32 seeds.

Return type ndarray

imgaug.random.get_generator_state(generator)
Get the state of this provided generator.

Parameters generator (numpy.random.Generator or numpy.random.RandomState) – The genera-
tor, which’s state is supposed to be extracted.

Returns The state of the generator. In numpy 1.17+, the bit generator’s state will be returned. In
numpy <=1.16, the RandomState ‘s state is returned. In both cases the state is a copy. In-place
changes will not affect the RNG.

Return type tuple or dict

13.5. imgaug.random 405

imgaug Documentation, Release 0.3.0

imgaug.random.get_global_rng()
Get or create the current global RNG of imgaug.

Note that the first call to this function will create a global RNG.

Returns The global RNG to use.

Return type RNG

imgaug.random.is_generator_equal_to(generator, other_generator)
Estimate whether two generator have the same class and state.

Parameters

• generator (numpy.random.Generator or numpy.random.RandomState) – First generator
used in the comparison.

• other_generator (numpy.random.Generator or numpy.random.RandomState) – Second
generator used in the comparison.

Returns True if generator ‘s class and state are the same as the class and state of other_generator.
False otherwise.

Return type bool

imgaug.random.normalize_generator(generator)
Normalize various inputs to a numpy (random number) generator.

This function will first copy the provided argument, i.e. it never returns a provided instance itself.

Parameters generator (None or int or numpy.random.Generator or numpy.random.BitGenerator
or numpy.random.SeedSequence or numpy.random.RandomState) – The numpy random num-
ber generator to normalize. In case of numpy version 1.17 or later, this shouldn’t be a
RandomState as that class is outdated. Behaviour for different datatypes:

• If None: The global RNG’s generator is returned.

• If int: In numpy 1.17+, the value is used as a seed for a Generator, i.e. it will be
provided as the entropy to a SeedSequence, which will then be used for an SFC64 bit
generator and wrapped by a Generator, which is then returned. In numpy <=1.16, the
value is used as a seed for a RandomState, which will then be returned.

• If numpy.random.Generator: That generator will be returned.

• If numpy.random.BitGenerator: A numpy generator will be created and returned
that contains the bit generator.

• If numpy.random.SeedSequence: A numpy generator will be created and returned
that contains an SFC64 bit generator initialized with the given SeedSequence.

• If numpy.random.RandomState: In numpy <=1.16, this RandomState will be re-
turned. In numpy 1.17+, a seed will be derived from this RandomState and a new
numpy.generator.Generator based on an SFC64 bit generator will be created and
returned.

Returns In numpy <=1.16 a RandomState, in 1.17+ a Generator (even if the input was a
RandomState).

Return type numpy.random.Generator or numpy.random.RandomState

imgaug.random.normalize_generator_(generator)
Normalize in-place various inputs to a numpy (random number) generator.

This function will try to return the provided instance itself.

406 Chapter 13. API

imgaug Documentation, Release 0.3.0

Parameters generator (None or int or numpy.random.Generator or numpy.random.BitGenerator
or numpy.random.SeedSequence or numpy.random.RandomState) – See
normalize_generator().

Returns In numpy <=1.16 a RandomState, in 1.17+ a Generator (even if the input was a
RandomState).

Return type numpy.random.Generator or numpy.random.RandomState

imgaug.random.polyfill_integers(generator, low, high=None, size=None, dtype=’int32’, end-
point=False)

Sample integers from a generator in different numpy versions.

Parameters

• generator (numpy.random.Generator or numpy.random.RandomState) – The generator to
sample from. If it is a RandomState, numpy.random.RandomState.randint()
will be called, otherwise numpy.random.Generator.integers().

• low (int or array-like of ints) – See numpy.random.Generator.integers().

• high (int or array-like of ints, optional) – See numpy.random.Generator.
integers().

• size (int or tuple of ints, optional) – See numpy.random.Generator.integers().

• dtype ({str, dtype}, optional) – See numpy.random.Generator.integers().

• endpoint (bool, optional) – See numpy.random.Generator.integers().

Returns See numpy.random.Generator.integers().

Return type int or ndarray of ints

imgaug.random.polyfill_random(generator, size, dtype=’float32’, out=None)
Sample random floats from a generator in different numpy versions.

Parameters

• generator (numpy.random.Generator or numpy.random.RandomState) – The generator to
sample from. Both RandomState and Generator support random(), but with differ-
ent interfaces.

• size (int or tuple of ints, optional) – See numpy.random.Generator.random().

• dtype ({str, dtype}, optional) – See numpy.random.Generator.random().

• out (ndarray, optional) – See numpy.random.Generator.random().

Returns See numpy.random.Generator.random().

Return type float or ndarray of floats

imgaug.random.reset_generator_cache_(generator)
Reset a numpy (random number) generator’s internal cache.

This function modifies the generator’s state in-place.

Parameters generator (numpy.random.Generator or numpy.random.RandomState) – The generator
of which to reset the cache.

Returns In numpy <=1.16 a RandomState, in 1.17+ a Generator. In both cases the input
argument itself.

Return type numpy.random.Generator or numpy.random.RandomState

13.5. imgaug.random 407

imgaug Documentation, Release 0.3.0

imgaug.random.seed(entropy)
Set the seed of imgaug’s global RNG (in-place).

The global RNG controls most of the “randomness” in imgaug.

The global RNG is the default one used by all augmenters. Under special circumstances (e.g. when an augmenter
is switched to deterministic mode), the global RNG is replaced with a local one. The state of that replacement
may be dependent on the global RNG’s state at the time of creating the child RNG.

Parameters entropy (int) – The seed value to use.

imgaug.random.set_generator_state_(generator, state)
Set the state of a numpy (random number) generator in-place.

Parameters

• generator (numpy.random.Generator or numpy.random.RandomState) – The generator,
which’s state is supposed to be modified.

• state (tuple or dict) – The new state of the generator. Should correspond to the output of
get_generator_state().

imgaug.random.supports_new_numpy_rng_style()
Determine whether numpy supports the new random interface (v1.17+).

Returns True if the new random interface is supported by numpy, i.e. if numpy has version
1.17 or later. Otherwise False, i.e. numpy has version 1.16 or older and numpy.random.
RandomState should be used instead.

Return type bool

class imgaug.random.temporary_numpy_seed(entropy=None)
Bases: object

Context to temporarily alter the random state of numpy.random.

The random state’s internal state will be set back to the original one once the context finishes.

Added in 0.4.0.

Parameters entropy (None or int) – The seed value to use. If None then the seed will not be altered
and the internal state of numpy.random will not be reset back upon context exit (i.e. this
context will do nothing).

13.6 imgaug.validation

Helper functions to validate input data and produce error messages.

imgaug.validation.assert_is_iterable_of(iterable_var, classes)
Assert that iterable_var only contains instances of given classes.

Parameters

• iterable_var (iterable) – See is_iterable_of().

• classes (type or iterable of type) – See is_iterable_of().

imgaug.validation.convert_iterable_to_string_of_types(iterable_var)
Convert an iterable of values to a string of their types.

Parameters iterable_var (iterable) – An iterable of variables, e.g. a list of integers.

408 Chapter 13. API

imgaug Documentation, Release 0.3.0

Returns String representation of the types in iterable_var. One per item in iterable_var. Separated
by commas.

Return type str

imgaug.validation.is_iterable_of(iterable_var, classes)
Check whether iterable_var contains only instances of given classes.

Parameters

• iterable_var (iterable) – An iterable of items that will be matched against classes.

• classes (type or iterable of type) – One or more classes that each item in var must be an
instanceof. If this is an iterable, a single match per item is enough.

Returns Whether var only contains instances of classes. If var was empty, True will be returned.

Return type bool

13.7 imgaug.augmentables.base

Interfaces used by augmentable objects.

Added in 0.4.0.

class imgaug.augmentables.base.IAugmentable
Bases: object

Interface of augmentable objects.

This interface is right now only used to “mark” augmentable objects. It does not enforce any methods yet (but
will probably in the future).

Currently, only *OnImage clases are marked as augmentable. Non-OnImage objects are normalized to
OnImage-objects. Batches are not yet marked as augmentable, but might be in the future.

Added in 0.4.0.

13.8 imgaug.augmentables.batches

Classes representing batches of normalized or unnormalized data.

class imgaug.augmentables.batches.Batch(images=None, heatmaps=None, seg-
mentation_maps=None, keypoints=None,
bounding_boxes=None, polygons=None,
line_strings=None, data=None)

Bases: object

Class encapsulating a batch before and after augmentation.

Parameters

• images (None or (N,H,W,C) ndarray or list of (H,W,C) ndarray) – The images to augment.

• heatmaps (None or list of imgaug.augmentables.heatmaps.HeatmapsOnImage) – The
heatmaps to augment.

• segmentation_maps (None or list of imgaug.augmentables.segmaps.SegmentationMapsOnImage)
– The segmentation maps to augment.

13.7. imgaug.augmentables.base 409

imgaug Documentation, Release 0.3.0

• keypoints (None or list of imgaug.augmentables.kps.KeypointOnImage) – The keypoints to
augment.

• bounding_boxes (None or list of imgaug.augmentables.bbs.BoundingBoxesOnImage) –
The bounding boxes to augment.

• polygons (None or list of imgaug.augmentables.polys.PolygonsOnImage) – The polygons
to augment.

• line_strings (None or list of imgaug.augmentables.lines.LineStringsOnImage) – The line
strings to augment.

• data – Additional data that is saved in the batch and may be read out after augmentation.
This could e.g. contain filepaths to each image in images. As this object is usually used for
background augmentation with multiple processes, the augmented Batch objects might not
be returned in the original order, making this information useful.

Attributes

bounding_boxes Deprecated. Use Batch.bounding_boxes_unaug instead.

heatmaps Deprecated. Use Batch.heatmaps_unaug instead.

images Deprecated. Use Batch.images_unaug instead.

keypoints Deprecated. Use Batch.keypoints_unaug instead.

segmentation_maps Deprecated. Use Batch.segmentation_maps_unaug in-
stead.

Methods

deepcopy(self[, images_unaug, images_aug, . . .]) Copy this batch and all of its column values.
fill_from_batch_in_augmentation_(self,
. . .)

Set the columns in this batch to the column values of
another batch.

get_column_names(self) Get the names of types of augmentables that contain
data.

to_batch_in_augmentation(self) Convert this batch to a _BatchInAugmentation
instance.

to_normalized_batch(self) Return this batch.

bounding_boxes
Deprecated. Use Batch.bounding_boxes_unaug instead.

Get unaugmented bounding boxes.

deepcopy(self, images_unaug=’DEFAULT’, images_aug=’DEFAULT’,
heatmaps_unaug=’DEFAULT’, heatmaps_aug=’DEFAULT’, segmenta-
tion_maps_unaug=’DEFAULT’, segmentation_maps_aug=’DEFAULT’,
keypoints_unaug=’DEFAULT’, keypoints_aug=’DEFAULT’, bound-
ing_boxes_unaug=’DEFAULT’, bounding_boxes_aug=’DEFAULT’, poly-
gons_unaug=’DEFAULT’, polygons_aug=’DEFAULT’, line_strings_unaug=’DEFAULT’,
line_strings_aug=’DEFAULT’)

Copy this batch and all of its column values.

Parameters

• images_unaug (imgaug.augmentables.batches.DEFAULT or None or (N,H,W,C) ndarray
or list of (H,W,C) ndarray) – Copies the current attribute value without changes if set

410 Chapter 13. API

imgaug Documentation, Release 0.3.0

to imgaug.augmentables.batches.DEFAULT. Otherwise same as in Batch.
__init__().

• images_aug (imgaug.augmentables.batches.DEFAULT or None or (N,H,W,C) ndarray
or list of (H,W,C) ndarray) – Copies the current attribute value without changes if set
to imgaug.augmentables.batches.DEFAULT. Otherwise same as in Batch.
__init__().

• heatmaps_unaug (imgaug.augmentables.batches.DEFAULT or None or list of im-
gaug.augmentables.heatmaps.HeatmapsOnImage) – Copies the current attribute value
without changes if set to imgaug.augmentables.batches.DEFAULT. Otherwise
same as in Batch.__init__().

• heatmaps_aug (imgaug.augmentables.batches.DEFAULT or None or list of im-
gaug.augmentables.heatmaps.HeatmapsOnImage) – Copies the current attribute value
without changes if set to imgaug.augmentables.batches.DEFAULT. Otherwise
same as in Batch.__init__().

• segmentation_maps_unaug (imgaug.augmentables.batches.DEFAULT or None or list
of imgaug.augmentables.segmaps.SegmentationMapsOnImage) – Copies the current
attribute value without changes if set to imgaug.augmentables.batches.
DEFAULT. Otherwise same as in Batch.__init__().

• segmentation_maps_aug (imgaug.augmentables.batches.DEFAULT or None or list
of imgaug.augmentables.segmaps.SegmentationMapsOnImage) – Copies the current
attribute value without changes if set to imgaug.augmentables.batches.
DEFAULT. Otherwise same as in Batch.__init__().

• keypoints_unaug (imgaug.augmentables.batches.DEFAULT or None or list of im-
gaug.augmentables.kps.KeypointOnImage) – Copies the current attribute value without
changes if set to imgaug.augmentables.batches.DEFAULT. Otherwise same as
in Batch.__init__().

• keypoints_aug (imgaug.augmentables.batches.DEFAULT or None or list of im-
gaug.augmentables.kps.KeypointOnImage) – Copies the current attribute value without
changes if set to imgaug.augmentables.batches.DEFAULT. Otherwise same as
in Batch.__init__().

• bounding_boxes_unaug (imgaug.augmentables.batches.DEFAULT or None or list of
imgaug.augmentables.bbs.BoundingBoxesOnImage) – Copies the current attribute value
without changes if set to imgaug.augmentables.batches.DEFAULT. Otherwise
same as in Batch.__init__().

• bounding_boxes_aug (imgaug.augmentables.batches.DEFAULT or None or list of im-
gaug.augmentables.bbs.BoundingBoxesOnImage) – Copies the current attribute value
without changes if set to imgaug.augmentables.batches.DEFAULT. Otherwise
same as in Batch.__init__().

• polygons_unaug (imgaug.augmentables.batches.DEFAULT or None or list of im-
gaug.augmentables.polys.PolygonsOnImage) – Copies the current attribute value without
changes if set to imgaug.augmentables.batches.DEFAULT. Otherwise same as
in Batch.__init__().

• polygons_aug (imgaug.augmentables.batches.DEFAULT or None or list of im-
gaug.augmentables.polys.PolygonsOnImage) – Copies the current attribute value without
changes if set to imgaug.augmentables.batches.DEFAULT. Otherwise same as
in Batch.__init__().

• line_strings_unaug (imgaug.augmentables.batches.DEFAULT or None or list of im-
gaug.augmentables.lines.LineStringsOnImage) – Copies the current attribute value with-

13.8. imgaug.augmentables.batches 411

imgaug Documentation, Release 0.3.0

out changes if set to imgaug.augmentables.batches.DEFAULT. Otherwise same
as in Batch.__init__().

• line_strings_aug (imgaug.augmentables.batches.DEFAULT or None or list of im-
gaug.augmentables.lines.LineStringsOnImage) – Copies the current attribute value with-
out changes if set to imgaug.augmentables.batches.DEFAULT. Otherwise same
as in Batch.__init__().

Returns Deep copy of the batch, optionally with new attributes.

Return type Batch

fill_from_batch_in_augmentation_(self, batch_in_augmentation)
Set the columns in this batch to the column values of another batch.

This method works in-place.

Added in 0.4.0.

Parameters batch_in_augmentation (_BatchInAugmentation) – Batch of which to use the col-
umn values. The values are not copied. Only their references are used.

Returns The updated batch. (Modified in-place.)

Return type Batch

get_column_names(self)
Get the names of types of augmentables that contain data.

This method is intended for situations where one wants to know which data is contained in the batch that
has to be augmented, visualized or something similar.

Added in 0.4.0.

Returns Names of types of augmentables. E.g. ["images", "polygons"].

Return type list of str

heatmaps
Deprecated. Use Batch.heatmaps_unaug instead.

Get unaugmented heatmaps.

images
Deprecated. Use Batch.images_unaug instead.

Get unaugmented images.

keypoints
Deprecated. Use Batch.keypoints_unaug instead.

Get unaugmented keypoints.

segmentation_maps
Deprecated. Use Batch.segmentation_maps_unaug instead.

Get unaugmented segmentation maps.

to_batch_in_augmentation(self)
Convert this batch to a _BatchInAugmentation instance.

Added in 0.4.0.

Returns The converted batch.

Return type imgaug.augmentables.batches._BatchInAugmentation

412 Chapter 13. API

imgaug Documentation, Release 0.3.0

to_normalized_batch(self)
Return this batch.

This method does nothing and only exists to simplify interfaces that accept both UnnormalizedBatch
and Batch.

Added in 0.4.0.

Returns This batch (not copied).

Return type imgaug.augmentables.batches.Batch

class imgaug.augmentables.batches.UnnormalizedBatch(images=None, heatmaps=None,
segmentation_maps=None,
keypoints=None, bound-
ing_boxes=None, poly-
gons=None, line_strings=None,
data=None)

Bases: object

Class for batches of unnormalized data before and after augmentation.

Parameters

• images (None or (N,H,W,C) ndarray or (N,H,W) ndarray or iterable of (H,W,C) ndarray or
iterable of (H,W) ndarray) – The images to augment.

• heatmaps (None or (N,H,W,C) ndarray or imgaug.augmentables.heatmaps.HeatmapsOnImage
or iterable of (H,W,C) ndarray or iterable of im-
gaug.augmentables.heatmaps.HeatmapsOnImage) – The heatmaps to augment. If
anything else than HeatmapsOnImage, then the number of heatmaps must match the
number of images provided via parameter images. The number is contained either in N or
the first iterable’s size.

• segmentation_maps (None or (N,H,W) ndarray or im-
gaug.augmentables.segmaps.SegmentationMapsOnImage or iterable of (H,W) ndarray or
iterable of imgaug.augmentables.segmaps.SegmentationMapsOnImage) – The segmenta-
tion maps to augment. If anything else than SegmentationMapsOnImage, then the
number of segmaps must match the number of images provided via parameter images. The
number is contained either in N or the first iterable’s size.

• keypoints (None or list of (N,K,2) ndarray or tuple of number or im-
gaug.augmentables.kps.Keypoint or iterable of (K,2) ndarray or iterable of tuple
of number or iterable of imgaug.augmentables.kps.Keypoint or iterable of im-
gaug.augmentables.kps.KeypointOnImage or iterable of iterable of tuple of number
or iterable of iterable of imgaug.augmentables.kps.Keypoint) – The keypoints to augment.
If a tuple (or iterable(s) of tuple), then iterpreted as (x,y) coordinates and must hence contain
two numbers. A single tuple represents a single coordinate on one image, an iterable of
tuples the coordinates on one image and an iterable of iterable of tuples the coordinates on
several images. Analogous if Keypoint objects are used instead of tuples. If an ndarray,
then N denotes the number of images and K the number of keypoints on each image. If
anything else than KeypointsOnImage is provided, then the number of keypoint groups
must match the number of images provided via parameter images. The number is contained
e.g. in N or in case of “iterable of iterable of tuples” in the first iterable’s size.

• bounding_boxes (None or (N,B,4) ndarray or tuple of
number or imgaug.augmentables.bbs.BoundingBox or im-
gaug.augmentables.bbs.BoundingBoxesOnImage or iterable of (B,4) ndarray or iterable
of tuple of number or iterable of imgaug.augmentables.bbs.BoundingBox or iterable
of imgaug.augmentables.bbs.BoundingBoxesOnImage or iterable of iterable of tuple of

13.8. imgaug.augmentables.batches 413

imgaug Documentation, Release 0.3.0

number or iterable of iterable imgaug.augmentables.bbs.BoundingBox) – The bounding
boxes to augment. This is analogous to the keypoints parameter. However, each tuple – and
also the last index in case of arrays – has size 4, denoting the bounding box coordinates x1,
y1, x2 and y2.

• polygons (None or (N,#polys,#points,2) ndarray or imgaug.augmentables.polys.Polygon
or imgaug.augmentables.polys.PolygonsOnImage or iterable of (#polys,#points,2) ndar-
ray or iterable of tuple of number or iterable of imgaug.augmentables.kps.Keypoint
or iterable of imgaug.augmentables.polys.Polygon or iterable of im-
gaug.augmentables.polys.PolygonsOnImage or iterable of iterable of (#points,2)
ndarray or iterable of iterable of tuple of number or iterable of iter-
able of imgaug.augmentables.kps.Keypoint or iterable of iterable of im-
gaug.augmentables.polys.Polygon or iterable of iterable of iterable of tuple of number
or iterable of iterable of iterable of tuple of imgaug.augmentables.kps.Keypoint) – The
polygons to augment. This is similar to the keypoints parameter. However, each polygon
may be made up of several (x,y) coordinates (three or more are required for valid
polygons). The following datatypes will be interpreted as a single polygon on a single
image:

– imgaug.augmentables.polys.Polygon

– iterable of tuple of number

– iterable of imgaug.augmentables.kps.Keypoint

The following datatypes will be interpreted as multiple polygons on a single image:

– imgaug.augmentables.polys.PolygonsOnImage

– iterable of imgaug.augmentables.polys.Polygon

– iterable of iterable of tuple of number

– iterable of iterable of imgaug.augmentables.kps.Keypoint

– iterable of iterable of imgaug.augmentables.polys.Polygon

The following datatypes will be interpreted as multiple polygons on multiple images:

– (N,#polys,#points,2) ndarray

– iterable of (#polys,#points,2) ndarray

– iterable of iterable of (#points,2) ndarray

– iterable of iterable of iterable of tuple of number

– iterable of iterable of iterable of tuple of imgaug.
augmentables.kps.Keypoint

• line_strings (None or (N,#lines,#points,2) ndarray or im-
gaug.augmentables.lines.LineString or imgaug.augmentables.lines.LineStringOnImage or
iterable of (#lines,#points,2) ndarray or iterable of tuple of number or iterable of im-
gaug.augmentables.kps.Keypoint or iterable of imgaug.augmentables.lines.LineString
or iterable of imgaug.augmentables.lines.LineStringOnImage or iterable of iter-
able of (#points,2) ndarray or iterable of iterable of tuple of number or iterable
of iterable of imgaug.augmentables.kps.Keypoint or iterable of iterable of im-
gaug.augmentables.polys.LineString or iterable of iterable of iterable of tuple of number
or iterable of iterable of iterable of tuple of imgaug.augmentables.kps.Keypoint) – The line
strings to augment. See polygons for more details as polygons follow a similar structure to
line strings.

414 Chapter 13. API

imgaug Documentation, Release 0.3.0

• data – Additional data that is saved in the batch and may be read out after augmentation.
This could e.g. contain filepaths to each image in images. As this object is usually used for
background augmentation with multiple processes, the augmented Batch objects might not
be returned in the original order, making this information useful.

Methods

fill_from_augmented_normalized_batch(self,
. . .)

Fill this batch with (normalized) augmentation re-
sults.

fill_from_augmented_normalized_batch_(self,
. . .)

Fill this batch with (normalized) augmentation re-
sults in-place.

get_column_names(self) Get the names of types of augmentables that contain
data.

to_normalized_batch(self) Convert this unnormalized batch to an instance of
Batch.

fill_from_augmented_normalized_batch(self, batch_aug_norm)
Fill this batch with (normalized) augmentation results.

This method receives a (normalized) Batch instance, takes all *_aug attributes out if it and assigns them
to this batch in unnormalized form. Hence, the datatypes of all *_aug attributes will match the datatypes
of the *_unaug attributes.

Parameters batch_aug_norm (imgaug.augmentables.batches.Batch) – Batch after normaliza-
tion and augmentation.

Returns New UnnormalizedBatch instance. All *_unaug attributes are taken from the old
UnnormalizedBatch (without deepcopying them) and all *_aug attributes are taken from
batch_normalized, converted to unnormalized form.

Return type imgaug.augmentables.batches.UnnormalizedBatch

fill_from_augmented_normalized_batch_(self, batch_aug_norm)
Fill this batch with (normalized) augmentation results in-place.

This method receives a (normalized) Batch instance, takes all *_aug attributes out if it and assigns them
to this batch in unnormalized form. Hence, the datatypes of all *_aug attributes will match the datatypes
of the *_unaug attributes.

Added in 0.4.0.

Parameters batch_aug_norm (imgaug.augmentables.batches.Batch) – Batch after normaliza-
tion and augmentation.

Returns This instance itself. All *_unaug attributes are unchanged. All *_aug attributes are
taken from batch_normalized, converted to unnormalized form.

Return type imgaug.augmentables.batches.UnnormalizedBatch

get_column_names(self)
Get the names of types of augmentables that contain data.

This method is intended for situations where one wants to know which data is contained in the batch that
has to be augmented, visualized or something similar.

Added in 0.4.0.

Returns Names of types of augmentables. E.g. ["images", "polygons"].

13.8. imgaug.augmentables.batches 415

imgaug Documentation, Release 0.3.0

Return type list of str

to_normalized_batch(self)
Convert this unnormalized batch to an instance of Batch.

As this method is intended to be called before augmentation, it assumes that none of the *_aug attributes
is yet set. It will produce an AssertionError otherwise.

The newly created Batch’s *_unaug attributes will match the ones in this batch, just in normalized form.

Returns The batch, with *_unaug attributes being normalized.

Return type imgaug.augmentables.batches.Batch

13.9 imgaug.augmentables.bbs

Classes representing bounding boxes.

class imgaug.augmentables.bbs.BoundingBox(x1, y1, x2, y2, label=None)
Bases: object

Class representing bounding boxes.

Each bounding box is parameterized by its top left and bottom right corners. Both are given as x and y-
coordinates. The corners are intended to lie inside the bounding box area. As a result, a bounding box that
lies completely inside the image but has maximum extensions would have coordinates (0.0, 0.0) and (W
- epsilon, H - epsilon). Note that coordinates are saved internally as floats.

Parameters

• x1 (number) – X-coordinate of the top left of the bounding box.

• y1 (number) – Y-coordinate of the top left of the bounding box.

• x2 (number) – X-coordinate of the bottom right of the bounding box.

• y2 (number) – Y-coordinate of the bottom right of the bounding box.

• label (None or str, optional) – Label of the bounding box, e.g. a string representing the
class.

Attributes

area Estimate the area of the bounding box.

center_x Estimate the x-coordinate of the center point of the bounding box.

center_y Estimate the y-coordinate of the center point of the bounding box.

coords Get the top-left and bottom-right coordinates as one array.

height Estimate the height of the bounding box.

width Estimate the width of the bounding box.

x1_int Get the x-coordinate of the top left corner as an integer.

x2_int Get the x-coordinate of the bottom left corner as an integer.

y1_int Get the y-coordinate of the top left corner as an integer.

y2_int Get the y-coordinate of the bottom left corner as an integer.

416 Chapter 13. API

imgaug Documentation, Release 0.3.0

Methods

almost_equals(self, other[, max_distance]) Compare this and another BB’s label and coordi-
nates.

clip_out_of_image(self, image) Clip off all parts of the BB box that are outside of the
image.

clip_out_of_image_(self, image) Clip off parts of the BB box that are outside of the
image in-place.

compute_out_of_image_area(self, image) Compute the area of the BB that is outside of the
image plane.

compute_out_of_image_fraction(self,
image)

Compute fraction of BB area outside of the image
plane.

contains(self, other) Estimate whether the bounding box contains a given
point.

coords_almost_equals(self, other[,
max_distance])

Estimate if this and another BB have almost identical
coordinates.

copy(self[, x1, y1, x2, y2, label]) Create a shallow copy of this BoundingBox instance.
cut_out_of_image(self, *args, **kwargs) Deprecated.
deepcopy(self[, x1, y1, x2, y2, label]) Create a deep copy of the BoundingBox object.
draw_box_on_image(self, image[, color, . . .]) Draw the rectangle of the bounding box on an image.
draw_label_on_image(self, image[, color,
. . .])

Draw a box showing the BB’s label.

draw_on_image(self, image[, color, alpha, . . .]) Draw the bounding box on an image.
extend(self[, all_sides, top, right, . . .]) Extend the size of the bounding box along its sides.
extend_(self[, all_sides, top, right, . . .]) Extend the size of the bounding box along its sides

in-place.
extract_from_image(self, image[, pad, . . .]) Extract the image pixels within the bounding box.
from_point_soup(xy) Convert a (2P,) or (P,2) ndarray to a BB

instance.
intersection(self, other[, default]) Compute the intersection BB between this BB and

another BB.
iou(self, other) Compute the IoU between this bounding box and an-

other one.
is_fully_within_image(self, image) Estimate whether the bounding box is fully inside the

image area.
is_out_of_image(self, image[, fully, partly]) Estimate whether the BB is partially/fully outside of

the image area.
is_partly_within_image(self, image) Estimate whether the BB is at least partially inside

the image area.
project(self, from_shape, to_shape) Project the bounding box onto a differently shaped

image.
project_(self, from_shape, to_shape) Project the bounding box onto a differently shaped

image in-place.
shift(self[, x, y, top, right, bottom, left]) Move this bounding box along the x/y-axis.
shift_(self[, x, y]) Move this bounding box along the x/y-axis in-place.
to_keypoints(self) Convert the BB’s corners to keypoints (clockwise,

from top left).
to_polygon(self) Convert this bounding box to a polygon covering the

same area.
union(self, other) Compute the union BB between this BB and another

BB.

13.9. imgaug.augmentables.bbs 417

imgaug Documentation, Release 0.3.0

almost_equals(self, other, max_distance=0.0001)
Compare this and another BB’s label and coordinates.

This is the same as coords_almost_equals() but additionally compares the labels.

Added in 0.4.0.

Parameters

• other (imgaug.augmentables.bbs.BoundingBox or iterable) – The other object to compare
against. Expected to be a BoundingBox.

• max_distance (number, optional) – See coords_almost_equals().

Returns True if the coordinates are almost equal and additionally the labels are equal. Other-
wise False.

Return type bool

area
Estimate the area of the bounding box.

Returns Area of the bounding box, i.e. height * width.

Return type number

center_x
Estimate the x-coordinate of the center point of the bounding box.

Returns X-coordinate of the center point of the bounding box.

Return type number

center_y
Estimate the y-coordinate of the center point of the bounding box.

Returns Y-coordinate of the center point of the bounding box.

Return type number

clip_out_of_image(self, image)
Clip off all parts of the BB box that are outside of the image.

Parameters image ((H,W,. . .) ndarray or tuple of int) – Image dimensions to use for the clipping
of the bounding box. If an ndarray, its shape will be used. If a tuple, it is assumed to
represent the image shape and must contain at least two integers.

Returns Bounding box, clipped to fall within the image dimensions.

Return type imgaug.augmentables.bbs.BoundingBox

clip_out_of_image_(self, image)
Clip off parts of the BB box that are outside of the image in-place.

Added in 0.4.0.

Parameters image ((H,W,. . .) ndarray or tuple of int) – Image dimensions to use for the clipping
of the bounding box. If an ndarray, its shape will be used. If a tuple, it is assumed to
represent the image shape and must contain at least two integers.

Returns Bounding box, clipped to fall within the image dimensions. The object may have been
modified in-place.

Return type imgaug.augmentables.bbs.BoundingBox

418 Chapter 13. API

imgaug Documentation, Release 0.3.0

compute_out_of_image_area(self, image)
Compute the area of the BB that is outside of the image plane.

Added in 0.4.0.

Parameters image ((H,W,. . .) ndarray or tuple of int) – Image dimensions to use. If an
ndarray, its shape will be used. If a tuple, it is assumed to represent the image shape
and must contain at least two integers.

Returns Total area of the bounding box that is outside of the image plane. Can be 0.0.

Return type float

compute_out_of_image_fraction(self, image)
Compute fraction of BB area outside of the image plane.

This estimates f = A_ooi / A, where A_ooi is the area of the bounding box that is outside of the
image plane, while A is the total area of the bounding box.

Added in 0.4.0.

Parameters image ((H,W,. . .) ndarray or tuple of int) – Image dimensions to use. If an
ndarray, its shape will be used. If a tuple, it is assumed to represent the image shape
and must contain at least two integers.

Returns Fraction of the bounding box area that is outside of the image plane. Returns 0.0 if
the bounding box is fully inside of the image plane. If the bounding box has an area of zero,
the result is 1.0 if its coordinates are outside of the image plane, otherwise 0.0.

Return type float

contains(self, other)
Estimate whether the bounding box contains a given point.

Parameters other (tuple of number or imgaug.augmentables.kps.Keypoint) – Point to check for.

Returns True if the point is contained in the bounding box, False otherwise.

Return type bool

coords
Get the top-left and bottom-right coordinates as one array.

Added in 0.4.0.

Returns A (N, 2) numpy array with N=2 containing the top-left and bottom-right coordinates.

Return type ndarray

coords_almost_equals(self, other, max_distance=0.0001)
Estimate if this and another BB have almost identical coordinates.

Added in 0.4.0.

Parameters

• other (imgaug.augmentables.bbs.BoundingBox or iterable) – The other bounding box
with which to compare this one. If this is an iterable, it is assumed to represent
the top-left and bottom-right coordinates of that bounding box, given as e.g. an (2,2)
ndarray or an (4,) ndarray or as a similar list.

• max_distance (number, optional) – The maximum euclidean distance between a corner
on one bounding box and the closest corner on the other bounding box. If the distance is
exceeded for any such pair, the two BBs are not viewed as equal.

Returns Whether the two bounding boxes have almost identical corner coordinates.

13.9. imgaug.augmentables.bbs 419

imgaug Documentation, Release 0.3.0

Return type bool

copy(self, x1=None, y1=None, x2=None, y2=None, label=None)
Create a shallow copy of this BoundingBox instance.

Parameters

• x1 (None or number) – If not None, then the x1 coordinate of the copied object will be
set to this value.

• y1 (None or number) – If not None, then the y1 coordinate of the copied object will be
set to this value.

• x2 (None or number) – If not None, then the x2 coordinate of the copied object will be
set to this value.

• y2 (None or number) – If not None, then the y2 coordinate of the copied object will be
set to this value.

• label (None or string) – If not None, then the label of the copied object will be set to
this value.

Returns Shallow copy.

Return type imgaug.augmentables.bbs.BoundingBox

cut_out_of_image(self, *args, **kwargs)
Deprecated. Use BoundingBox.clip_out_of_image() instead. clip_out_of_image() has the ex-
actly same interface.

Clip off all parts of the BB box that are outside of the image.

deepcopy(self, x1=None, y1=None, x2=None, y2=None, label=None)
Create a deep copy of the BoundingBox object.

Parameters

• x1 (None or number) – If not None, then the x1 coordinate of the copied object will be
set to this value.

• y1 (None or number) – If not None, then the y1 coordinate of the copied object will be
set to this value.

• x2 (None or number) – If not None, then the x2 coordinate of the copied object will be
set to this value.

• y2 (None or number) – If not None, then the y2 coordinate of the copied object will be
set to this value.

• label (None or string) – If not None, then the label of the copied object will be set to
this value.

Returns Deep copy.

Return type imgaug.augmentables.bbs.BoundingBox

draw_box_on_image(self, image, color=(0, 255, 0), alpha=1.0, size=1, copy=True,
raise_if_out_of_image=False, thickness=None)

Draw the rectangle of the bounding box on an image.

This method does not draw the label.

Added in 0.4.0.

Parameters

420 Chapter 13. API

imgaug Documentation, Release 0.3.0

• image ((H,W,C) ndarray) – The image onto which to draw the bounding box rectangle.
Currently expected to be uint8.

• color (iterable of int, optional) – The color to use, corresponding to the channel layout of
the image. Usually RGB.

• alpha (float, optional) – The transparency of the drawn bounding box, where 1.0 denotes
no transparency and 0.0 is invisible.

• size (int, optional) – The thickness of the bounding box in pixels. If the value is larger than
1, then additional pixels will be added around the bounding box (i.e. extension towards
the outside).

• copy (bool, optional) – Whether to copy the input image or change it in-place.

• raise_if_out_of_image (bool, optional) – Whether to raise an error if the bounding box
is fully outside of the image. If set to False, no error will be raised and only the parts
inside the image will be drawn.

• thickness (None or int, optional) – Deprecated.

Returns Image with bounding box drawn on it.

Return type (H,W,C) ndarray(uint8)

draw_label_on_image(self, image, color=(0, 255, 0), color_text=None, color_bg=None,
alpha=1.0, size=1, size_text=20, height=30, copy=True,
raise_if_out_of_image=False)

Draw a box showing the BB’s label.

The box is placed right above the BB’s rectangle.

Added in 0.4.0.

Parameters

• image ((H,W,C) ndarray) – The image onto which to draw the label. Currently expected
to be uint8.

• color (None or iterable of int, optional) – The color to use, corresponding to the channel
layout of the image. Usually RGB. Text and background colors will be derived from this.

• color_text (None or iterable of int, optional) – The text color to use. If None, derived
from color_bg.

• color_bg (None or iterable of int, optional) – The background color of the label box. If
None, derived from color.

• alpha (float, optional) – The transparency of the drawn bounding box, where 1.0 denotes
no transparency and 0.0 is invisible.

• size (int, optional) – The thickness of the bounding box in pixels. If the value is larger than
1, then additional pixels will be added around the bounding box (i.e. extension towards
the outside).

• size_text (int, optional) – Font size to use.

• height (int, optional) – Height of the label box in pixels.

• copy (bool, optional) – Whether to copy the input image or change it in-place.

• raise_if_out_of_image (bool, optional) – Whether to raise an error if the bounding box
is fully outside of the image. If set to False, no error will be raised and only the parts
inside the image will be drawn.

Returns Image with bounding box drawn on it.

13.9. imgaug.augmentables.bbs 421

imgaug Documentation, Release 0.3.0

Return type (H,W,C) ndarray(uint8)

draw_on_image(self, image, color=(0, 255, 0), alpha=1.0, size=1, copy=True,
raise_if_out_of_image=False, thickness=None)

Draw the bounding box on an image.

This will automatically also draw the label, unless it is None. To only draw the box rectangle use
draw_box_on_image(). To draw the label even if it is None or to configure e.g. its color, use
draw_label_on_image().

Parameters

• image ((H,W,C) ndarray) – The image onto which to draw the bounding box. Currently
expected to be uint8.

• color (iterable of int, optional) – The color to use, corresponding to the channel layout of
the image. Usually RGB.

• alpha (float, optional) – The transparency of the drawn bounding box, where 1.0 denotes
no transparency and 0.0 is invisible.

• size (int, optional) – The thickness of the bounding box in pixels. If the value is larger than
1, then additional pixels will be added around the bounding box (i.e. extension towards
the outside).

• copy (bool, optional) – Whether to copy the input image or change it in-place.

• raise_if_out_of_image (bool, optional) – Whether to raise an error if the bounding box
is fully outside of the image. If set to False, no error will be raised and only the parts
inside the image will be drawn.

• thickness (None or int, optional) – Deprecated.

Returns Image with bounding box drawn on it.

Return type (H,W,C) ndarray(uint8)

extend(self, all_sides=0, top=0, right=0, bottom=0, left=0)
Extend the size of the bounding box along its sides.

Parameters

• all_sides (number, optional) – Value by which to extend the bounding box size along all
sides.

• top (number, optional) – Value by which to extend the bounding box size along its top
side.

• right (number, optional) – Value by which to extend the bounding box size along its right
side.

• bottom (number, optional) – Value by which to extend the bounding box size along its
bottom side.

• left (number, optional) – Value by which to extend the bounding box size along its left
side.

Returns Extended bounding box.

Return type imgaug.BoundingBox

extend_(self, all_sides=0, top=0, right=0, bottom=0, left=0)
Extend the size of the bounding box along its sides in-place.

Added in 0.4.0.

422 Chapter 13. API

imgaug Documentation, Release 0.3.0

Parameters

• all_sides (number, optional) – Value by which to extend the bounding box size along all
sides.

• top (number, optional) – Value by which to extend the bounding box size along its top
side.

• right (number, optional) – Value by which to extend the bounding box size along its right
side.

• bottom (number, optional) – Value by which to extend the bounding box size along its
bottom side.

• left (number, optional) – Value by which to extend the bounding box size along its left
side.

Returns Extended bounding box. The object may have been modified in-place.

Return type imgaug.BoundingBox

extract_from_image(self, image, pad=True, pad_max=None, prevent_zero_size=True)
Extract the image pixels within the bounding box.

This function will zero-pad the image if the bounding box is partially/fully outside of the image.

Parameters

• image ((H,W) ndarray or (H,W,C) ndarray) – The image from which to extract the pixels
within the bounding box.

• pad (bool, optional) – Whether to zero-pad the image if the object is partially/fully outside
of it.

• pad_max (None or int, optional) – The maximum number of pixels that may be zero-
paded on any side, i.e. if this has value N the total maximum of added pixels is 4*N. This
option exists to prevent extremely large images as a result of single points being moved
very far away during augmentation.

• prevent_zero_size (bool, optional) – Whether to prevent the height or width of the ex-
tracted image from becoming zero. If this is set to True and the height or width of the
bounding box is below 1, the height/width will be increased to 1. This can be useful to
prevent problems, e.g. with image saving or plotting. If it is set to False, images will be
returned as (H', W') or (H', W', 3) with H or W potentially being 0.

Returns Pixels within the bounding box. Zero-padded if the bounding box is partially/fully
outside of the image. If prevent_zero_size is activated, it is guarantueed that H'>0 and
W'>0, otherwise only H'>=0 and W'>=0.

Return type (H’,W’) ndarray or (H’,W’,C) ndarray

classmethod from_point_soup(xy)
Convert a (2P,) or (P,2) ndarray to a BB instance.

This is the inverse of to_xyxy_array().

Added in 0.4.0.

Parameters xy ((2P,) ndarray or (P, 2) array or iterable of number or iterable of iterable of
number) – Array containing P points in xy-form denoting a soup of points around which to
place a bounding box. The array should usually be of dtype float32.

Returns Bounding box around the points.

Return type imgaug.augmentables.bbs.BoundingBox

13.9. imgaug.augmentables.bbs 423

imgaug Documentation, Release 0.3.0

height
Estimate the height of the bounding box.

Returns Height of the bounding box.

Return type number

intersection(self, other, default=None)
Compute the intersection BB between this BB and another BB.

Note that in extreme cases, the intersection can be a single point. In that case the intersection bounding
box exists and it will be returned, but it will have a height and width of zero.

Parameters

• other (imgaug.augmentables.bbs.BoundingBox) – Other bounding box with which to gen-
erate the intersection.

• default (any, optional) – Default value to return if there is no intersection.

Returns Intersection bounding box of the two bounding boxes if there is an intersection. If there
is no intersection, the default value will be returned, which can by anything.

Return type imgaug.augmentables.bbs.BoundingBox or any

iou(self, other)
Compute the IoU between this bounding box and another one.

IoU is the intersection over union, defined as:

``area(intersection(A, B)) / area(union(A, B))``
``= area(intersection(A, B))

/ (area(A) + area(B) - area(intersection(A, B)))``

Parameters other (imgaug.augmentables.bbs.BoundingBox) – Other bounding box with which
to compare.

Returns IoU between the two bounding boxes.

Return type float

is_fully_within_image(self, image)
Estimate whether the bounding box is fully inside the image area.

Parameters image ((H,W,. . .) ndarray or tuple of int) – Image dimensions to use. If an
ndarray, its shape will be used. If a tuple, it is assumed to represent the image shape
and must contain at least two integers.

Returns True if the bounding box is fully inside the image area. False otherwise.

Return type bool

is_out_of_image(self, image, fully=True, partly=False)
Estimate whether the BB is partially/fully outside of the image area.

Parameters

• image ((H,W,. . .) ndarray or tuple of int) – Image dimensions to use. If an ndarray,
its shape will be used. If a tuple, it is assumed to represent the image shape and must
contain at least two integers.

• fully (bool, optional) – Whether to return True if the bounding box is fully outside of the
image area.

424 Chapter 13. API

imgaug Documentation, Release 0.3.0

• partly (bool, optional) – Whether to return True if the bounding box is at least partially
outside fo the image area.

Returns True if the bounding box is partially/fully outside of the image area, depending on
defined parameters. False otherwise.

Return type bool

is_partly_within_image(self, image)
Estimate whether the BB is at least partially inside the image area.

Parameters image ((H,W,. . .) ndarray or tuple of int) – Image dimensions to use. If an
ndarray, its shape will be used. If a tuple, it is assumed to represent the image shape
and must contain at least two integers.

Returns True if the bounding box is at least partially inside the image area. False otherwise.

Return type bool

project(self, from_shape, to_shape)
Project the bounding box onto a differently shaped image.

E.g. if the bounding box is on its original image at x1=(10 of 100 pixels) and y1=(20 of 100
pixels) and is projected onto a new image with size (width=200, height=200), its new position
will be (x1=20, y1=40). (Analogous for x2/y2.)

This is intended for cases where the original image is resized. It cannot be used for more complex changes
(e.g. padding, cropping).

Parameters

• from_shape (tuple of int or ndarray) – Shape of the original image. (Before resize.)

• to_shape (tuple of int or ndarray) – Shape of the new image. (After resize.)

Returns BoundingBox instance with new coordinates.

Return type imgaug.augmentables.bbs.BoundingBox

project_(self, from_shape, to_shape)
Project the bounding box onto a differently shaped image in-place.

E.g. if the bounding box is on its original image at x1=(10 of 100 pixels) and y1=(20 of 100
pixels) and is projected onto a new image with size (width=200, height=200), its new position
will be (x1=20, y1=40). (Analogous for x2/y2.)

This is intended for cases where the original image is resized. It cannot be used for more complex changes
(e.g. padding, cropping).

Added in 0.4.0.

Parameters

• from_shape (tuple of int or ndarray) – Shape of the original image. (Before resize.)

• to_shape (tuple of int or ndarray) – Shape of the new image. (After resize.)

Returns BoundingBox instance with new coordinates. The object may have been modified
in-place.

Return type imgaug.augmentables.bbs.BoundingBox

shift(self, x=0, y=0, top=None, right=None, bottom=None, left=None)
Move this bounding box along the x/y-axis.

The origin (0, 0) is at the top left of the image.

13.9. imgaug.augmentables.bbs 425

imgaug Documentation, Release 0.3.0

Parameters

• x (number, optional) – Value to be added to all x-coordinates. Positive values shift towards
the right images.

• y (number, optional) – Value to be added to all y-coordinates. Positive values shift towards
the bottom images.

• top (None or int, optional) – Deprecated since 0.4.0. Amount of pixels by which to shift
this object from the top (towards the bottom).

• right (None or int, optional) – Deprecated since 0.4.0. Amount of pixels by which to shift
this object from the right (towards the left).

• bottom (None or int, optional) – Deprecated since 0.4.0. Amount of pixels by which to
shift this object from the bottom (towards the top).

• left (None or int, optional) – Deprecated since 0.4.0. Amount of pixels by which to shift
this object from the left (towards the right).

Returns Shifted bounding box.

Return type imgaug.augmentables.bbs.BoundingBox

shift_(self, x=0, y=0)
Move this bounding box along the x/y-axis in-place.

The origin (0, 0) is at the top left of the image.

Added in 0.4.0.

Parameters

• x (number, optional) – Value to be added to all x-coordinates. Positive values shift towards
the right images.

• y (number, optional) – Value to be added to all y-coordinates. Positive values shift towards
the bottom images.

Returns Shifted bounding box. The object may have been modified in-place.

Return type imgaug.augmentables.bbs.BoundingBox

to_keypoints(self)
Convert the BB’s corners to keypoints (clockwise, from top left).

Returns Corners of the bounding box as keypoints.

Return type list of imgaug.augmentables.kps.Keypoint

to_polygon(self)
Convert this bounding box to a polygon covering the same area.

Added in 0.4.0.

Returns The bounding box converted to a polygon.

Return type imgaug.augmentables.polys.Polygon

union(self, other)
Compute the union BB between this BB and another BB.

This is equivalent to drawing a bounding box around all corner points of both bounding boxes.

Parameters other (imgaug.augmentables.bbs.BoundingBox) – Other bounding box with which
to generate the union.

426 Chapter 13. API

imgaug Documentation, Release 0.3.0

Returns Union bounding box of the two bounding boxes.

Return type imgaug.augmentables.bbs.BoundingBox

width
Estimate the width of the bounding box.

Returns Width of the bounding box.

Return type number

x1_int
Get the x-coordinate of the top left corner as an integer.

Returns X-coordinate of the top left corner, rounded to the closest integer.

Return type int

x2_int
Get the x-coordinate of the bottom left corner as an integer.

Returns X-coordinate of the bottom left corner, rounded to the closest integer.

Return type int

y1_int
Get the y-coordinate of the top left corner as an integer.

Returns Y-coordinate of the top left corner, rounded to the closest integer.

Return type int

y2_int
Get the y-coordinate of the bottom left corner as an integer.

Returns Y-coordinate of the bottom left corner, rounded to the closest integer.

Return type int

class imgaug.augmentables.bbs.BoundingBoxesOnImage(bounding_boxes, shape)
Bases: imgaug.augmentables.base.IAugmentable

Container for the list of all bounding boxes on a single image.

Parameters

• bounding_boxes (list of imgaug.augmentables.bbs.BoundingBox) – List of bounding boxes
on the image.

• shape (tuple of int or ndarray) – The shape of the image on which the objects are placed.
Either an image with shape (H,W,[C]) or a tuple denoting such an image shape.

Examples

>>> import numpy as np
>>> from imgaug.augmentables.bbs import BoundingBox, BoundingBoxesOnImage
>>>
>>> image = np.zeros((100, 100))
>>> bbs = [
>>> BoundingBox(x1=10, y1=20, x2=20, y2=30),
>>> BoundingBox(x1=25, y1=50, x2=30, y2=70)
>>>]
>>> bbs_oi = BoundingBoxesOnImage(bbs, shape=image.shape)

13.9. imgaug.augmentables.bbs 427

imgaug Documentation, Release 0.3.0

Attributes

empty Determine whether this instance contains zero bounding boxes.

height Get the height of the image on which the bounding boxes fall.

items Get the bounding boxes in this container.

width Get the width of the image on which the bounding boxes fall.

Methods

clip_out_of_image(self) Clip off all parts from all BBs that are outside of the
image.

clip_out_of_image_(self) Clip off in-place all parts from all BBs that are out-
side of the image.

copy(self[, bounding_boxes, shape]) Create a shallow copy of the
BoundingBoxesOnImage instance.

cut_out_of_image(self) Deprecated.
deepcopy(self[, bounding_boxes, shape]) Create a deep copy of the

BoundingBoxesOnImage object.
draw_on_image(self, image[, color, alpha, . . .]) Draw all bounding boxes onto a given image.
fill_from_xy_array_(self, xy) Modify the BB coordinates of this instance in-place.
fill_from_xyxy_array_(self, xyxy) Modify the BB coordinates of this instance in-place.
from_point_soups(xy, shape) Convert an (N, 2P) or (N, P, 2)

ndarray to a BBsOI instance.
from_xyxy_array(xyxy, shape) Convert an (N, 4) or (N, 2, 2) ndarray

to a BBsOI instance.
invert_to_keypoints_on_image_(self, kp-
soi)

Invert the output of
to_keypoints_on_image() in-place.

on(self, image) Project bounding boxes from one image (shape) to a
another one.

on_(self, image) Project BBs from one image (shape) to a another one
in-place.

remove_out_of_image(self[, fully, partly]) Remove all BBs that are fully/partially outside of the
image.

remove_out_of_image_(self[, fully, partly]) Remove in-place all BBs that are fully/partially out-
side of the image.

remove_out_of_image_fraction(self, frac-
tion)

Remove all BBs with an out of image fraction of at
least fraction.

remove_out_of_image_fraction_(self,
fraction)

Remove in-place all BBs with an OOI fraction of at
least fraction.

shift(self[, x, y, top, right, bottom, left]) Move all BBs along the x/y-axis.
shift_(self[, x, y]) Move all BBs along the x/y-axis in-place.
to_keypoints_on_image(self) Convert the bounding boxes to one

KeypointsOnImage instance.
to_polygons_on_image(self) Convert the bounding boxes to one

PolygonsOnImage instance.
to_xy_array(self) Convert the BoundingBoxesOnImage object to

an (N,2) ndarray.
to_xyxy_array(self[, dtype]) Convert the BoundingBoxesOnImage object to

an (N,4) ndarray.

428 Chapter 13. API

imgaug Documentation, Release 0.3.0

clip_out_of_image(self)
Clip off all parts from all BBs that are outside of the image.

Returns Bounding boxes, clipped to fall within the image dimensions.

Return type imgaug.augmentables.bbs.BoundingBoxesOnImage

clip_out_of_image_(self)
Clip off in-place all parts from all BBs that are outside of the image.

Added in 0.4.0.

Returns Bounding boxes, clipped to fall within the image dimensions. The object and its items
may have been modified in-place.

Return type imgaug.augmentables.bbs.BoundingBoxesOnImage

copy(self, bounding_boxes=None, shape=None)
Create a shallow copy of the BoundingBoxesOnImage instance.

Parameters

• bounding_boxes (None or list of imgaug.augmntables.bbs.BoundingBox, optional) – List
of bounding boxes on the image. If None, the instance’s bounding boxes will be copied.

• shape (tuple of int, optional) – The shape of the image on which the bounding boxes are
placed. If None, the instance’s shape will be copied.

Returns Shallow copy.

Return type imgaug.augmentables.bbs.BoundingBoxesOnImage

cut_out_of_image(self)
Deprecated. Use BoundingBoxesOnImage.clip_out_of_image() instead.
clip_out_of_image() has the exactly same interface.

Clip off all parts from all BBs that are outside of the image.

deepcopy(self, bounding_boxes=None, shape=None)
Create a deep copy of the BoundingBoxesOnImage object.

Parameters

• bounding_boxes (None or list of imgaug.augmntables.bbs.BoundingBox, optional) – List
of bounding boxes on the image. If None, the instance’s bounding boxes will be copied.

• shape (tuple of int, optional) – The shape of the image on which the bounding boxes are
placed. If None, the instance’s shape will be copied.

Returns Deep copy.

Return type imgaug.augmentables.bbs.BoundingBoxesOnImage

draw_on_image(self, image, color=(0, 255, 0), alpha=1.0, size=1, copy=True,
raise_if_out_of_image=False, thickness=None)

Draw all bounding boxes onto a given image.

Parameters

• image ((H,W,3) ndarray) – The image onto which to draw the bounding boxes. This image
should usually have the same shape as set in BoundingBoxesOnImage.shape.

• color (int or list of int or tuple of int or (3,) ndarray, optional) – The RGB color of all
bounding boxes. If a single int C, then that is equivalent to (C,C,C).

• alpha (float, optional) – Alpha/transparency of the bounding box.

13.9. imgaug.augmentables.bbs 429

imgaug Documentation, Release 0.3.0

• size (int, optional) – Thickness in pixels.

• copy (bool, optional) – Whether to copy the image before drawing the bounding boxes.

• raise_if_out_of_image (bool, optional) – Whether to raise an exception if any bounding
box is outside of the image.

• thickness (None or int, optional) – Deprecated.

Returns Image with drawn bounding boxes.

Return type (H,W,3) ndarray

empty
Determine whether this instance contains zero bounding boxes.

Returns True if this object contains zero bounding boxes.

Return type bool

fill_from_xy_array_(self, xy)
Modify the BB coordinates of this instance in-place.

See fill_from_xyxy_array_().

Added in 0.4.0.

Parameters xy ((2*B, 2) ndarray or iterable of iterable of number) – Coordinates of B bounding
boxes on an image, given as a (2*B,2) array of two corner xy-coordinates per bounding
box. B must match the number of bounding boxes in this instance.

Returns This instance itself, with updated bounding box coordinates. Note that the instance was
modified in-place.

Return type BoundingBoxesOnImage

fill_from_xyxy_array_(self, xyxy)
Modify the BB coordinates of this instance in-place.

Note: This currently expects exactly one entry in xyxy per bounding in this instance. (I.e. two corner
coordinates per instance.) Otherwise, an AssertionError will be raised.

Note: This method will automatically flip x-coordinates if x1>x2 for a bounding box. (Analogous for
y-coordinates.)

Added in 0.4.0.

Parameters xyxy ((N, 4) ndarray or iterable of iterable of number) – Coordinates of N bounding
boxes on an image, given as a (N,4) array of two corner xy-coordinates per bounding box.
N must match the number of bounding boxes in this instance.

Returns This instance itself, with updated bounding box coordinates. Note that the instance was
modified in-place.

Return type BoundingBoxesOnImage

classmethod from_point_soups(xy, shape)
Convert an (N, 2P) or (N, P, 2) ndarray to a BBsOI instance.

Added in 0.4.0.

Parameters

430 Chapter 13. API

imgaug Documentation, Release 0.3.0

• xy ((N, 2P) ndarray or (N, P, 2) array or iterable of iterable of number or iterable of
iterable of iterable of number) – Array containing the corner coordinates of N bounding
boxes. Each bounding box is represented by a soup of P points. If (N, P) then the
second axis is expected to be in xy-form (e.g. x1, y1, x2, y2, . . .). The final bounding
box coordinates will be derived using min and max operations on the xy-values. The
array should usually be of dtype float32.

• shape (tuple of int) – Shape of the image on which the bounding boxes are placed. Should
usually be (H, W, C) or (H, W).

Returns Object containing a list of BoundingBox instances derived from the provided point
soups.

Return type imgaug.augmentables.bbs.BoundingBoxesOnImage

classmethod from_xyxy_array(xyxy, shape)
Convert an (N, 4) or (N, 2, 2) ndarray to a BBsOI instance.

This is the inverse of to_xyxy_array().

Parameters

• xyxy ((N, 4) ndarray or (N, 2, 2) array) – Array containing the corner coordinates of
N bounding boxes. Each bounding box is represented by its top-left and bottom-right
coordinates. The array should usually be of dtype float32.

• shape (tuple of int) – Shape of the image on which the bounding boxes are placed. Should
usually be (H, W, C) or (H, W).

Returns Object containing a list of BoundingBox instances derived from the provided corner
coordinates.

Return type imgaug.augmentables.bbs.BoundingBoxesOnImage

height
Get the height of the image on which the bounding boxes fall.

Returns Image height.

Return type int

invert_to_keypoints_on_image_(self, kpsoi)
Invert the output of to_keypoints_on_image() in-place.

This function writes in-place into this BoundingBoxesOnImage instance.

Added in 0.4.0.

Parameters kpsoi (imgaug.augmentables.kps.KeypointsOnImages) – Keypoints to convert back
to bounding boxes, i.e. the outputs of to_keypoints_on_image().

Returns Bounding boxes container with updated coordinates. Note that the instance is also
updated in-place.

Return type BoundingBoxesOnImage

items
Get the bounding boxes in this container.

Added in 0.4.0.

Returns Bounding boxes within this container.

Return type list of BoundingBox

13.9. imgaug.augmentables.bbs 431

imgaug Documentation, Release 0.3.0

on(self, image)
Project bounding boxes from one image (shape) to a another one.

Parameters image (ndarray or tuple of int) – New image onto which the bounding boxes are to
be projected. May also simply be that new image’s shape tuple.

Returns Object containing the same bounding boxes after projection to the new image shape.

Return type imgaug.augmentables.bbs.BoundingBoxesOnImage

on_(self, image)
Project BBs from one image (shape) to a another one in-place.

Added in 0.4.0.

Parameters image (ndarray or tuple of int) – New image onto which the bounding boxes are to
be projected. May also simply be that new image’s shape tuple.

Returns Object containing the same bounding boxes after projection to the new image shape.
The object and its items may have been modified in-place.

Return type imgaug.augmentables.bbs.BoundingBoxesOnImage

remove_out_of_image(self, fully=True, partly=False)
Remove all BBs that are fully/partially outside of the image.

Parameters

• fully (bool, optional) – Whether to remove bounding boxes that are fully outside of the
image.

• partly (bool, optional) – Whether to remove bounding boxes that are partially outside of
the image.

Returns Reduced set of bounding boxes, with those that were fully/partially outside of the image
being removed.

Return type imgaug.augmentables.bbs.BoundingBoxesOnImage

remove_out_of_image_(self, fully=True, partly=False)
Remove in-place all BBs that are fully/partially outside of the image.

Added in 0.4.0.

Parameters

• fully (bool, optional) – Whether to remove bounding boxes that are fully outside of the
image.

• partly (bool, optional) – Whether to remove bounding boxes that are partially outside of
the image.

Returns Reduced set of bounding boxes, with those that were fully/partially outside of the image
being removed. The object and its items may have been modified in-place.

Return type imgaug.augmentables.bbs.BoundingBoxesOnImage

remove_out_of_image_fraction(self, fraction)
Remove all BBs with an out of image fraction of at least fraction.

Added in 0.4.0.

Parameters fraction (number) – Minimum out of image fraction that a bounding box has to
have in order to be removed. A fraction of 1.0 removes only bounding boxes that are 100%
outside of the image. A fraction of 0.0 removes all bounding boxes.

432 Chapter 13. API

imgaug Documentation, Release 0.3.0

Returns Reduced set of bounding boxes, with those that had an out of image fraction greater or
equal the given one removed.

Return type imgaug.augmentables.bbs.BoundingBoxesOnImage

remove_out_of_image_fraction_(self, fraction)
Remove in-place all BBs with an OOI fraction of at least fraction.

‘OOI’ is the abbreviation for ‘out of image’.

Added in 0.4.0.

Parameters fraction (number) – Minimum out of image fraction that a bounding box has to
have in order to be removed. A fraction of 1.0 removes only bounding boxes that are 100%
outside of the image. A fraction of 0.0 removes all bounding boxes.

Returns Reduced set of bounding boxes, with those that had an out of image fraction greater or
equal the given one removed. The object and its items may have been modified in-place.

Return type imgaug.augmentables.bbs.BoundingBoxesOnImage

shift(self, x=0, y=0, top=None, right=None, bottom=None, left=None)
Move all BBs along the x/y-axis.

The origin (0, 0) is at the top left of the image.

Parameters

• x (number, optional) – Value to be added to all x-coordinates. Positive values shift towards
the right images.

• y (number, optional) – Value to be added to all y-coordinates. Positive values shift towards
the bottom images.

• top (None or int, optional) – Deprecated since 0.4.0. Amount of pixels by which to shift
all objects from the top (towards the bottom).

• right (None or int, optional) – Deprecated since 0.4.0. Amount of pixels by which to shift
all objects from the right (towads the left).

• bottom (None or int, optional) – Deprecated since 0.4.0. Amount of pixels by which to
shift all objects from the bottom (towards the top).

• left (None or int, optional) – Deprecated since 0.4.0. Amount of pixels by which to shift
all objects from the left (towards the right).

Returns Shifted bounding boxes.

Return type imgaug.augmentables.bbs.BoundingBoxesOnImage

shift_(self, x=0, y=0)
Move all BBs along the x/y-axis in-place.

The origin (0, 0) is at the top left of the image.

Added in 0.4.0.

Parameters

• x (number, optional) – Value to be added to all x-coordinates. Positive values shift towards
the right images.

• y (number, optional) – Value to be added to all y-coordinates. Positive values shift towards
the bottom images.

Returns Shifted bounding boxes. The object and its items may have been modified in-place.

13.9. imgaug.augmentables.bbs 433

imgaug Documentation, Release 0.3.0

Return type imgaug.augmentables.bbs.BoundingBoxesOnImage

to_keypoints_on_image(self)
Convert the bounding boxes to one KeypointsOnImage instance.

Added in 0.4.0.

Returns A keypoints instance containing N*4 coordinates for N bounding boxes. Order matches
the order in bounding_boxes.

Return type imgaug.augmentables.kps.KeypointsOnImage

to_polygons_on_image(self)
Convert the bounding boxes to one PolygonsOnImage instance.

Added in 0.4.0.

Returns A PolygonsOnImage containing polygons. Each polygon covers the same area as
the corresponding bounding box.

Return type imgaug.augmentables.polys.PolygonsOnImage

to_xy_array(self)
Convert the BoundingBoxesOnImage object to an (N,2) ndarray.

Added in 0.4.0.

Returns (2*B,2) ndarray of xy-coordinates, where B denotes the number of bounding
boxes.

Return type ndarray

to_xyxy_array(self, dtype=<class ’numpy.float32’>)
Convert the BoundingBoxesOnImage object to an (N,4) ndarray.

This is the inverse of from_xyxy_array().

Parameters dtype (numpy.dtype, optional) – Desired output datatype of the ndarray.

Returns (N,4) ndarray, where N denotes the number of bounding boxes and 4 denotes the
top-left and bottom-right bounding box corner coordinates in form (x1, y1, x2, y2).

Return type ndarray

width
Get the width of the image on which the bounding boxes fall.

Returns Image width.

Return type int

13.10 imgaug.augmentables.heatmaps

Classes to represent heatmaps, i.e. float arrays of [0.0, 1.0].

class imgaug.augmentables.heatmaps.HeatmapsOnImage(arr, shape, min_value=0.0,
max_value=1.0)

Bases: imgaug.augmentables.base.IAugmentable

Object representing heatmaps on a single image.

Parameters

434 Chapter 13. API

imgaug Documentation, Release 0.3.0

• arr ((H,W) ndarray or (H,W,C) ndarray) – Array representing the heatmap(s) on a single
image. Multiple heatmaps may be provided, in which case C is expected to denote the
heatmap index. The array must be of dtype float32.

• shape (tuple of int) – Shape of the image on which the heatmap(s) is/are placed. Not the
shape of the heatmap(s) array, unless it is identical to the image shape (note the likely dif-
ference between the arrays in the number of channels). This is expected to be (H, W) or
(H, W, C) with C usually being 3. If there is no corresponding image, use (H_arr,
W_arr) instead, where H_arr is the height of the heatmap(s) array (analogous W_arr).

• min_value (float, optional) – Minimum value for the heatmaps that arr represents. This
will usually be 0.0.

• max_value (float, optional) – Maximum value for the heatmaps that arr represents. This
will usually be 1.0.

Methods

avg_pool(self, block_size) Average-pool the heatmap(s) array using a given
block/kernel size.

change_normalization(arr, source, target) Change the value range of a heatmap array.
copy(self) Create a shallow copy of the heatmaps object.
deepcopy(self) Create a deep copy of the heatmaps object.
draw(self[, size, cmap]) Render the heatmaps as RGB images.
draw_on_image(self, image[, alpha, cmap, re-
size])

Draw the heatmaps as overlays over an image.

from_0to1(arr_0to1, shape[, min_value, . . .]) Create a heatmaps object from a [0.0, 1.0] float
array.

from_uint8(arr_uint8, shape[, min_value, . . .]) Create a float-based heatmaps object from an
uint8 array.

get_arr(self) Get the heatmap’s array in value range provided to
__init__().

invert(self) Invert each component in the heatmap.
max_pool(self, block_size) Max-pool the heatmap(s) array using a given

block/kernel size.
pad(self[, top, right, bottom, left, mode, cval]) Pad the heatmaps at their top/right/bottom/left side.
pad_to_aspect_ratio(self, aspect_ratio[,
. . .])

Pad the heatmaps until they match a target aspect ra-
tio.

resize(self, sizes[, interpolation]) Resize the heatmap(s) array given a target size and
interpolation.

scale(self, *args, **kwargs) Deprecated.
to_uint8(self) Convert this heatmaps object to an uint8 array.

avg_pool(self, block_size)
Average-pool the heatmap(s) array using a given block/kernel size.

Parameters block_size (int or tuple of int) – Size of each block of values to pool, aka kernel
size. See pool() for details.

Returns Heatmaps after average pooling.

Return type imgaug.augmentables.heatmaps.HeatmapsOnImage

classmethod change_normalization(arr, source, target)
Change the value range of a heatmap array.

13.10. imgaug.augmentables.heatmaps 435

imgaug Documentation, Release 0.3.0

E.g. the value range may be changed from the interval [0.0, 1.0] to [-1.0, 1.0].

Parameters

• arr (ndarray) – Heatmap array to modify.

• source (tuple of float) – Current value range of the input array, given as a tuple (min,
max), where both are float values.

• target (tuple of float) – Desired output value range of the array, given as a tuple (min,
max), where both are float values.

Returns Input array, with value range projected to the desired target value range.

Return type ndarray

copy(self)
Create a shallow copy of the heatmaps object.

Returns Shallow copy.

Return type imgaug.augmentables.heatmaps.HeatmapsOnImage

deepcopy(self)
Create a deep copy of the heatmaps object.

Returns Deep copy.

Return type imgaug.augmentables.heatmaps.HeatmapsOnImage

draw(self, size=None, cmap=’jet’)
Render the heatmaps as RGB images.

Parameters

• size (None or float or iterable of int or iterable of float, optional) – Size of the rendered
RGB image as (height, width). See imresize_single_image() for details.
If set to None, no resizing is performed and the size of the heatmaps array is used.

• cmap (str or None, optional) – Name of the matplotlib color map to use when convert
the heatmaps to RGB images. If set to None, no color map will be used and the heatmaps
will be converted to simple intensity maps.

Returns Rendered heatmaps as uint8 arrays. Always a list containing one RGB image per
heatmap array channel.

Return type list of (H,W,3) ndarray

draw_on_image(self, image, alpha=0.75, cmap=’jet’, resize=’heatmaps’)
Draw the heatmaps as overlays over an image.

Parameters

• image ((H,W,3) ndarray) – Image onto which to draw the heatmaps. Expected to be of
dtype uint8.

• alpha (float, optional) – Alpha/opacity value to use for the mixing of image and heatmaps.
Larger values mean that the heatmaps will be more visible and the image less visible.

• cmap (str or None, optional) – Name of the matplotlib color map to use. See
HeatmapsOnImage.draw() for details.

• resize ({‘heatmaps’, ‘image’}, optional) – In case of size differences between the image
and heatmaps, either the image or the heatmaps can be resized. This parameter controls
which of the two will be resized to the other’s size.

436 Chapter 13. API

imgaug Documentation, Release 0.3.0

Returns Rendered overlays as uint8 arrays. Always a list containing one RGB image per
heatmap array channel.

Return type list of (H,W,3) ndarray

static from_0to1(arr_0to1, shape, min_value=0.0, max_value=1.0)
Create a heatmaps object from a [0.0, 1.0] float array.

Parameters

• arr_0to1 ((H,W) or (H,W,C) ndarray) – Heatmap(s) array, where H is the height, W is the
width and C is the number of heatmap channels. Expected dtype is float32.

• shape (tuple of ints) – Shape of the image on which the heatmap(s) is/are placed. Not
the shape of the heatmap(s) array, unless it is identical to the image shape (note the likely
difference between the arrays in the number of channels). If there is not a corresponding
image, use the shape of the heatmaps array.

• min_value (float, optional) – Minimum value of the float heatmaps that the input array
represents. This will usually be 0.0. In most other cases it will be close to the interval [0.
0, 1.0]. Calling get_arr(), will automatically convert the interval [0.0, 1.0]
float array to this [min, max] interval.

• max_value (float, optional) – Minimum value of the float heatmaps that the input array
represents. This will usually be 1.0. See parameter min_value for details.

Returns Heatmaps object.

Return type imgaug.augmentables.heatmaps.HeatmapsOnImage

static from_uint8(arr_uint8, shape, min_value=0.0, max_value=1.0)
Create a float-based heatmaps object from an uint8 array.

Parameters

• arr_uint8 ((H,W) ndarray or (H,W,C) ndarray) – Heatmap(s) array, where H is height, W
is width and C is the number of heatmap channels. Expected dtype is uint8.

• shape (tuple of int) – Shape of the image on which the heatmap(s) is/are placed. Not the
shape of the heatmap(s) array, unless it is identical to the image shape (note the likely
difference between the arrays in the number of channels). If there is not a corresponding
image, use the shape of the heatmaps array.

• min_value (float, optional) – Minimum value of the float heatmaps that the input array
represents. This will usually be 0.0. In most other cases it will be close to the interval [0.
0, 1.0]. Calling get_arr(), will automatically convert the interval [0.0, 1.0]
float array to this [min, max] interval.

• max_value (float, optional) – Minimum value of the float heatmaps that the input array
represents. This will usually be 1.0. See parameter min_value for details.

Returns Heatmaps object.

Return type imgaug.augmentables.heatmaps.HeatmapsOnImage

get_arr(self)
Get the heatmap’s array in value range provided to __init__().

The HeatmapsOnImage object saves heatmaps internally in the value range [0.0, 1.0]. This
function converts the internal representation to [min, max], where min and max are provided to
HeatmapsOnImage.__init__() upon instantiation of the object.

Returns Heatmap array of dtype float32.

13.10. imgaug.augmentables.heatmaps 437

imgaug Documentation, Release 0.3.0

Return type (H,W) ndarray or (H,W,C) ndarray

invert(self)
Invert each component in the heatmap.

This shifts low values towards high values and vice versa.

This changes each value to:

v' = max - (v - min)

where v is the value at a spatial location, min is the minimum value in the heatmap and max is the
maximum value. As the heatmap uses internally a 0.0 to 1.0 representation, this simply becomes v' =
1.0 - v.

This function can be useful e.g. when working with depth maps, where algorithms might have an easier
time representing the furthest away points with zeros, requiring an inverted depth map.

Returns Inverted heatmap.

Return type imgaug.augmentables.heatmaps.HeatmapsOnImage

max_pool(self, block_size)
Max-pool the heatmap(s) array using a given block/kernel size.

Parameters block_size (int or tuple of int) – Size of each block of values to pool, aka kernel
size. See pool() for details.

Returns Heatmaps after max-pooling.

Return type imgaug.augmentables.heatmaps.HeatmapsOnImage

pad(self, top=0, right=0, bottom=0, left=0, mode=’constant’, cval=0.0)
Pad the heatmaps at their top/right/bottom/left side.

Parameters

• top (int, optional) – Amount of pixels to add at the top side of the heatmaps. Must be 0 or
greater.

• right (int, optional) – Amount of pixels to add at the right side of the heatmaps. Must be
0 or greater.

• bottom (int, optional) – Amount of pixels to add at the bottom side of the heatmaps. Must
be 0 or greater.

• left (int, optional) – Amount of pixels to add at the left side of the heatmaps. Must be 0 or
greater.

• mode (string, optional) – Padding mode to use. See pad() for details.

• cval (number, optional) – Value to use for padding mode is constant. See pad() for
details.

Returns Padded heatmaps of height H'=H+top+bottom and width W'=W+left+right.

Return type imgaug.augmentables.heatmaps.HeatmapsOnImage

pad_to_aspect_ratio(self, aspect_ratio, mode=’constant’, cval=0.0, re-
turn_pad_amounts=False)

Pad the heatmaps until they match a target aspect ratio.

Depending on which dimension is smaller (height or width), only the corresponding sides (left/right or
top/bottom) will be padded. In each case, both of the sides will be padded equally.

Parameters

438 Chapter 13. API

imgaug Documentation, Release 0.3.0

• aspect_ratio (float) – Target aspect ratio, given as width/height. E.g. 2.0 denotes the
image having twice as much width as height.

• mode (str, optional) – Padding mode to use. See pad() for details.

• cval (number, optional) – Value to use for padding if mode is constant. See pad() for
details.

• return_pad_amounts (bool, optional) – If False, then only the padded instance will
be returned. If True, a tuple with two entries will be returned, where the first entry
is the padded instance and the second entry are the amounts by which each array side
was padded. These amounts are again a tuple of the form (top, right, bottom,
left), with each value being an integer.

Returns

• imgaug.augmentables.heatmaps.HeatmapsOnImage – Padded heatmaps as
HeatmapsOnImage instance.

• tuple of int – Amounts by which the instance’s array was padded on each side, given
as a tuple (top, right, bottom, left). This tuple is only returned if re-
turn_pad_amounts was set to True.

resize(self, sizes, interpolation=’cubic’)
Resize the heatmap(s) array given a target size and interpolation.

Parameters

• sizes (float or iterable of int or iterable of float) – New size of the array in (height,
width). See imresize_single_image() for details.

• interpolation (None or str or int, optional) – The interpolation to use during resize. See
imresize_single_image() for details.

Returns Resized heatmaps object.

Return type imgaug.augmentables.heatmaps.HeatmapsOnImage

scale(self, *args, **kwargs)
Deprecated. Use HeatmapsOnImage.resize() instead. resize() has the exactly same interface.

Resize the heatmap(s) array given a target size and interpolation.

to_uint8(self)
Convert this heatmaps object to an uint8 array.

Returns Heatmap as an uint8 array, i.e. with the discrete value range [0, 255].

Return type (H,W,C) ndarray

13.11 imgaug.augmentables.kps

Classes to represent keypoints, i.e. points given as xy-coordinates.

class imgaug.augmentables.kps.Keypoint(x, y)
Bases: object

A single keypoint (aka landmark) on an image.

Parameters

• x (number) – Coordinate of the keypoint on the x axis.

13.11. imgaug.augmentables.kps 439

imgaug Documentation, Release 0.3.0

• y (number) – Coordinate of the keypoint on the y axis.

Attributes

coords Get the xy-coordinates as an (N,2) ndarray.

x_int Get the keypoint’s x-coordinate, rounded to the closest integer.

xy Get the keypoint’s x- and y-coordinate as a single array.

xy_int Get the keypoint’s xy-coord, rounded to closest integer.

y_int Get the keypoint’s y-coordinate, rounded to the closest integer.

Methods

almost_equals(self, other[, max_distance]) Compare this and another KP’s coordinates.
compute_out_of_image_fraction(self,
image)

Compute fraction of the keypoint that is out of the
image plane.

coords_almost_equals(self, other[,
max_distance])

Estimate if this and another KP have almost identical
coordinates.

copy(self[, x, y]) Create a shallow copy of the keypoint instance.
deepcopy(self[, x, y]) Create a deep copy of the keypoint instance.
draw_on_image(self, image[, color, alpha, . . .]) Draw the keypoint onto a given image.
generate_similar_points_manhattan(self,
. . .)

Generate nearby points based on manhattan distance.

is_out_of_image(self, image) Estimate whether this point is outside of the given
image plane.

project(self, from_shape, to_shape) Project the keypoint onto a new position on a new
image.

project_(self, from_shape, to_shape) Project in-place the keypoint onto a new position on
a new image.

shift(self[, x, y]) Move the keypoint around on an image.
shift_(self[, x, y]) Move the keypoint around on an image in-place.

almost_equals(self, other, max_distance=0.0001)
Compare this and another KP’s coordinates.

Note: This method is currently identical to coords_almost_equals. It exists for consistency with
BoundingBox and Polygons.

Added in 0.4.0.

Parameters

• other (imgaug.augmentables.kps.Keypoint or iterable) – The other object to compare
against. Expected to be a Keypoint.

• max_distance (number, optional) – See coords_almost_equals().

Returns True if the coordinates are almost equal. Otherwise False.

Return type bool

compute_out_of_image_fraction(self, image)
Compute fraction of the keypoint that is out of the image plane.

440 Chapter 13. API

imgaug Documentation, Release 0.3.0

The fraction is always either 1.0 (point is outside of the image plane) or 0.0 (point is inside the image
plane). This method exists for consistency with other augmentables, e.g. bounding boxes.

Added in 0.4.0.

Parameters image ((H,W,. . .) ndarray or tuple of int) – Image dimensions to use. If an
ndarray, its shape will be used. If a tuple, it is assumed to represent the image shape
and must contain at least two integers.

Returns Either 1.0 (point is outside of the image plane) or 0.0 (point is inside of it).

Return type float

coords
Get the xy-coordinates as an (N,2) ndarray.

Added in 0.4.0.

Returns An (N, 2) float32 ndarray with N=1 containing the coordinates of this keypoints.

Return type ndarray

coords_almost_equals(self, other, max_distance=0.0001)
Estimate if this and another KP have almost identical coordinates.

Added in 0.4.0.

Parameters

• other (imgaug.augmentables.kps.Keypoint or iterable) – The other keypoint with which
to compare this one. If this is an iterable, it is assumed to contain the xy-coordinates
of a keypoint.

• max_distance (number, optional) – The maximum euclidean distance between a this key-
point and the other one. If the distance is exceeded, the two keypoints are not viewed as
equal.

Returns Whether the two keypoints have almost identical coordinates.

Return type bool

copy(self, x=None, y=None)
Create a shallow copy of the keypoint instance.

Parameters

• x (None or number, optional) – Coordinate of the keypoint on the x axis. If None, the
instance’s value will be copied.

• y (None or number, optional) – Coordinate of the keypoint on the y axis. If None, the
instance’s value will be copied.

Returns Shallow copy.

Return type imgaug.augmentables.kps.Keypoint

deepcopy(self, x=None, y=None)
Create a deep copy of the keypoint instance.

Parameters

• x (None or number, optional) – Coordinate of the keypoint on the x axis. If None, the
instance’s value will be copied.

• y (None or number, optional) – Coordinate of the keypoint on the y axis. If None, the
instance’s value will be copied.

13.11. imgaug.augmentables.kps 441

imgaug Documentation, Release 0.3.0

Returns Deep copy.

Return type imgaug.augmentables.kps.Keypoint

draw_on_image(self, image, color=(0, 255, 0), alpha=1.0, size=3, copy=True,
raise_if_out_of_image=False)

Draw the keypoint onto a given image.

The keypoint is drawn as a square.

Parameters

• image ((H,W,3) ndarray) – The image onto which to draw the keypoint.

• color (int or list of int or tuple of int or (3,) ndarray, optional) – The RGB color of the
keypoint. If a single int C, then that is equivalent to (C,C,C).

• alpha (float, optional) – The opacity of the drawn keypoint, where 1.0 denotes a fully
visible keypoint and 0.0 an invisible one.

• size (int, optional) – The size of the keypoint. If set to S, each square will have size S x
S.

• copy (bool, optional) – Whether to copy the image before drawing the keypoint.

• raise_if_out_of_image (bool, optional) – Whether to raise an exception if the keypoint is
outside of the image.

Returns image – Image with drawn keypoint.

Return type (H,W,3) ndarray

generate_similar_points_manhattan(self, nb_steps, step_size, return_array=False)
Generate nearby points based on manhattan distance.

To generate the first neighbouring points, a distance of S (step size) is moved from the center point (this
keypoint) to the top, right, bottom and left, resulting in four new points. From these new points, the pattern
is repeated. Overlapping points are ignored.

The resulting points have a shape similar to a square rotated by 45 degrees.

Parameters

• nb_steps (int) – The number of steps to move from the center point. nb_steps=1 results
in a total of 5 output points (one center point + four neighbours).

• step_size (number) – The step size to move from every point to its neighbours.

• return_array (bool, optional) – Whether to return the generated points as a list of
Keypoint or an array of shape (N,2), where N is the number of generated points and
the second axis contains the x-/y-coordinates.

Returns If return_array was False, then a list of Keypoint. Otherwise a numpy array of
shape (N,2), where N is the number of generated points and the second axis contains the
x-/y-coordinates. The center keypoint (the one on which this function was called) is always
included.

Return type list of imgaug.augmentables.kps.Keypoint or (N,2) ndarray

is_out_of_image(self, image)
Estimate whether this point is outside of the given image plane.

Added in 0.4.0.

442 Chapter 13. API

imgaug Documentation, Release 0.3.0

Parameters image ((H,W,. . .) ndarray or tuple of int) – Image dimensions to use. If an
ndarray, its shape will be used. If a tuple, it is assumed to represent the image shape
and must contain at least two integers.

Returns True is the point is inside the image plane, False otherwise.

Return type bool

project(self, from_shape, to_shape)
Project the keypoint onto a new position on a new image.

E.g. if the keypoint is on its original image at x=(10 of 100 pixels) and y=(20 of 100
pixels) and is projected onto a new image with size (width=200, height=200), its new po-
sition will be (20, 40).

This is intended for cases where the original image is resized. It cannot be used for more complex changes
(e.g. padding, cropping).

Parameters

• from_shape (tuple of int) – Shape of the original image. (Before resize.)

• to_shape (tuple of int) – Shape of the new image. (After resize.)

Returns Keypoint object with new coordinates.

Return type imgaug.augmentables.kps.Keypoint

project_(self, from_shape, to_shape)
Project in-place the keypoint onto a new position on a new image.

E.g. if the keypoint is on its original image at x=(10 of 100 pixels) and y=(20 of 100
pixels) and is projected onto a new image with size (width=200, height=200), its new po-
sition will be (20, 40).

This is intended for cases where the original image is resized. It cannot be used for more complex changes
(e.g. padding, cropping).

Added in 0.4.0.

Parameters

• from_shape (tuple of int) – Shape of the original image. (Before resize.)

• to_shape (tuple of int) – Shape of the new image. (After resize.)

Returns Keypoint object with new coordinates. The instance of the keypoint may have been
modified in-place.

Return type imgaug.augmentables.kps.Keypoint

shift(self, x=0, y=0)
Move the keypoint around on an image.

Parameters

• x (number, optional) – Move by this value on the x axis.

• y (number, optional) – Move by this value on the y axis.

Returns Keypoint object with new coordinates.

Return type imgaug.augmentables.kps.Keypoint

shift_(self, x=0, y=0)
Move the keypoint around on an image in-place.

13.11. imgaug.augmentables.kps 443

imgaug Documentation, Release 0.3.0

Added in 0.4.0.

Parameters

• x (number, optional) – Move by this value on the x axis.

• y (number, optional) – Move by this value on the y axis.

Returns Keypoint object with new coordinates. The instance of the keypoint may have been
modified in-place.

Return type imgaug.augmentables.kps.Keypoint

x_int
Get the keypoint’s x-coordinate, rounded to the closest integer.

Returns result – Keypoint’s x-coordinate, rounded to the closest integer.

Return type int

xy
Get the keypoint’s x- and y-coordinate as a single array.

Added in 0.4.0.

Returns A (2,) ndarray denoting the xy-coordinate pair.

Return type ndarray

xy_int
Get the keypoint’s xy-coord, rounded to closest integer.

Added in 0.4.0.

Returns A (2,) ndarray denoting the xy-coordinate pair.

Return type ndarray

y_int
Get the keypoint’s y-coordinate, rounded to the closest integer.

Returns result – Keypoint’s y-coordinate, rounded to the closest integer.

Return type int

class imgaug.augmentables.kps.KeypointsOnImage(keypoints, shape)
Bases: imgaug.augmentables.base.IAugmentable

Container for all keypoints on a single image.

Parameters

• keypoints (list of imgaug.augmentables.kps.Keypoint) – List of keypoints on the image.

• shape (tuple of int or ndarray) – The shape of the image on which the objects are placed.
Either an image with shape (H,W,[C]) or a tuple denoting such an image shape.

Examples

>>> import numpy as np
>>> from imgaug.augmentables.kps import Keypoint, KeypointsOnImage
>>>
>>> image = np.zeros((70, 70))
>>> kps = [Keypoint(x=10, y=20), Keypoint(x=34, y=60)]
>>> kps_oi = KeypointsOnImage(kps, shape=image.shape)

444 Chapter 13. API

imgaug Documentation, Release 0.3.0

Attributes

empty Determine whether this object contains zero keypoints.

height Get the image height.

items Get the keypoints in this container.

width Get the image width.

Methods

clip_out_of_image(self) Remove all KPs that are outside of the image plane.
clip_out_of_image_(self) Remove all KPs that are outside of the image plane.
copy(self[, keypoints, shape]) Create a shallow copy of the KeypointsOnImage

object.
deepcopy(self[, keypoints, shape]) Create a deep copy of the KeypointsOnImage

object.
draw_on_image(self, image[, color, alpha, . . .]) Draw all keypoints onto a given image.
fill_from_xy_array_(self, xy) Modify the keypoint coordinates of this instance in-

place.
from_coords_array(coords, shape) Deprecated.
from_distance_maps(distance_maps[, . . .]) Convert outputs of to_distance_maps() to

KeypointsOnImage.
from_keypoint_image(image[, . . .]) Convert to_keypoint_image() outputs to

KeypointsOnImage.
from_xy_array(xy, shape) Convert an (N,2) array to a

KeypointsOnImage object.
get_coords_array(self) Deprecated.
invert_to_keypoints_on_image_(self, kp-
soi)

Invert the output of
to_keypoints_on_image() in-place.

on(self, image) Project all keypoints from one image shape to a new
one.

on_(self, image) Project all keypoints from one image shape to a new
one in-place.

remove_out_of_image_fraction(self, frac-
tion)

Remove all KPs with an out of image fraction of at
least fraction.

remove_out_of_image_fraction_(self,
fraction)

Remove all KPs with an OOI fraction of at least frac-
tion in-place.

shift(self[, x, y]) Move the keypoints on the x/y-axis.
shift_(self[, x, y]) Move the keypoints on the x/y-axis in-place.
to_distance_maps(self[, inverted]) Generate a (H,W,N) array of distance maps for N

keypoints.
to_keypoint_image(self[, size]) Create an (H,W,N) image with keypoint coordi-

nates set to 255.
to_keypoints_on_image(self) Convert the keypoints to one

KeypointsOnImage instance.
to_xy_array(self) Convert all keypoint coordinates to an array of shape

(N,2).

clip_out_of_image(self)
Remove all KPs that are outside of the image plane.

This method exists for consistency with other augmentables, e.g. bounding boxes.

13.11. imgaug.augmentables.kps 445

imgaug Documentation, Release 0.3.0

Added in 0.4.0.

Returns Keypoints that are inside the image plane.

Return type imgaug.augmentables.kps.KeypointsOnImage

clip_out_of_image_(self)
Remove all KPs that are outside of the image plane.

This method exists for consistency with other augmentables, e.g. bounding boxes.

Added in 0.4.0.

Returns Keypoints that are inside the image plane. The object may have been modified in-place.

Return type imgaug.augmentables.kps.KeypointsOnImage

copy(self, keypoints=None, shape=None)
Create a shallow copy of the KeypointsOnImage object.

Parameters

• keypoints (None or list of imgaug.Keypoint, optional) – List of keypoints on the image. If
None, the instance’s keypoints will be copied.

• shape (tuple of int, optional) – The shape of the image on which the keypoints are placed.
If None, the instance’s shape will be copied.

Returns Shallow copy.

Return type imgaug.augmentables.kps.KeypointsOnImage

deepcopy(self, keypoints=None, shape=None)
Create a deep copy of the KeypointsOnImage object.

Parameters

• keypoints (None or list of imgaug.Keypoint, optional) – List of keypoints on the image. If
None, the instance’s keypoints will be copied.

• shape (tuple of int, optional) – The shape of the image on which the keypoints are placed.
If None, the instance’s shape will be copied.

Returns Deep copy.

Return type imgaug.augmentables.kps.KeypointsOnImage

draw_on_image(self, image, color=(0, 255, 0), alpha=1.0, size=3, copy=True,
raise_if_out_of_image=False)

Draw all keypoints onto a given image.

Each keypoint is drawn as a square of provided color and size.

Parameters

• image ((H,W,3) ndarray) – The image onto which to draw the keypoints. This image
should usually have the same shape as set in KeypointsOnImage.shape.

• color (int or list of int or tuple of int or (3,) ndarray, optional) – The RGB color of all
keypoints. If a single int C, then that is equivalent to (C,C,C).

• alpha (float, optional) – The opacity of the drawn keypoint, where 1.0 denotes a fully
visible keypoint and 0.0 an invisible one.

• size (int, optional) – The size of each point. If set to C, each square will have size C x C.

• copy (bool, optional) – Whether to copy the image before drawing the points.

446 Chapter 13. API

imgaug Documentation, Release 0.3.0

• raise_if_out_of_image (bool, optional) – Whether to raise an exception if any keypoint is
outside of the image.

Returns Image with drawn keypoints.

Return type (H,W,3) ndarray

empty
Determine whether this object contains zero keypoints.

Returns True if this object contains zero keypoints.

Return type bool

fill_from_xy_array_(self, xy)
Modify the keypoint coordinates of this instance in-place.

Note: This currently expects that xy contains exactly as many coordinates as there are keypoints in this
instance. Otherwise, an AssertionError will be raised.

Added in 0.4.0.

Parameters xy ((N, 2) ndarray or iterable of iterable of number) – Coordinates of N keypoints
on an image, given as a (N,2) array of xy-coordinates. N must match the number of key-
points in this instance.

Returns This instance itself, with updated keypoint coordinates. Note that the instance was
modified in-place.

Return type KeypointsOnImage

static from_coords_array(coords, shape)
Deprecated. Use KeypointsOnImage.from_xy_array() instead.

Convert an (N,2) array to a KeypointsOnImage object.

Parameters

coords [(N, 2) ndarray]

Coordinates of N keypoints on an image, given as a (N,2) array of xy-coordinates.

shape [tuple] The shape of the image on which the keypoints are placed.

Returns

imgaug.augmentables.kps.KeypointsOnImage KeypointsOnImage object containing
the array’s keypoints.

static from_distance_maps(distance_maps, inverted=False, if_not_found_coords={’x’: -1,
’y’: -1}, threshold=None, nb_channels=None)

Convert outputs of to_distance_maps() to KeypointsOnImage.

This is the inverse of KeypointsOnImage.to_distance_maps().

Parameters

• distance_maps ((H,W,N) ndarray) – The distance maps. N is the number of keypoints.

• inverted (bool, optional) – Whether the given distance maps were generated in in-
verted mode (i.e. KeypointsOnImage.to_distance_maps() was called with
inverted=True) or in non-inverted mode.

13.11. imgaug.augmentables.kps 447

imgaug Documentation, Release 0.3.0

• if_not_found_coords (tuple or list or dict or None, optional) – Coordinates to use for
keypoints that cannot be found in distance_maps.

– If this is a list/tuple, it must contain two int values.

– If it is a dict, it must contain the keys x and y with each containing one int value.

– If this is None, then the keypoint will not be added to the final KeypointsOnImage
object.

• threshold (float, optional) – The search for keypoints works by searching for the argmin
(non-inverted) or argmax (inverted) in each channel. This parameters contains the max-
imum (non-inverted) or minimum (inverted) value to accept in order to view a hit as a
keypoint. Use None to use no min/max.

• nb_channels (None or int, optional) – Number of channels of the image on which the key-
points are placed. Some keypoint augmenters require that information. If set to None, the
keypoint’s shape will be set to (height, width), otherwise (height, width,
nb_channels).

Returns The extracted keypoints.

Return type imgaug.augmentables.kps.KeypointsOnImage

static from_keypoint_image(image, if_not_found_coords={’x’: -1, ’y’: -1}, threshold=1,
nb_channels=None)

Convert to_keypoint_image() outputs to KeypointsOnImage.

This is the inverse of KeypointsOnImage.to_keypoint_image().

Parameters

• image ((H,W,N) ndarray) – The keypoints image. N is the number of keypoints.

• if_not_found_coords (tuple or list or dict or None, optional) – Coordinates to use for
keypoints that cannot be found in image.

– If this is a list/tuple, it must contain two int values.

– If it is a dict, it must contain the keys x and y with each containing one int value.

– If this is None, then the keypoint will not be added to the final KeypointsOnImage
object.

• threshold (int, optional) – The search for keypoints works by searching for the argmax
in each channel. This parameters contains the minimum value that the max must have in
order to be viewed as a keypoint.

• nb_channels (None or int, optional) – Number of channels of the image on which the key-
points are placed. Some keypoint augmenters require that information. If set to None, the
keypoint’s shape will be set to (height, width), otherwise (height, width,
nb_channels).

Returns The extracted keypoints.

Return type imgaug.augmentables.kps.KeypointsOnImage

classmethod from_xy_array(xy, shape)
Convert an (N,2) array to a KeypointsOnImage object.

Parameters

• xy ((N, 2) ndarray or iterable of iterable of number) – Coordinates of N keypoints on an
image, given as a (N,2) array of xy-coordinates.

• shape (tuple of int or ndarray) – The shape of the image on which the keypoints are placed.

448 Chapter 13. API

imgaug Documentation, Release 0.3.0

Returns KeypointsOnImage object containing the array’s keypoints.

Return type imgaug.augmentables.kps.KeypointsOnImage

get_coords_array(self)
Deprecated. Use KeypointsOnImage.to_xy_array() instead.

Convert all keypoint coordinates to an array of shape (N,2).

Returns

(N, 2) ndarray Array containing the coordinates of all keypoints. N denotes the number of
keypoints. The second axis denotes the x/y-coordinates.

height
Get the image height.

Returns Image height.

Return type int

invert_to_keypoints_on_image_(self, kpsoi)
Invert the output of to_keypoints_on_image() in-place.

This function writes in-place into this KeypointsOnImage instance.

Added in 0.4.0.

Parameters kpsoi (imgaug.augmentables.kps.KeypointsOnImages) – Keypoints to copy data
from, i.e. the outputs of to_keypoints_on_image().

Returns Keypoints container with updated coordinates. Note that the instance is also updated
in-place.

Return type KeypointsOnImage

items
Get the keypoints in this container.

Added in 0.4.0.

Returns Keypoints within this container.

Return type list of Keypoint

on(self, image)
Project all keypoints from one image shape to a new one.

Parameters image (ndarray or tuple of int) – New image onto which the keypoints are to be
projected. May also simply be that new image’s shape tuple.

Returns Object containing all projected keypoints.

Return type imgaug.augmentables.kps.KeypointsOnImage

on_(self, image)
Project all keypoints from one image shape to a new one in-place.

Added in 0.4.0.

Parameters image (ndarray or tuple of int) – New image onto which the keypoints are to be
projected. May also simply be that new image’s shape tuple.

Returns Object containing all projected keypoints. The object may have been modified in-place.

Return type imgaug.augmentables.kps.KeypointsOnImage

13.11. imgaug.augmentables.kps 449

imgaug Documentation, Release 0.3.0

remove_out_of_image_fraction(self, fraction)
Remove all KPs with an out of image fraction of at least fraction.

This method exists for consistency with other augmentables, e.g. bounding boxes.

Added in 0.4.0.

Parameters fraction (number) – Minimum out of image fraction that a keypoint has to have
in order to be removed. Note that any keypoint can only have a fraction of either 1.0 (is
outside) or 0.0 (is inside). Set this to 0.0+eps to remove all points that are outside of the
image. Setting this to 0.0 will remove all points.

Returns Reduced set of keypoints, with those thathad an out of image fraction greater or equal
the given one removed.

Return type imgaug.augmentables.kps.KeypointsOnImage

remove_out_of_image_fraction_(self, fraction)
Remove all KPs with an OOI fraction of at least fraction in-place.

‘OOI’ is the abbreviation for ‘out of image’.

This method exists for consistency with other augmentables, e.g. bounding boxes.

Added in 0.4.0.

Parameters fraction (number) – Minimum out of image fraction that a keypoint has to have
in order to be removed. Note that any keypoint can only have a fraction of either 1.0 (is
outside) or 0.0 (is inside). Set this to 0.0+eps to remove all points that are outside of the
image. Setting this to 0.0 will remove all points.

Returns Reduced set of keypoints, with those thathad an out of image fraction greater or equal
the given one removed. The object may have been modified in-place.

Return type imgaug.augmentables.kps.KeypointsOnImage

shift(self, x=0, y=0)
Move the keypoints on the x/y-axis.

Parameters

• x (number, optional) – Move each keypoint by this value on the x axis.

• y (number, optional) – Move each keypoint by this value on the y axis.

Returns Keypoints after moving them.

Return type imgaug.augmentables.kps.KeypointsOnImage

shift_(self, x=0, y=0)
Move the keypoints on the x/y-axis in-place.

Added in 0.4.0.

Parameters

• x (number, optional) – Move each keypoint by this value on the x axis.

• y (number, optional) – Move each keypoint by this value on the y axis.

Returns Keypoints after moving them. The object and its items may have been modified in-
place.

Return type imgaug.augmentables.kps.KeypointsOnImage

450 Chapter 13. API

imgaug Documentation, Release 0.3.0

to_distance_maps(self, inverted=False)
Generate a (H,W,N) array of distance maps for N keypoints.

The n-th distance map contains at every location (y, x) the euclidean distance to the n-th keypoint.

This function can be used as a helper when augmenting keypoints with a method that only supports the
augmentation of images.

Parameters inverted (bool, optional) – If True, inverted distance maps are returned where
each distance value d is replaced by d/(d+1), i.e. the distance maps have values in the
range (0.0, 1.0] with 1.0 denoting exactly the position of the respective keypoint.

Returns A float32 array containing N distance maps for N keypoints. Each location (y, x,
n) in the array denotes the euclidean distance at (y, x) to the n-th keypoint. If inverted is
True, the distance d is replaced by d/(d+1). The height and width of the array match the
height and width in KeypointsOnImage.shape.

Return type (H,W,N) ndarray

to_keypoint_image(self, size=1)
Create an (H,W,N) image with keypoint coordinates set to 255.

This method generates a new uint8 array of shape (H,W,N), where H is the .shape height, W the
.shape width and N is the number of keypoints. The array is filled with zeros. The coordinate of the n-th
keypoint is set to 255 in the n-th channel.

This function can be used as a helper when augmenting keypoints with a method that only supports the
augmentation of images.

Parameters size (int) – Size of each (squared) point.

Returns Image in which the keypoints are marked. H is the height, defined in
KeypointsOnImage.shape[0] (analogous W). N is the number of keypoints.

Return type (H,W,N) ndarray

to_keypoints_on_image(self)
Convert the keypoints to one KeypointsOnImage instance.

This method exists for consistency with BoundingBoxesOnImage, PolygonsOnImage and
LineStringsOnImage.

Added in 0.4.0.

Returns Copy of this keypoints instance.

Return type imgaug.augmentables.kps.KeypointsOnImage

to_xy_array(self)
Convert all keypoint coordinates to an array of shape (N,2).

Returns Array containing the coordinates of all keypoints. N denotes the number of keypoints.
The second axis denotes the x/y-coordinates.

Return type (N, 2) ndarray

width
Get the image width.

Returns Image width.

Return type int

imgaug.augmentables.kps.compute_geometric_median(points=None, eps=1e-05, X=None)
Estimate the geometric median of points in 2D.

13.11. imgaug.augmentables.kps 451

imgaug Documentation, Release 0.3.0

Code from https://stackoverflow.com/a/30305181

Parameters

• points ((N,2) ndarray) – Points in 2D. Second axis must be given in xy-form.

• eps (float, optional) – Distance threshold when to return the median.

• X (None or (N,2) ndarray, optional) – Deprecated.

Returns Geometric median as xy-coordinate.

Return type (2,) ndarray

13.12 imgaug.augmentables.lines

Classes representing lines.

class imgaug.augmentables.lines.LineString(coords, label=None)
Bases: object

Class representing line strings.

A line string is a collection of connected line segments, each having a start and end point. Each point is given as
its (x, y) absolute (sub-)pixel coordinates. The end point of each segment is also the start point of the next
segment.

The line string is not closed, i.e. start and end point are expected to differ and will not be connected in drawings.

Parameters

• coords (iterable of tuple of number or ndarray) – The points of the line string.

• label (None or str, optional) – The label of the line string.

Attributes

height Compute the height of a bounding box encapsulating the line.

length Compute the total euclidean length of the line string.

width Compute the width of a bounding box encapsulating the line.

xx Get an array of x-coordinates of all points of the line string.

xx_int Get an array of discrete x-coordinates of all points.

yy Get an array of y-coordinates of all points of the line string.

yy_int Get an array of discrete y-coordinates of all points.

Methods

almost_equals(self, other[, max_distance, . . .]) Compare this and another line string.
clip_out_of_image(self, image) Clip off all parts of the line string that are outside of

the image.
compute_distance(self, other[, default]) Compute the minimal distance between the line

string and other.
compute_neighbour_distances(self) Compute the euclidean distance between each two

consecutive points.
Continued on next page

452 Chapter 13. API

https://stackoverflow.com/a/30305181

imgaug Documentation, Release 0.3.0

Table 45 – continued from previous page
compute_out_of_image_fraction(self,
image)

Compute fraction of polygon area outside of the im-
age plane.

compute_pointwise_distances(self,
other[, . . .])

Compute min distances between points of this and
another line string.

concatenate(self, other) Concatenate this line string with another one.
contains(self, other[, max_distance]) Estimate whether a point is on this line string.
coords_almost_equals(self, other[, . . .]) Compare this and another LineString’s coordinates.
copy(self[, coords, label]) Create a shallow copy of this line string.
deepcopy(self[, coords, label]) Create a deep copy of this line string.
draw_heatmap_array(self, image_shape[,
. . .])

Draw the line segments and points of the line string
as a heatmap array.

draw_lines_heatmap_array(self, im-
age_shape)

Draw the line segments of this line string as a
heatmap array.

draw_lines_on_image(self, image[, color,
. . .])

Draw the line segments of this line string on a given
image.

draw_mask(self, image_shape[, size_lines, . . .]) Draw this line segment as a binary image mask.
draw_on_image(self, image[, color, . . .]) Draw this line string onto an image.
draw_points_heatmap_array(self, im-
age_shape)

Draw the points of this line string as a heatmap array.

draw_points_on_image(self, image[, color,
. . .])

Draw the points of this line string onto a given image.

extract_from_image(self, image[, size, pad,
. . .])

Extract all image pixels covered by the line string.

find_intersections_with(self, other) Find all intersection points between this line string
and other.

get_pointwise_inside_image_mask(self,
image)

Determine per point whether it is inside of a given
image plane.

is_fully_within_image(self, image[, de-
fault])

Estimate whether the line string is fully inside an im-
age plane.

is_out_of_image(self, image[, fully, . . .]) Estimate whether the line is partially/fully outside of
the image area.

is_partly_within_image(self, image[, de-
fault])

Estimate whether the line string is at least partially
inside the image.

project(self, from_shape, to_shape) Project the line string onto a differently shaped im-
age.

project_(self, from_shape, to_shape) Project the line string onto a differently shaped im-
age in-place.

shift(self[, x, y, top, right, bottom, left]) Move this line string along the x/y-axis.
shift_(self[, x, y]) Move this line string along the x/y-axis in-place.
subdivide(self, points_per_edge) Derive a new line string with N interpolated points

per edge.
to_bounding_box(self) Generate a bounding box encapsulating the line

string.
to_heatmap(self, image_shape[, size_lines, . . .]) Generate a heatmap object from the line string.
to_keypoints(self) Convert the line string points to keypoints.
to_polygon(self) Generate a polygon from the line string points.
to_segmentation_map(self, image_shape[,
. . .])

Generate a segmentation map object from the line
string.

almost_equals(self, other, max_distance=0.0001, points_per_edge=8)
Compare this and another line string.

13.12. imgaug.augmentables.lines 453

imgaug Documentation, Release 0.3.0

Parameters

• other (imgaug.augmentables.lines.LineString) – The other object to compare against. Ex-
pected to be a LineString.

• max_distance (float, optional) – See coords_almost_equals().

• points_per_edge (int, optional) – See coords_almost_equals().

Returns True if the coordinates are almost equal and additionally the labels are equal. Other-
wise False.

Return type bool

clip_out_of_image(self, image)
Clip off all parts of the line string that are outside of the image.

Parameters image (ndarray or tuple of int) – Either an image with shape (H,W,[C]) or a
tuple denoting such an image shape.

Returns Line strings, clipped to the image shape. The result may contain any number of line
strins, including zero.

Return type list of imgaug.augmentables.lines.LineString

compute_distance(self, other, default=None)
Compute the minimal distance between the line string and other.

Parameters

• other (tuple of number or imgaug.augmentables.kps.Keypoint or im-
gaug.augmentables.LineString) – Other object to which to compute the distance.

• default (any) – Value to return if this line string or other contain no points.

Returns Minimal distance to other or default if no distance could be computed.

Return type float or any

compute_neighbour_distances(self)
Compute the euclidean distance between each two consecutive points.

Returns (N-1,) float32 array of euclidean distances between point pairs. Same order as in
coords.

Return type ndarray

compute_out_of_image_fraction(self, image)
Compute fraction of polygon area outside of the image plane.

This estimates f = A_ooi / A, where A_ooi is the area of the polygon that is outside of the image
plane, while A is the total area of the bounding box.

Added in 0.4.0.

Parameters image ((H,W,. . .) ndarray or tuple of int) – Image dimensions to use. If an
ndarray, its shape will be used. If a tuple, it is assumed to represent the image shape
and must contain at least two integers.

Returns Fraction of the polygon area that is outside of the image plane. Returns 0.0 if the
polygon is fully inside of the image plane. If the polygon has an area of zero, the polygon
is treated similarly to a LineString, i.e. the fraction of the line that is inside the image
plane is returned.

Return type float

454 Chapter 13. API

imgaug Documentation, Release 0.3.0

compute_pointwise_distances(self, other, default=None)
Compute min distances between points of this and another line string.

Parameters

• other (tuple of number or imgaug.augmentables.kps.Keypoint or im-
gaug.augmentables.LineString) – Other object to which to compute the distances.

• default (any) – Value to return if other contains no points.

Returns For each coordinate of this line string, the distance to any closest location on other.
default if no distance could be computed.

Return type list of float or any

concatenate(self, other)
Concatenate this line string with another one.

This will add a line segment between the end point of this line string and the start point of other.

Parameters other (imgaug.augmentables.lines.LineString or ndarray or iterable of tuple of
number) – The points to add to this line string.

Returns New line string with concatenated points. The label of this line string will be kept.

Return type imgaug.augmentables.lines.LineString

contains(self, other, max_distance=0.0001)
Estimate whether a point is on this line string.

This method uses a maximum distance to estimate whether a point is on a line string.

Parameters

• other (tuple of number or imgaug.augmentables.kps.Keypoint) – Point to check for.

• max_distance (float) – Maximum allowed euclidean distance between the point and the
closest point on the line. If the threshold is exceeded, the point is not considered to fall on
the line.

Returns True if the point is on the line string, False otherwise.

Return type bool

coords_almost_equals(self, other, max_distance=0.0001, points_per_edge=8)
Compare this and another LineString’s coordinates.

This is an approximate method based on pointwise distances and can in rare corner cases produce wrong
outputs.

Parameters

• other (imgaug.augmentables.lines.LineString or tuple of number or ndarray or list of
ndarray or list of tuple of number) – The other line string or its coordinates.

• max_distance (float, optional) – Max distance of any point from the other line string
before the two line strings are evaluated to be unequal.

• points_per_edge (int, optional) – How many points to interpolate on each edge.

Returns Whether the two LineString’s coordinates are almost identical, i.e. the max distance
is below the threshold. If both have no coordinates, True is returned. If only one has no
coordinates, False is returned. Beyond that, the number of points is not evaluated.

Return type bool

13.12. imgaug.augmentables.lines 455

imgaug Documentation, Release 0.3.0

copy(self, coords=None, label=None)
Create a shallow copy of this line string.

Parameters

• coords (None or iterable of tuple of number or ndarray) – If not None, then the coords of
the copied object will be set to this value.

• label (None or str) – If not None, then the label of the copied object will be set to this
value.

Returns Shallow copy.

Return type imgaug.augmentables.lines.LineString

deepcopy(self, coords=None, label=None)
Create a deep copy of this line string.

Parameters

• coords (None or iterable of tuple of number or ndarray) – If not None, then the coords of
the copied object will be set to this value.

• label (None or str) – If not None, then the label of the copied object will be set to this
value.

Returns Deep copy.

Return type imgaug.augmentables.lines.LineString

draw_heatmap_array(self, image_shape, alpha_lines=1.0, alpha_points=1.0, size_lines=1,
size_points=0, antialiased=True, raise_if_out_of_image=False)

Draw the line segments and points of the line string as a heatmap array.

Parameters

• image_shape (tuple of int) – The shape of the image onto which to draw the line mask.

• alpha_lines (float, optional) – Opacity of the line string. Higher values denote a more
visible line string.

• alpha_points (float, optional) – Opacity of the line string points. Higher values denote a
more visible points.

• size_lines (int, optional) – Thickness of the line segments.

• size_points (int, optional) – Size of the points in pixels.

• antialiased (bool, optional) – Whether to draw the line with anti-aliasing activated.

• raise_if_out_of_image (bool, optional) – Whether to raise an error if the line string is
fully outside of the image. If set to False, no error will be raised and only the parts
inside the image will be drawn.

Returns float32 array of shape image_shape (no channel axis) with drawn line segments and
points. All values are in the interval [0.0, 1.0].

Return type ndarray

draw_lines_heatmap_array(self, image_shape, alpha=1.0, size=1, antialiased=True,
raise_if_out_of_image=False)

Draw the line segments of this line string as a heatmap array.

Parameters

• image_shape (tuple of int) – The shape of the image onto which to draw the line mask.

456 Chapter 13. API

imgaug Documentation, Release 0.3.0

• alpha (float, optional) – Opacity of the line string. Higher values denote a more visible
line string.

• size (int, optional) – Thickness of the line segments.

• antialiased (bool, optional) – Whether to draw the line with anti-aliasing activated.

• raise_if_out_of_image (bool, optional) – Whether to raise an error if the line string is
fully outside of the image. If set to False, no error will be raised and only the parts
inside the image will be drawn.

Returns float32 array of shape image_shape (no channel axis) with drawn line string. All
values are in the interval [0.0, 1.0].

Return type ndarray

draw_lines_on_image(self, image, color=(0, 255, 0), alpha=1.0, size=3, antialiased=True,
raise_if_out_of_image=False)

Draw the line segments of this line string on a given image.

Parameters

• image (ndarray or tuple of int) – The image onto which to draw. Expected to be uint8
and of shape (H, W, C) with C usually being 3 (other values are not tested). If a tuple,
expected to be (H, W, C) and will lead to a new uint8 array of zeros being created.

• color (int or iterable of int) – Color to use as RGB, i.e. three values.

• alpha (float, optional) – Opacity of the line string. Higher values denote a more visible
line string.

• size (int, optional) – Thickness of the line segments.

• antialiased (bool, optional) – Whether to draw the line with anti-aliasing activated.

• raise_if_out_of_image (bool, optional) – Whether to raise an error if the line string is
fully outside of the image. If set to False, no error will be raised and only the parts
inside the image will be drawn.

Returns image with line drawn on it.

Return type ndarray

draw_mask(self, image_shape, size_lines=1, size_points=0, raise_if_out_of_image=False)
Draw this line segment as a binary image mask.

Parameters

• image_shape (tuple of int) – The shape of the image onto which to draw the line mask.

• size_lines (int, optional) – Thickness of the line segments.

• size_points (int, optional) – Size of the points in pixels.

• raise_if_out_of_image (bool, optional) – Whether to raise an error if the line string is
fully outside of the image. If set to False, no error will be raised and only the parts
inside the image will be drawn.

Returns Boolean line mask of shape image_shape (no channel axis).

Return type ndarray

draw_on_image(self, image, color=(0, 255, 0), color_lines=None, color_points=None, alpha=1.0, al-
pha_lines=None, alpha_points=None, size=1, size_lines=None, size_points=None,
antialiased=True, raise_if_out_of_image=False)

Draw this line string onto an image.

13.12. imgaug.augmentables.lines 457

imgaug Documentation, Release 0.3.0

Parameters

• image (ndarray) – The (H,W,C) uint8 image onto which to draw the line string.

• color (iterable of int, optional) – Color to use as RGB, i.e. three values. The color of the
line and points are derived from this value, unless they are set.

• color_lines (None or iterable of int) – Color to use for the line segments as RGB, i.e. three
values. If None, this value is derived from color.

• color_points (None or iterable of int) – Color to use for the points as RGB, i.e. three
values. If None, this value is derived from 0.5 * color.

• alpha (float, optional) – Opacity of the line string. Higher values denote more visible
points. The alphas of the line and points are derived from this value, unless they are set.

• alpha_lines (None or float, optional) – Opacity of the line string. Higher values denote
more visible line string. If None, this value is derived from alpha.

• alpha_points (None or float, optional) – Opacity of the line string points. Higher values
denote more visible points. If None, this value is derived from alpha.

• size (int, optional) – Size of the line string. The sizes of the line and points are derived
from this value, unless they are set.

• size_lines (None or int, optional) – Thickness of the line segments. If None, this value is
derived from size.

• size_points (None or int, optional) – Size of the points in pixels. If None, this value is
derived from 3 * size.

• antialiased (bool, optional) – Whether to draw the line with anti-aliasing activated. This
does currently not affect the point drawing.

• raise_if_out_of_image (bool, optional) – Whether to raise an error if the line string is
fully outside of the image. If set to False, no error will be raised and only the parts
inside the image will be drawn.

Returns Image with line string drawn on it.

Return type ndarray

draw_points_heatmap_array(self, image_shape, alpha=1.0, size=1,
raise_if_out_of_image=False)

Draw the points of this line string as a heatmap array.

Parameters

• image_shape (tuple of int) – The shape of the image onto which to draw the point mask.

• alpha (float, optional) – Opacity of the line string points. Higher values denote a more
visible points.

• size (int, optional) – Size of the points in pixels.

• raise_if_out_of_image (bool, optional) – Whether to raise an error if the line string is
fully outside of the image. If set to False, no error will be raised and only the parts
inside the image will be drawn.

Returns float32 array of shape image_shape (no channel axis) with drawn line string points.
All values are in the interval [0.0, 1.0].

Return type ndarray

458 Chapter 13. API

imgaug Documentation, Release 0.3.0

draw_points_on_image(self, image, color=(0, 128, 0), alpha=1.0, size=3, copy=True,
raise_if_out_of_image=False)

Draw the points of this line string onto a given image.

Parameters

• image (ndarray or tuple of int) – The image onto which to draw. Expected to be uint8
and of shape (H, W, C) with C usually being 3 (other values are not tested). If a tuple,
expected to be (H, W, C) and will lead to a new uint8 array of zeros being created.

• color (iterable of int) – Color to use as RGB, i.e. three values.

• alpha (float, optional) – Opacity of the line string points. Higher values denote a more
visible points.

• size (int, optional) – Size of the points in pixels.

• copy (bool, optional) – Whether it is allowed to draw directly in the input array (False)
or it has to be copied (True). The routine may still have to copy, even if copy=False
was used. Always use the return value.

• raise_if_out_of_image (bool, optional) – Whether to raise an error if the line string is
fully outside of the image. If set to False, no error will be raised and only the parts
inside the image will be drawn.

Returns float32 array of shape image_shape (no channel axis) with drawn line string points.
All values are in the interval [0.0, 1.0].

Return type ndarray

extract_from_image(self, image, size=1, pad=True, pad_max=None, antialiased=True, pre-
vent_zero_size=True)

Extract all image pixels covered by the line string.

This will only extract pixels overlapping with the line string. As a rectangular image array has to be
returned, non-overlapping pixels will be set to zero.

This function will by default zero-pad the image if the line string is partially/fully outside of the image.
This is for consistency with the same methods for bounding boxes and polygons.

Parameters

• image (ndarray) – The image of shape (H,W,[C]) from which to extract the pixels within
the line string.

• size (int, optional) – Thickness of the line.

• pad (bool, optional) – Whether to zero-pad the image if the object is partially/fully outside
of it.

• pad_max (None or int, optional) – The maximum number of pixels that may be zero-
paded on any side, i.e. if this has value N the total maximum of added pixels is 4*N. This
option exists to prevent extremely large images as a result of single points being moved
very far away during augmentation.

• antialiased (bool, optional) – Whether to apply anti-aliasing to the line string.

• prevent_zero_size (bool, optional) – Whether to prevent height or width of the extracted
image from becoming zero. If this is set to True and height or width of the line string is
below 1, the height/width will be increased to 1. This can be useful to prevent problems,
e.g. with image saving or plotting. If it is set to False, images will be returned as (H',
W') or (H', W', 3) with H or W potentially being 0.

13.12. imgaug.augmentables.lines 459

imgaug Documentation, Release 0.3.0

Returns Pixels overlapping with the line string. Zero-padded if the line string is partially/fully
outside of the image and pad=True. If prevent_zero_size is activated, it is guarantueed that
H'>0 and W'>0, otherwise only H'>=0 and W'>=0.

Return type (H’,W’) ndarray or (H’,W’,C) ndarray

find_intersections_with(self, other)
Find all intersection points between this line string and other.

Parameters other (tuple of number or list of tuple of number or list of LineString or LineString)
– The other geometry to use during intersection tests.

Returns All intersection points. One list per pair of consecutive start and end point, i.e. N-1 lists
of N points. Each list may be empty or may contain multiple points.

Return type list of list of tuple of number

get_pointwise_inside_image_mask(self, image)
Determine per point whether it is inside of a given image plane.

Parameters image (ndarray or tuple of int) – Either an image with shape (H,W,[C]) or a
tuple denoting such an image shape.

Returns (N,) ``bool array with one value for each of the N points indicating whether it is
inside of the provided image plane (True) or not (False).

Return type ndarray

height
Compute the height of a bounding box encapsulating the line.

The height is computed based on the two points with lowest and largest y-coordinates.

Returns The height of the line string.

Return type float

is_fully_within_image(self, image, default=False)
Estimate whether the line string is fully inside an image plane.

Parameters

• image (ndarray or tuple of int) – Either an image with shape (H,W,[C]) or a tuple
denoting such an image shape.

• default (any) – Default value to return if the line string contains no points.

Returns True if the line string is fully inside the image area. False otherwise. Will return
default if this line string contains no points.

Return type bool or any

is_out_of_image(self, image, fully=True, partly=False, default=True)
Estimate whether the line is partially/fully outside of the image area.

Parameters

• image (ndarray or tuple of int) – Either an image with shape (H,W,[C]) or a tuple
denoting such an image shape.

• fully (bool, optional) – Whether to return True if the line string is fully outside of the
image area.

• partly (bool, optional) – Whether to return True if the line string is at least partially
outside fo the image area.

460 Chapter 13. API

imgaug Documentation, Release 0.3.0

• default (any) – Default value to return if the line string contains no points.

Returns True if the line string is partially/fully outside of the image area, depending on defined
parameters. False otherwise. Will return default if this line string contains no points.

Return type bool or any

is_partly_within_image(self, image, default=False)
Estimate whether the line string is at least partially inside the image.

Parameters

• image (ndarray or tuple of int) – Either an image with shape (H,W,[C]) or a tuple
denoting such an image shape.

• default (any) – Default value to return if the line string contains no points.

Returns True if the line string is at least partially inside the image area. False otherwise.
Will return default if this line string contains no points.

Return type bool or any

length
Compute the total euclidean length of the line string.

Returns The length based on euclidean distance, i.e. the sum of the lengths of each line segment.

Return type float

project(self, from_shape, to_shape)
Project the line string onto a differently shaped image.

E.g. if a point of the line string is on its original image at x=(10 of 100 pixels) and y=(20 of
100 pixels) and is projected onto a new image with size (width=200, height=200), its new
position will be (x=20, y=40).

This is intended for cases where the original image is resized. It cannot be used for more complex changes
(e.g. padding, cropping).

Parameters

• from_shape (tuple of int or ndarray) – Shape of the original image. (Before resize.)

• to_shape (tuple of int or ndarray) – Shape of the new image. (After resize.)

Returns Line string with new coordinates.

Return type imgaug.augmentables.lines.LineString

project_(self, from_shape, to_shape)
Project the line string onto a differently shaped image in-place.

E.g. if a point of the line string is on its original image at x=(10 of 100 pixels) and y=(20 of
100 pixels) and is projected onto a new image with size (width=200, height=200), its new
position will be (x=20, y=40).

This is intended for cases where the original image is resized. It cannot be used for more complex changes
(e.g. padding, cropping).

Added in 0.4.0.

Parameters

• from_shape (tuple of int or ndarray) – Shape of the original image. (Before resize.)

• to_shape (tuple of int or ndarray) – Shape of the new image. (After resize.)

13.12. imgaug.augmentables.lines 461

imgaug Documentation, Release 0.3.0

Returns Line string with new coordinates. The object may have been modified in-place.

Return type imgaug.augmentables.lines.LineString

shift(self, x=0, y=0, top=None, right=None, bottom=None, left=None)
Move this line string along the x/y-axis.

The origin (0, 0) is at the top left of the image.

Parameters

• x (number, optional) – Value to be added to all x-coordinates. Positive values shift towards
the right images.

• y (number, optional) – Value to be added to all y-coordinates. Positive values shift towards
the bottom images.

• top (None or int, optional) – Deprecated since 0.4.0. Amount of pixels by which to shift
this object from the top (towards the bottom).

• right (None or int, optional) – Deprecated since 0.4.0. Amount of pixels by which to shift
this object from the right (towards the left).

• bottom (None or int, optional) – Deprecated since 0.4.0. Amount of pixels by which to
shift this object from the bottom (towards the top).

• left (None or int, optional) – Deprecated since 0.4.0. Amount of pixels by which to shift
this object from the left (towards the right).

Returns result – Shifted line string.

Return type imgaug.augmentables.lines.LineString

shift_(self, x=0, y=0)
Move this line string along the x/y-axis in-place.

The origin (0, 0) is at the top left of the image.

Added in 0.4.0.

Parameters

• x (number, optional) – Value to be added to all x-coordinates. Positive values shift towards
the right images.

• y (number, optional) – Value to be added to all y-coordinates. Positive values shift towards
the bottom images.

Returns result – Shifted line string. The object may have been modified in-place.

Return type imgaug.augmentables.lines.LineString

subdivide(self, points_per_edge)
Derive a new line string with N interpolated points per edge.

The interpolated points have (per edge) regular distances to each other.

For each edge between points A and B this adds points at A + (i/(1+N)) * (B - A), where i is
the index of the added point and N is the number of points to add per edge.

Calling this method two times will split each edge at its center and then again split each newly created
edge at their center. It is equivalent to calling subdivide(3).

Parameters points_per_edge (int) – Number of points to interpolate on each edge.

Returns Line string with subdivided edges.

462 Chapter 13. API

imgaug Documentation, Release 0.3.0

Return type imgaug.augmentables.lines.LineString

to_bounding_box(self)
Generate a bounding box encapsulating the line string.

Returns Bounding box encapsulating the line string. None if the line string contained no points.

Return type None or imgaug.augmentables.bbs.BoundingBox

to_heatmap(self, image_shape, size_lines=1, size_points=0, antialiased=True,
raise_if_out_of_image=False)

Generate a heatmap object from the line string.

This is similar to draw_lines_heatmap_array(), executed with alpha=1.0. The result is
wrapped in a HeatmapsOnImage object instead of just an array. No points are drawn.

Parameters

• image_shape (tuple of int) – The shape of the image onto which to draw the line mask.

• size_lines (int, optional) – Thickness of the line.

• size_points (int, optional) – Size of the points in pixels.

• antialiased (bool, optional) – Whether to draw the line with anti-aliasing activated.

• raise_if_out_of_image (bool, optional) – Whether to raise an error if the line string is
fully outside of the image. If set to False, no error will be raised and only the parts
inside the image will be drawn.

Returns Heatmap object containing drawn line string.

Return type imgaug.augmentables.heatmaps.HeatmapsOnImage

to_keypoints(self)
Convert the line string points to keypoints.

Returns Points of the line string as keypoints.

Return type list of imgaug.augmentables.kps.Keypoint

to_polygon(self)
Generate a polygon from the line string points.

Returns Polygon with the same corner points as the line string. Note that the polygon might be
invalid, e.g. contain less than 3 points or have self-intersections.

Return type imgaug.augmentables.polys.Polygon

to_segmentation_map(self, image_shape, size_lines=1, size_points=0,
raise_if_out_of_image=False)

Generate a segmentation map object from the line string.

This is similar to draw_mask(). The result is wrapped in a SegmentationMapsOnImage object
instead of just an array.

Parameters

• image_shape (tuple of int) – The shape of the image onto which to draw the line mask.

• size_lines (int, optional) – Thickness of the line.

• size_points (int, optional) – Size of the points in pixels.

• raise_if_out_of_image (bool, optional) – Whether to raise an error if the line string is
fully outside of the image. If set to False, no error will be raised and only the parts
inside the image will be drawn.

13.12. imgaug.augmentables.lines 463

imgaug Documentation, Release 0.3.0

Returns Segmentation map object containing drawn line string.

Return type imgaug.augmentables.segmaps.SegmentationMapsOnImage

width
Compute the width of a bounding box encapsulating the line.

The width is computed based on the two points with lowest and largest x-coordinates.

Returns The width of the line string.

Return type float

xx
Get an array of x-coordinates of all points of the line string.

Returns float32 x-coordinates of the line string points.

Return type ndarray

xx_int
Get an array of discrete x-coordinates of all points.

The conversion from float32 coordinates to int32 is done by first rounding the coordinates to the
closest integer and then removing everything after the decimal point.

Returns int32 x-coordinates of the line string points.

Return type ndarray

yy
Get an array of y-coordinates of all points of the line string.

Returns float32 y-coordinates of the line string points.

Return type ndarray

yy_int
Get an array of discrete y-coordinates of all points.

The conversion from float32 coordinates to int32 is done by first rounding the coordinates to the
closest integer and then removing everything after the decimal point.

Returns int32 y-coordinates of the line string points.

Return type ndarray

class imgaug.augmentables.lines.LineStringsOnImage(line_strings, shape)
Bases: imgaug.augmentables.base.IAugmentable

Object that represents all line strings on a single image.

Parameters

• line_strings (list of imgaug.augmentables.lines.LineString) – List of line strings on the im-
age.

• shape (tuple of int or ndarray) – The shape of the image on which the objects are placed.
Either an image with shape (H,W,[C]) or a tuple denoting such an image shape.

Examples

464 Chapter 13. API

imgaug Documentation, Release 0.3.0

>>> import numpy as np
>>> from imgaug.augmentables.lines import LineString, LineStringsOnImage
>>>
>>> image = np.zeros((100, 100))
>>> lss = [
>>> LineString([(0, 0), (10, 0)]),
>>> LineString([(10, 20), (30, 30), (50, 70)])
>>>]
>>> lsoi = LineStringsOnImage(lss, shape=image.shape)

Attributes

empty Estimate whether this object contains zero line strings.

items Get the line strings in this container.

Methods

clip_out_of_image(self) Clip off all parts of the line strings that are outside of
an image.

clip_out_of_image_(self) Clip off all parts of the LSs that are outside of an
image in-place.

copy(self[, line_strings, shape]) Create a shallow copy of this object.
deepcopy(self[, line_strings, shape]) Create a deep copy of the object.
draw_on_image(self, image[, color, . . .]) Draw all line strings onto a given image.
fill_from_xy_array_(self, xy) Modify the corner coordinates of all line strings in-

place.
from_xy_arrays(xy, shape) Convert an (N,M,2) ndarray to a

LineStringsOnImage object.
invert_to_keypoints_on_image_(self, kp-
soi)

Invert the output of
to_keypoints_on_image() in-place.

on(self, image) Project the line strings from one image shape to a
new one.

on_(self, image) Project the line strings from one image shape to a
new one in-place.

remove_out_of_image(self[, fully, partly]) Remove all line strings that are fully/partially outside
of an image.

remove_out_of_image_(self[, fully, partly]) Remove all LS that are fully/partially outside of an
image in-place.

remove_out_of_image_fraction(self, frac-
tion)

Remove all LS with an out of image fraction of at
least fraction.

remove_out_of_image_fraction_(self,
fraction)

Remove all LS with an OOI fraction of at least frac-
tion in-place.

shift(self[, x, y, top, right, bottom, left]) Move the line strings along the x/y-axis.
shift_(self[, x, y]) Move the line strings along the x/y-axis in-place.
to_keypoints_on_image(self) Convert the line strings to one

KeypointsOnImage instance.
to_xy_array(self) Convert all line string coordinates to one array of

shape (N,2).
to_xy_arrays(self[, dtype]) Convert this object to an iterable of (M,2) arrays of

points.

13.12. imgaug.augmentables.lines 465

imgaug Documentation, Release 0.3.0

clip_out_of_image(self)
Clip off all parts of the line strings that are outside of an image.

Note: The result can contain fewer line strings than the input did. That happens when a polygon is fully
outside of the image plane.

Note: The result can also contain more line strings than the input did. That happens when distinct parts
of a line string are only connected by line segments that are outside of the image plane and hence will be
clipped off, resulting in two or more unconnected line string parts that are left in the image plane.

Returns Line strings, clipped to fall within the image dimensions. The count of output line
strings may differ from the input count.

Return type imgaug.augmentables.lines.LineStringsOnImage

clip_out_of_image_(self)
Clip off all parts of the LSs that are outside of an image in-place.

Note: The result can contain fewer line strings than the input did. That happens when a polygon is fully
outside of the image plane.

Note: The result can also contain more line strings than the input did. That happens when distinct parts
of a line string are only connected by line segments that are outside of the image plane and hence will be
clipped off, resulting in two or more unconnected line string parts that are left in the image plane.

Added in 0.4.0.

Returns Line strings, clipped to fall within the image dimensions. The count of output line
strings may differ from the input count.

Return type imgaug.augmentables.lines.LineStringsOnImage

copy(self, line_strings=None, shape=None)
Create a shallow copy of this object.

Parameters

• line_strings (None or list of imgaug.augmentables.lines.LineString, optional) – List of
line strings on the image. If not None, then the line_strings attribute of the copied
object will be set to this value.

• shape (None or tuple of int or ndarray, optional) – The shape of the image on which the
objects are placed. Either an image with shape (H,W,[C]) or a tuple denoting such an
image shape. If not None, then the shape attribute of the copied object will be set to this
value.

Returns Shallow copy.

Return type imgaug.augmentables.lines.LineStringsOnImage

deepcopy(self, line_strings=None, shape=None)
Create a deep copy of the object.

Parameters

466 Chapter 13. API

imgaug Documentation, Release 0.3.0

• line_strings (None or list of imgaug.augmentables.lines.LineString, optional) – List of
line strings on the image. If not None, then the line_strings attribute of the copied
object will be set to this value.

• shape (None or tuple of int or ndarray, optional) – The shape of the image on which the
objects are placed. Either an image with shape (H,W,[C]) or a tuple denoting such an
image shape. If not None, then the shape attribute of the copied object will be set to this
value.

Returns Deep copy.

Return type imgaug.augmentables.lines.LineStringsOnImage

draw_on_image(self, image, color=(0, 255, 0), color_lines=None, color_points=None, alpha=1.0, al-
pha_lines=None, alpha_points=None, size=1, size_lines=None, size_points=None,
antialiased=True, raise_if_out_of_image=False)

Draw all line strings onto a given image.

Parameters

• image (ndarray) – The (H,W,C) uint8 image onto which to draw the line strings.

• color (iterable of int, optional) – Color to use as RGB, i.e. three values. The color of the
lines and points are derived from this value, unless they are set.

• color_lines (None or iterable of int) – Color to use for the line segments as RGB, i.e. three
values. If None, this value is derived from color.

• color_points (None or iterable of int) – Color to use for the points as RGB, i.e. three
values. If None, this value is derived from 0.5 * color.

• alpha (float, optional) – Opacity of the line strings. Higher values denote more visible
points. The alphas of the line and points are derived from this value, unless they are set.

• alpha_lines (None or float, optional) – Opacity of the line strings. Higher values denote
more visible line string. If None, this value is derived from alpha.

• alpha_points (None or float, optional) – Opacity of the line string points. Higher values
denote more visible points. If None, this value is derived from alpha.

• size (int, optional) – Size of the line strings. The sizes of the line and points are derived
from this value, unless they are set.

• size_lines (None or int, optional) – Thickness of the line segments. If None, this value is
derived from size.

• size_points (None or int, optional) – Size of the points in pixels. If None, this value is
derived from 3 * size.

• antialiased (bool, optional) – Whether to draw the lines with anti-aliasing activated. This
does currently not affect the point drawing.

• raise_if_out_of_image (bool, optional) – Whether to raise an error if a line string is fully
outside of the image. If set to False, no error will be raised and only the parts inside the
image will be drawn.

Returns Image with line strings drawn on it.

Return type ndarray

empty
Estimate whether this object contains zero line strings.

Returns True if this object contains zero line strings.

13.12. imgaug.augmentables.lines 467

imgaug Documentation, Release 0.3.0

Return type bool

fill_from_xy_array_(self, xy)
Modify the corner coordinates of all line strings in-place.

Note: This currently expects that xy contains exactly as many coordinates as the line strings within this
instance have corner points. Otherwise, an AssertionError will be raised.

Added in 0.4.0.

Parameters xy ((N, 2) ndarray or iterable of iterable of number) – XY-Coordinates of N corner
points. N must match the number of corner points in all line strings within this instance.

Returns This instance itself, with updated coordinates. Note that the instance was modified
in-place.

Return type LineStringsOnImage

classmethod from_xy_arrays(xy, shape)
Convert an (N,M,2) ndarray to a LineStringsOnImage object.

This is the inverse of to_xy_array().

Parameters

• xy ((N,M,2) ndarray or iterable of (M,2) ndarray) – Array containing the point coordinates
N line strings with each M points given as (x,y) coordinates. M may differ if an iterable
of arrays is used. Each array should usually be of dtype float32.

• shape (tuple of int) – (H,W,[C]) shape of the image on which the line strings are placed.

Returns Object containing a list of LineString objects following the provided point coordi-
nates.

Return type imgaug.augmentables.lines.LineStringsOnImage

invert_to_keypoints_on_image_(self, kpsoi)
Invert the output of to_keypoints_on_image() in-place.

This function writes in-place into this LineStringsOnImage instance.

Added in 0.4.0.

Parameters kpsoi (imgaug.augmentables.kps.KeypointsOnImages) – Keypoints to convert back
to line strings, i.e. the outputs of to_keypoints_on_image().

Returns Line strings container with updated coordinates. Note that the instance is also updated
in-place.

Return type LineStringsOnImage

items
Get the line strings in this container.

Added in 0.4.0.

Returns Line strings within this container.

Return type list of LineString

on(self, image)
Project the line strings from one image shape to a new one.

468 Chapter 13. API

imgaug Documentation, Release 0.3.0

Parameters image (ndarray or tuple of int) – The new image onto which to project. Either an
image with shape (H,W,[C]) or a tuple denoting such an image shape.

Returns Object containing all projected line strings.

Return type imgaug.augmentables.lines.LineStrings

on_(self, image)
Project the line strings from one image shape to a new one in-place.

Added in 0.4.0.

Parameters image (ndarray or tuple of int) – The new image onto which to project. Either an
image with shape (H,W,[C]) or a tuple denoting such an image shape.

Returns Object containing all projected line strings. The object and its items may have been
modified in-place.

Return type imgaug.augmentables.lines.LineStrings

remove_out_of_image(self, fully=True, partly=False)
Remove all line strings that are fully/partially outside of an image.

Parameters

• fully (bool, optional) – Whether to remove line strings that are fully outside of the image.

• partly (bool, optional) – Whether to remove line strings that are partially outside of the
image.

Returns Reduced set of line strings. Those that are fully/partially outside of the given image
plane are removed.

Return type imgaug.augmentables.lines.LineStringsOnImage

remove_out_of_image_(self, fully=True, partly=False)
Remove all LS that are fully/partially outside of an image in-place.

Added in 0.4.0.

Parameters

• fully (bool, optional) – Whether to remove line strings that are fully outside of the image.

• partly (bool, optional) – Whether to remove line strings that are partially outside of the
image.

Returns Reduced set of line strings. Those that are fully/partially outside of the given image
plane are removed. The object and its items may have been modified in-place.

Return type imgaug.augmentables.lines.LineStringsOnImage

remove_out_of_image_fraction(self, fraction)
Remove all LS with an out of image fraction of at least fraction.

Parameters fraction (number) – Minimum out of image fraction that a line string has to have
in order to be removed. A fraction of 1.0 removes only line strings that are 100% outside
of the image. A fraction of 0.0 removes all line strings.

Returns Reduced set of line strings, with those that had an out of image fraction greater or equal
the given one removed.

Return type imgaug.augmentables.lines.LineStringsOnImage

13.12. imgaug.augmentables.lines 469

imgaug Documentation, Release 0.3.0

remove_out_of_image_fraction_(self, fraction)
Remove all LS with an OOI fraction of at least fraction in-place.

‘OOI’ is the abbreviation for ‘out of image’.

Added in 0.4.0.

Parameters fraction (number) – Minimum out of image fraction that a line string has to have
in order to be removed. A fraction of 1.0 removes only line strings that are 100% outside
of the image. A fraction of 0.0 removes all line strings.

Returns Reduced set of line strings, with those that had an out of image fraction greater or equal
the given one removed. The object and its items may have been modified in-place.

Return type imgaug.augmentables.lines.LineStringsOnImage

shift(self, x=0, y=0, top=None, right=None, bottom=None, left=None)
Move the line strings along the x/y-axis.

The origin (0, 0) is at the top left of the image.

Parameters

• x (number, optional) – Value to be added to all x-coordinates. Positive values shift towards
the right images.

• y (number, optional) – Value to be added to all y-coordinates. Positive values shift towards
the bottom images.

• top (None or int, optional) – Deprecated since 0.4.0. Amount of pixels by which to shift
all objects from the top (towards the bottom).

• right (None or int, optional) – Deprecated since 0.4.0. Amount of pixels by which to shift
all objects from the right (towads the left).

• bottom (None or int, optional) – Deprecated since 0.4.0. Amount of pixels by which to
shift all objects from the bottom (towards the top).

• left (None or int, optional) – Deprecated since 0.4.0. Amount of pixels by which to shift
all objects from the left (towards the right).

Returns Shifted line strings.

Return type imgaug.augmentables.lines.LineStringsOnImage

shift_(self, x=0, y=0)
Move the line strings along the x/y-axis in-place.

The origin (0, 0) is at the top left of the image.

Added in 0.4.0.

Parameters

• x (number, optional) – Value to be added to all x-coordinates. Positive values shift towards
the right images.

• y (number, optional) – Value to be added to all y-coordinates. Positive values shift towards
the bottom images.

Returns Shifted line strings. The object and its items may have been modified in-place.

Return type imgaug.augmentables.lines.LineStringsOnImage

470 Chapter 13. API

imgaug Documentation, Release 0.3.0

to_keypoints_on_image(self)
Convert the line strings to one KeypointsOnImage instance.

Added in 0.4.0.

Returns A keypoints instance containing N coordinates for a total of N points in the coords
attributes of all line strings. Order matches the order in line_strings and coords
attributes.

Return type imgaug.augmentables.kps.KeypointsOnImage

to_xy_array(self)
Convert all line string coordinates to one array of shape (N,2).

Added in 0.4.0.

Returns Array containing all xy-coordinates of all line strings within this instance.

Return type (N, 2) ndarray

to_xy_arrays(self, dtype=<class ’numpy.float32’>)
Convert this object to an iterable of (M,2) arrays of points.

This is the inverse of from_xy_array().

Parameters dtype (numpy.dtype, optional) – Desired output datatype of the ndarray.

Returns The arrays of point coordinates, each given as (M,2).

Return type list of ndarray

13.13 imgaug.augmentables.normalization

Functions dealing with normalization of user input data to imgaug classes.

imgaug.augmentables.normalization.estimate_bounding_boxes_norm_type(bounding_boxes)

imgaug.augmentables.normalization.estimate_heatmaps_norm_type(heatmaps)

imgaug.augmentables.normalization.estimate_keypoints_norm_type(keypoints)

imgaug.augmentables.normalization.estimate_line_strings_norm_type(line_strings)

imgaug.augmentables.normalization.estimate_normalization_type(inputs)

imgaug.augmentables.normalization.estimate_polygons_norm_type(polygons)

imgaug.augmentables.normalization.estimate_segmaps_norm_type(segmentation_maps)

imgaug.augmentables.normalization.find_first_nonempty(attr, parents=None)

imgaug.augmentables.normalization.invert_normalize_bounding_boxes(bounding_boxes,
bound-
ing_boxes_old)

imgaug.augmentables.normalization.invert_normalize_heatmaps(heatmaps,
heatmaps_old)

imgaug.augmentables.normalization.invert_normalize_images(images, images_old)

imgaug.augmentables.normalization.invert_normalize_keypoints(keypoints, key-
points_old)

imgaug.augmentables.normalization.invert_normalize_line_strings(line_strings,
line_strings_old)

13.13. imgaug.augmentables.normalization 471

imgaug Documentation, Release 0.3.0

imgaug.augmentables.normalization.invert_normalize_polygons(polygons, poly-
gons_old)

imgaug.augmentables.normalization.invert_normalize_segmentation_maps(segmentation_maps,
seg-
menta-
tion_maps_old)

imgaug.augmentables.normalization.normalize_bounding_boxes(inputs, shapes=None)

imgaug.augmentables.normalization.normalize_heatmaps(inputs, shapes=None)

imgaug.augmentables.normalization.normalize_images(images)

imgaug.augmentables.normalization.normalize_keypoints(inputs, shapes=None)

imgaug.augmentables.normalization.normalize_line_strings(inputs, shapes=None)

imgaug.augmentables.normalization.normalize_polygons(inputs, shapes=None)

imgaug.augmentables.normalization.normalize_segmentation_maps(inputs,
shapes=None)

imgaug.augmentables.normalization.restore_dtype_and_merge(arr, input_dtype)

13.14 imgaug.augmentables.polys

Classes dealing with polygons.

class imgaug.augmentables.polys.MultiPolygon(geoms)
Bases: object

Class that represents several polygons.

Parameters geoms (list of imgaug.augmentables.polys.Polygon) – List of the polygons.

Methods

from_shapely(geometry[, label]) Create a MultiPolygon from a shapely object.

static from_shapely(geometry, label=None)
Create a MultiPolygon from a shapely object.

This also creates all necessary Polygon s contained in this MultiPolygon.

Parameters

• geometry (shapely.geometry.MultiPolygon or shapely.geometry.Polygon or
shapely.geometry.collection.GeometryCollection) – The object to convert to a Mul-
tiPolygon.

• label (None or str, optional) – A label assigned to all Polygons within the MultiPolygon.

Returns The derived MultiPolygon.

Return type imgaug.augmentables.polys.MultiPolygon

class imgaug.augmentables.polys.Polygon(exterior, label=None)
Bases: object

Class representing polygons.

472 Chapter 13. API

imgaug Documentation, Release 0.3.0

Each polygon is parameterized by its corner points, given as absolute x- and y-coordinates with sub-pixel accu-
racy.

Parameters

• exterior (list of imgaug.augmentables.kps.Keypoint or list of tuple of float or (N,2) ndarray)
– List of points defining the polygon. May be either a list of Keypoint objects or a
list of tuple s in xy-form or a numpy array of shape (N,2) for N points in xy-form.
All coordinates are expected to be the absolute subpixel-coordinates on the image, given
as float s, e.g. x=10.7 and y=3.4 for a point at coordinates (10.7, 3.4). Their
order is expected to be clock-wise. They are expected to not be closed (i.e. first and last
coordinate differ).

• label (None or str, optional) – Label of the polygon, e.g. a string representing the class.

Attributes

area Compute the area of the polygon.

coords Alias for attribute exterior.

height Compute the height of a bounding box encapsulating the polygon.

is_valid Estimate whether the polygon has a valid geometry.

width Compute the width of a bounding box encapsulating the polygon.

xx Get the x-coordinates of all points on the exterior.

xx_int Get the discretized x-coordinates of all points on the exterior.

yy Get the y-coordinates of all points on the exterior.

yy_int Get the discretized y-coordinates of all points on the exterior.

Methods

almost_equals(self, other[, max_distance, . . .]) Estimate if this polygon’s and another’s geome-
try/labels are similar.

change_first_point_by_coords(self, x,
y[, . . .])

Reorder exterior points so that the point closest to
given x/y is first.

change_first_point_by_index(self,
point_idx)

Reorder exterior points so that the point with given
index is first.

clip_out_of_image(self, image) Cut off all parts of the polygon that are outside of an
image.

compute_out_of_image_area(self, image) Compute the area of the BB that is outside of the
image plane.

compute_out_of_image_fraction(self,
image)

Compute fraction of polygon area outside of the im-
age plane.

coords_almost_equals(self, other[, . . .]) Alias for Polygon.
exterior_almost_equals().

copy(self[, exterior, label]) Create a shallow copy of this object.
cut_out_of_image(self, image) Deprecated.
deepcopy(self[, exterior, label]) Create a deep copy of this object.
draw_on_image(self, image[, color, . . .]) Draw the polygon on an image.
exterior_almost_equals(self, other[, . . .]) Estimate if this and another polygon’s exterior are

almost identical.
Continued on next page

13.14. imgaug.augmentables.polys 473

imgaug Documentation, Release 0.3.0

Table 48 – continued from previous page
extract_from_image(self, image) Extract all image pixels within the polygon area.
find_closest_point_index(self, x, y[, . . .]) Find the index of the exterior point closest to given

coordinates.
from_shapely(polygon_shapely[, label]) Create a polygon from a Shapely Polygon.
is_fully_within_image(self, image) Estimate whether the polygon is fully inside an im-

age plane.
is_out_of_image(self, image[, fully, partly]) Estimate whether the polygon is partially/fully out-

side of an image.
is_partly_within_image(self, image) Estimate whether the polygon is at least partially in-

side an image.
project(self, from_shape, to_shape) Project the polygon onto an image with different

shape.
project_(self, from_shape, to_shape) Project the polygon onto an image with different

shape in-place.
shift(self[, x, y, top, right, bottom, left]) Move this polygon along the x/y-axis.
shift_(self[, x, y]) Move this polygon along the x/y-axis in-place.
subdivide(self, points_per_edge) Derive a new polygon with N interpolated points per

edge.
subdivide_(self, points_per_edge) Derive a new poly with N interpolated points per

edge in-place.
to_bounding_box(self) Convert this polygon to a bounding box containing

the polygon.
to_keypoints(self) Convert this polygon’s exterior to Keypoint in-

stances.
to_line_string(self[, closed]) Convert this polygon’s exterior to a LineString

instance.
to_shapely_line_string(self[, closed, . . .]) Convert this polygon to a Shapely LineString

object.
to_shapely_polygon(self) Convert this polygon to a Shapely Polygon.

almost_equals(self, other, max_distance=0.0001, points_per_edge=8)
Estimate if this polygon’s and another’s geometry/labels are similar.

This is the same as exterior_almost_equals() but additionally compares the labels.

Parameters

• other (imgaug.augmentables.polys.Polygon) – The other object to compare against. Ex-
pected to be a Polygon.

• max_distance (float, optional) – See exterior_almost_equals().

• points_per_edge (int, optional) – See exterior_almost_equals().

Returns True if the coordinates are almost equal and additionally the labels are equal. Other-
wise False.

Return type bool

area
Compute the area of the polygon.

Returns Area of the polygon.

Return type number

474 Chapter 13. API

imgaug Documentation, Release 0.3.0

change_first_point_by_coords(self, x, y, max_distance=0.0001,
raise_if_too_far_away=True)

Reorder exterior points so that the point closest to given x/y is first.

This method takes a given (x,y) coordinate, finds the closest corner point on the exterior and reorders
all exterior corner points so that the found point becomes the first one in the array.

If no matching points are found, an exception is raised.

Parameters

• x (number) – X-coordinate of the point.

• y (number) – Y-coordinate of the point.

• max_distance (None or number, optional) – Maximum distance past which possible
matches are ignored. If None the distance limit is deactivated.

• raise_if_too_far_away (bool, optional) – Whether to raise an exception if the closest
found point is too far away (True) or simply return an unchanged copy if this object
(False).

Returns Copy of this polygon with the new point order.

Return type imgaug.augmentables.polys.Polygon

change_first_point_by_index(self, point_idx)
Reorder exterior points so that the point with given index is first.

This method takes a given index and reorders all exterior corner points so that the point with that index
becomes the first one in the array.

An AssertionErrorwill be raised if the index does not match any exterior point’s index or the exterior
does not contain any points.

Parameters point_idx (int) – Index of the desired starting point.

Returns Copy of this polygon with the new point order.

Return type imgaug.augmentables.polys.Polygon

clip_out_of_image(self, image)
Cut off all parts of the polygon that are outside of an image.

This operation may lead to new points being created. As a single polygon may be split into multiple new
polygons, the result is always a list, which may contain more than one output polygon.

This operation will return an empty list if the polygon is completely outside of the image plane.

Parameters image ((H,W,. . .) ndarray or tuple of int) – Image dimensions to use for the clipping
of the polygon. If an ndarray, its shape will be used. If a tuple, it is assumed to represent
the image shape and must contain at least two int s.

Returns Polygon, clipped to fall within the image dimensions. Returned as a list, because the
clipping can split the polygon into multiple parts. The list may also be empty, if the polygon
was fully outside of the image plane.

Return type list of imgaug.augmentables.polys.Polygon

compute_out_of_image_area(self, image)
Compute the area of the BB that is outside of the image plane.

Added in 0.4.0.

13.14. imgaug.augmentables.polys 475

imgaug Documentation, Release 0.3.0

Parameters image ((H,W,. . .) ndarray or tuple of int) – Image dimensions to use. If an
ndarray, its shape will be used. If a tuple, it is assumed to represent the image shape
and must contain at least two integers.

Returns Total area of the bounding box that is outside of the image plane. Can be 0.0.

Return type float

compute_out_of_image_fraction(self, image)
Compute fraction of polygon area outside of the image plane.

This estimates f = A_ooi / A, where A_ooi is the area of the polygon that is outside of the image
plane, while A is the total area of the bounding box.

Added in 0.4.0.

Parameters image ((H,W,. . .) ndarray or tuple of int) – Image dimensions to use. If an
ndarray, its shape will be used. If a tuple, it is assumed to represent the image shape
and must contain at least two integers.

Returns Fraction of the polygon area that is outside of the image plane. Returns 0.0 if the
polygon is fully inside of the image plane or has zero points. If the polygon has an area of
zero, the polygon is treated similarly to a LineString, i.e. the fraction of the line that is
outside the image plane is returned.

Return type float

coords
Alias for attribute exterior.

Added in 0.4.0.

Returns An (N, 2) float32 ndarray containing the coordinates of this polygon. This iden-
tical to the attribute exterior.

Return type ndarray

coords_almost_equals(self, other, max_distance=0.0001, points_per_edge=8)
Alias for Polygon.exterior_almost_equals().

Parameters

• other (imgaug.augmentables.polys.Polygon or (N,2) ndarray or list of tuple) – See
exterior_almost_equals().

• max_distance (number, optional) – See exterior_almost_equals().

• points_per_edge (int, optional) – See exterior_almost_equals().

Returns Whether the two polygon’s exteriors can be viewed as equal (approximate test).

Return type bool

copy(self, exterior=None, label=None)
Create a shallow copy of this object.

Parameters

• exterior (list of imgaug.augmentables.kps.Keypoint or list of tuple or (N,2) ndarray, op-
tional) – List of points defining the polygon. See __init__() for details.

• label (None or str, optional) – If not None, the label of the copied object will be set to
this value.

Returns Shallow copy.

476 Chapter 13. API

imgaug Documentation, Release 0.3.0

Return type imgaug.augmentables.polys.Polygon

cut_out_of_image(self, image)
Deprecated. Use Polygon.clip_out_of_image() instead. clip_out_of_image() has the exactly
same interface.

Cut off all parts of the polygon that are outside of an image.

deepcopy(self, exterior=None, label=None)
Create a deep copy of this object.

Parameters

• exterior (list of Keypoint or list of tuple or (N,2) ndarray, optional) – List of points defin-
ing the polygon. See imgaug.augmentables.polys.Polygon.__init__ for details.

• label (None or str) – If not None, the label of the copied object will be set to this value.

Returns Deep copy.

Return type imgaug.augmentables.polys.Polygon

draw_on_image(self, image, color=(0, 255, 0), color_face=None, color_lines=None,
color_points=None, alpha=1.0, alpha_face=None, alpha_lines=None,
alpha_points=None, size=1, size_lines=None, size_points=None,
raise_if_out_of_image=False)

Draw the polygon on an image.

Parameters

• image ((H,W,C) ndarray) – The image onto which to draw the polygon. Usually expected
to be of dtype uint8, though other dtypes are also handled.

• color (iterable of int, optional) – The color to use for the whole polygon. Must correspond
to the channel layout of the image. Usually RGB. The values for color_face, color_lines
and color_points will be derived from this color if they are set to None. This argument has
no effect if color_face, color_lines and color_points are all set anything other than None.

• color_face (None or iterable of int, optional) – The color to use for the inner polygon area
(excluding perimeter). Must correspond to the channel layout of the image. Usually RGB.
If this is None, it will be derived from color * 1.0.

• color_lines (None or iterable of int, optional) – The color to use for the line (aka perime-
ter/border) of the polygon. Must correspond to the channel layout of the image. Usually
RGB. If this is None, it will be derived from color * 0.5.

• color_points (None or iterable of int, optional) – The color to use for the corner points of
the polygon. Must correspond to the channel layout of the image. Usually RGB. If this is
None, it will be derived from color * 0.5.

• alpha (float, optional) – The opacity of the whole polygon, where 1.0 denotes a com-
pletely visible polygon and 0.0 an invisible one. The values for alpha_face, alpha_lines
and alpha_points will be derived from this alpha value if they are set to None. This argu-
ment has no effect if alpha_face, alpha_lines and alpha_points are all set anything other
than None.

• alpha_face (None or number, optional) – The opacity of the polygon’s inner area (ex-
cluding the perimeter), where 1.0 denotes a completely visible inner area and 0.0 an
invisible one. If this is None, it will be derived from alpha * 0.5.

• alpha_lines (None or number, optional) – The opacity of the polygon’s line (aka perime-
ter/border), where 1.0 denotes a completely visible line and 0.0 an invisible one. If this
is None, it will be derived from alpha * 1.0.

13.14. imgaug.augmentables.polys 477

imgaug Documentation, Release 0.3.0

• alpha_points (None or number, optional) – The opacity of the polygon’s corner points,
where 1.0 denotes completely visible corners and 0.0 invisible ones. If this is None, it
will be derived from alpha * 1.0.

• size (int, optional) – Size of the polygon. The sizes of the line and points are derived from
this value, unless they are set.

• size_lines (None or int, optional) – Thickness of the polygon’s line (aka perimeter/border).
If None, this value is derived from size.

• size_points (int, optional) – Size of the points in pixels. If None, this value is derived
from 3 * size.

• raise_if_out_of_image (bool, optional) – Whether to raise an error if the polygon is fully
outside of the image. If set to False, no error will be raised and only the parts inside the
image will be drawn.

Returns Image with the polygon drawn on it. Result dtype is the same as the input dtype.

Return type (H,W,C) ndarray

exterior_almost_equals(self, other, max_distance=0.0001, points_per_edge=8)
Estimate if this and another polygon’s exterior are almost identical.

The two exteriors can have different numbers of points, but any point randomly sampled on the exterior of
one polygon should be close to the closest point on the exterior of the other polygon.

Note: This method works in an approximative way. One can come up with polygons with fairly different
shapes that will still be estimated as equal by this method. In practice however this should be unlikely to
be the case. The probability for something like that goes down as the interpolation parameter is increased.

Parameters

• other (imgaug.augmentables.polys.Polygon or (N,2) ndarray or list of tuple) – The other
polygon with which to compare the exterior. If this is an ndarray, it is assumed to
represent an exterior. It must then have dtype float32 and shape (N,2) with the sec-
ond dimension denoting xy-coordinates. If this is a list of tuple s, it is assumed
to represent an exterior. Each tuple then must contain exactly two number s, denoting
xy-coordinates.

• max_distance (number, optional) – The maximum euclidean distance between a point on
one polygon and the closest point on the other polygon. If the distance is exceeded for
any such pair, the two exteriors are not viewed as equal. The points are either the points
contained in the polygon’s exterior ndarray or interpolated points between these.

• points_per_edge (int, optional) – How many points to interpolate on each edge.

Returns Whether the two polygon’s exteriors can be viewed as equal (approximate test).

Return type bool

extract_from_image(self, image)
Extract all image pixels within the polygon area.

This method returns a rectangular image array. All pixels within that rectangle that do not belong to the
polygon area will be filled with zeros (i.e. they will be black). The method will also zero-pad the image if
the polygon is partially/fully outside of the image.

Parameters image ((H,W) ndarray or (H,W,C) ndarray) – The image from which to extract the
pixels within the polygon.

478 Chapter 13. API

imgaug Documentation, Release 0.3.0

Returns Pixels within the polygon. Zero-padded if the polygon is partially/fully outside of the
image.

Return type (H’,W’) ndarray or (H’,W’,C) ndarray

find_closest_point_index(self, x, y, return_distance=False)
Find the index of the exterior point closest to given coordinates.

“Closeness” is here defined based on euclidean distance. This method will raise an AssertionError
if the exterior contains no points.

Parameters

• x (number) – X-coordinate around which to search for close points.

• y (number) – Y-coordinate around which to search for close points.

• return_distance (bool, optional) – Whether to also return the distance of the closest point.

Returns

• int – Index of the closest point.

• number – Euclidean distance to the closest point. This value is only returned if re-
turn_distance was set to True.

static from_shapely(polygon_shapely, label=None)
Create a polygon from a Shapely Polygon.

Note: This will remove any holes in the shapely polygon.

Parameters

• polygon_shapely (shapely.geometry.Polygon) – The shapely polygon.

• label (None or str, optional) – The label of the new polygon.

Returns A polygon with the same exterior as the Shapely Polygon.

Return type imgaug.augmentables.polys.Polygon

height
Compute the height of a bounding box encapsulating the polygon.

The height is computed based on the two exterior coordinates with lowest and largest x-coordinates.

Returns Height of the polygon.

Return type number

is_fully_within_image(self, image)
Estimate whether the polygon is fully inside an image plane.

Parameters image ((H,W,. . .) ndarray or tuple of int) – Image dimensions to use. If an
ndarray, its shape will be used. If a tuple, it is assumed to represent the image shape
and must contain at least two int s.

Returns True if the polygon is fully inside the image area. False otherwise.

Return type bool

is_out_of_image(self, image, fully=True, partly=False)
Estimate whether the polygon is partially/fully outside of an image.

13.14. imgaug.augmentables.polys 479

imgaug Documentation, Release 0.3.0

Parameters

• image ((H,W,. . .) ndarray or tuple of int) – Image dimensions to use. If an ndarray,
its shape will be used. If a tuple, it is assumed to represent the image shape and must
contain at least two int s.

• fully (bool, optional) – Whether to return True if the polygon is fully outside of the image
area.

• partly (bool, optional) – Whether to return True if the polygon is at least partially outside
fo the image area.

Returns True if the polygon is partially/fully outside of the image area, depending on defined
parameters. False otherwise.

Return type bool

is_partly_within_image(self, image)
Estimate whether the polygon is at least partially inside an image.

Parameters image ((H,W,. . .) ndarray or tuple of int) – Image dimensions to use. If an
ndarray, its shape will be used. If a tuple, it is assumed to represent the image shape
and must contain at least two int s.

Returns True if the polygon is at least partially inside the image area. False otherwise.

Return type bool

is_valid
Estimate whether the polygon has a valid geometry.

To to be considered valid, the polygon must be made up of at least 3 points and have a concave shape,
i.e. line segments may not intersect or overlap. Multiple consecutive points are allowed to have the same
coordinates.

Returns True if polygon has at least 3 points and is concave, otherwise False.

Return type bool

project(self, from_shape, to_shape)
Project the polygon onto an image with different shape.

The relative coordinates of all points remain the same. E.g. a point at (x=20, y=20) on an image
(width=100, height=200) will be projected on a new image (width=200, height=100) to
(x=40, y=10).

This is intended for cases where the original image is resized. It cannot be used for more complex changes
(e.g. padding, cropping).

Parameters

• from_shape (tuple of int) – Shape of the original image. (Before resize.)

• to_shape (tuple of int) – Shape of the new image. (After resize.)

Returns Polygon object with new coordinates.

Return type imgaug.augmentables.polys.Polygon

project_(self, from_shape, to_shape)
Project the polygon onto an image with different shape in-place.

The relative coordinates of all points remain the same. E.g. a point at (x=20, y=20) on an image
(width=100, height=200) will be projected on a new image (width=200, height=100) to
(x=40, y=10).

480 Chapter 13. API

imgaug Documentation, Release 0.3.0

This is intended for cases where the original image is resized. It cannot be used for more complex changes
(e.g. padding, cropping).

Added in 0.4.0.

Parameters

• from_shape (tuple of int) – Shape of the original image. (Before resize.)

• to_shape (tuple of int) – Shape of the new image. (After resize.)

Returns Polygon object with new coordinates. The object may have been modified in-place.

Return type imgaug.augmentables.polys.Polygon

shift(self, x=0, y=0, top=None, right=None, bottom=None, left=None)
Move this polygon along the x/y-axis.

The origin (0, 0) is at the top left of the image.

Parameters

• x (number, optional) – Value to be added to all x-coordinates. Positive values shift towards
the right images.

• y (number, optional) – Value to be added to all y-coordinates. Positive values shift towards
the bottom images.

• top (None or int, optional) – Deprecated since 0.4.0. Amount of pixels by which to shift
this object from the top (towards the bottom).

• right (None or int, optional) – Deprecated since 0.4.0. Amount of pixels by which to shift
this object from the right (towards the left).

• bottom (None or int, optional) – Deprecated since 0.4.0. Amount of pixels by which to
shift this object from the bottom (towards the top).

• left (None or int, optional) – Deprecated since 0.4.0. Amount of pixels by which to shift
this object from the left (towards the right).

Returns Shifted polygon.

Return type imgaug.augmentables.polys.Polygon

shift_(self, x=0, y=0)
Move this polygon along the x/y-axis in-place.

The origin (0, 0) is at the top left of the image.

Added in 0.4.0.

Parameters

• x (number, optional) – Value to be added to all x-coordinates. Positive values shift towards
the right images.

• y (number, optional) – Value to be added to all y-coordinates. Positive values shift towards
the bottom images.

Returns Shifted polygon. The object may have been modified in-place.

Return type imgaug.augmentables.polys.Polygon

subdivide(self, points_per_edge)
Derive a new polygon with N interpolated points per edge.

See subdivide() for details.

13.14. imgaug.augmentables.polys 481

imgaug Documentation, Release 0.3.0

Added in 0.4.0.

Parameters points_per_edge (int) – Number of points to interpolate on each edge.

Returns Polygon with subdivided edges.

Return type imgaug.augmentables.polys.Polygon

subdivide_(self, points_per_edge)
Derive a new poly with N interpolated points per edge in-place.

See subdivide() for details.

Added in 0.4.0.

Parameters points_per_edge (int) – Number of points to interpolate on each edge.

Returns Polygon with subdivided edges. The object may have been modified in-place.

Return type imgaug.augmentables.polys.Polygon

to_bounding_box(self)
Convert this polygon to a bounding box containing the polygon.

Returns Bounding box that tightly encapsulates the polygon.

Return type imgaug.augmentables.bbs.BoundingBox

to_keypoints(self)
Convert this polygon’s exterior to Keypoint instances.

Returns Exterior vertices as Keypoint instances.

Return type list of imgaug.augmentables.kps.Keypoint

to_line_string(self, closed=True)
Convert this polygon’s exterior to a LineString instance.

Parameters closed (bool, optional) – Whether to close the line string, i.e. to add the first point
of the exterior also as the last point at the end of the line string. This has no effect if the
polygon has a single point or zero points.

Returns Exterior of the polygon as a line string.

Return type imgaug.augmentables.lines.LineString

to_shapely_line_string(self, closed=False, interpolate=0)
Convert this polygon to a Shapely LineString object.

Parameters

• closed (bool, optional) – Whether to return the line string with the last point being identical
to the first point.

• interpolate (int, optional) – Number of points to interpolate between any pair of two
consecutive points. These points are added to the final line string.

Returns The Shapely LineString matching the polygon’s exterior.

Return type shapely.geometry.LineString

to_shapely_polygon(self)
Convert this polygon to a Shapely Polygon.

Returns The Shapely Polygon matching this polygon’s exterior.

Return type shapely.geometry.Polygon

482 Chapter 13. API

imgaug Documentation, Release 0.3.0

width
Compute the width of a bounding box encapsulating the polygon.

The width is computed based on the two exterior coordinates with lowest and largest x-coordinates.

Returns Width of the polygon.

Return type number

xx
Get the x-coordinates of all points on the exterior.

Returns float32 x-coordinates array of all points on the exterior.

Return type (N,2) ndarray

xx_int
Get the discretized x-coordinates of all points on the exterior.

The conversion from float32 coordinates to int32 is done by first rounding the coordinates to the
closest integer and then removing everything after the decimal point.

Returns int32 x-coordinates of all points on the exterior.

Return type (N,2) ndarray

yy
Get the y-coordinates of all points on the exterior.

Returns float32 y-coordinates array of all points on the exterior.

Return type (N,2) ndarray

yy_int
Get the discretized y-coordinates of all points on the exterior.

The conversion from float32 coordinates to int32 is done by first rounding the coordinates to the
closest integer and then removing everything after the decimal point.

Returns int32 y-coordinates of all points on the exterior.

Return type (N,2) ndarray

class imgaug.augmentables.polys.PolygonsOnImage(polygons, shape)
Bases: imgaug.augmentables.base.IAugmentable

Container for all polygons on a single image.

Parameters

• polygons (list of imgaug.augmentables.polys.Polygon) – List of polygons on the image.

• shape (tuple of int or ndarray) – The shape of the image on which the objects are placed.
Either an image with shape (H,W,[C]) or a tuple denoting such an image shape.

Examples

>>> import numpy as np
>>> from imgaug.augmentables.polys import Polygon, PolygonsOnImage
>>> image = np.zeros((100, 100))
>>> polys = [
>>> Polygon([(0.5, 0.5), (100.5, 0.5), (100.5, 100.5), (0.5, 100.5)]),
>>> Polygon([(50.5, 0.5), (100.5, 50.5), (50.5, 100.5), (0.5, 50.5)])

(continues on next page)

13.14. imgaug.augmentables.polys 483

imgaug Documentation, Release 0.3.0

(continued from previous page)

>>>]
>>> polys_oi = PolygonsOnImage(polys, shape=image.shape)

Attributes

empty Estimate whether this object contains zero polygons.

items Get the polygons in this container.

Methods

clip_out_of_image(self) Clip off all parts from all polygons that are outside
of an image.

clip_out_of_image_(self) Clip off all parts from all polygons that are OOI in-
place.

copy(self[, polygons, shape]) Create a shallow copy of this object.
deepcopy(self[, polygons, shape]) Create a deep copy of this object.
draw_on_image(self, image[, color, . . .]) Draw all polygons onto a given image.
fill_from_xy_array_(self, xy) Modify the corner coordinates of all polygons in-

place.
invert_to_keypoints_on_image_(self, kp-
soi)

Invert the output of
to_keypoints_on_image() in-place.

on(self, image) Project all polygons from one image shape to a new
one.

on_(self, image) Project all polygons from one image shape to a new
one in-place.

remove_out_of_image(self[, fully, partly]) Remove all polygons that are fully/partially outside
of an image.

remove_out_of_image_(self[, fully, partly]) Remove all polygons that are fully/partially OOI in-
place.

remove_out_of_image_fraction(self, frac-
tion)

Remove all Polys with an out of image fraction of
>=fraction.

remove_out_of_image_fraction_(self,
fraction)

Remove all Polys with an OOI fraction of
>=fraction in-place.

shift(self[, x, y, top, right, bottom, left]) Move the polygons along the x/y-axis.
shift_(self[, x, y]) Move the polygons along the x/y-axis in-place.
subdivide(self, points_per_edge) Interpolate N points on each polygon.
subdivide_(self, points_per_edge) Interpolate N points on each polygon.
to_keypoints_on_image(self) Convert the polygons to one KeypointsOnImage

instance.
to_xy_array(self) Convert all polygon coordinates to one array of shape

(N,2).

clip_out_of_image(self)
Clip off all parts from all polygons that are outside of an image.

Note: The result can contain fewer polygons than the input did. That happens when a polygon is fully
outside of the image plane.

484 Chapter 13. API

imgaug Documentation, Release 0.3.0

Note: The result can also contain more polygons than the input did. That happens when distinct parts of
a polygon are only connected by areas that are outside of the image plane and hence will be clipped off,
resulting in two or more unconnected polygon parts that are left in the image plane.

Returns Polygons, clipped to fall within the image dimensions. The count of output polygons
may differ from the input count.

Return type imgaug.augmentables.polys.PolygonsOnImage

clip_out_of_image_(self)
Clip off all parts from all polygons that are OOI in-place.

‘OOI’ is the abbreviation for ‘out of image’.

Note: The result can contain fewer polygons than the input did. That happens when a polygon is fully
outside of the image plane.

Note: The result can also contain more polygons than the input did. That happens when distinct parts of
a polygon are only connected by areas that are outside of the image plane and hence will be clipped off,
resulting in two or more unconnected polygon parts that are left in the image plane.

Added in 0.4.0.

Returns Polygons, clipped to fall within the image dimensions. The count of output polygons
may differ from the input count. The object and its items may have been modified in-place.

Return type imgaug.augmentables.polys.PolygonsOnImage

copy(self, polygons=None, shape=None)
Create a shallow copy of this object.

Parameters

• polygons (None or list of imgaug.augmentables.polys.Polygons, optional) – List of poly-
gons on the image. If not None, then the polygons attribute of the copied object will
be set to this value.

• shape (None or tuple of int or ndarray, optional) – The shape of the image on which the
objects are placed. Either an image with shape (H,W,[C]) or a tuple denoting such an
image shape. If not None, then the shape attribute of the copied object will be set to this
value.

Returns Shallow copy.

Return type imgaug.augmentables.polys.PolygonsOnImage

deepcopy(self, polygons=None, shape=None)
Create a deep copy of this object.

Parameters

• polygons (None or list of imgaug.augmentables.polys.Polygons, optional) – List of poly-
gons on the image. If not None, then the polygons attribute of the copied object will
be set to this value.

13.14. imgaug.augmentables.polys 485

imgaug Documentation, Release 0.3.0

• shape (None or tuple of int or ndarray, optional) – The shape of the image on which the
objects are placed. Either an image with shape (H,W,[C]) or a tuple denoting such an
image shape. If not None, then the shape attribute of the copied object will be set to this
value.

Returns Deep copy.

Return type imgaug.augmentables.polys.PolygonsOnImage

draw_on_image(self, image, color=(0, 255, 0), color_face=None, color_lines=None,
color_points=None, alpha=1.0, alpha_face=None, alpha_lines=None,
alpha_points=None, size=1, size_lines=None, size_points=None,
raise_if_out_of_image=False)

Draw all polygons onto a given image.

Parameters

• image ((H,W,C) ndarray) – The image onto which to draw the bounding boxes. This
image should usually have the same shape as set in PolygonsOnImage.shape.

• color (iterable of int, optional) – The color to use for the whole polygons. Must correspond
to the channel layout of the image. Usually RGB. The values for color_face, color_lines
and color_points will be derived from this color if they are set to None. This argument has
no effect if color_face, color_lines and color_points are all set anything other than None.

• color_face (None or iterable of int, optional) – The color to use for the inner polygon
areas (excluding perimeters). Must correspond to the channel layout of the image. Usually
RGB. If this is None, it will be derived from color * 1.0.

• color_lines (None or iterable of int, optional) – The color to use for the lines (aka perime-
ters/borders) of the polygons. Must correspond to the channel layout of the image. Usually
RGB. If this is None, it will be derived from color * 0.5.

• color_points (None or iterable of int, optional) – The color to use for the corner points of
the polygons. Must correspond to the channel layout of the image. Usually RGB. If this is
None, it will be derived from color * 0.5.

• alpha (float, optional) – The opacity of the whole polygons, where 1.0 denotes com-
pletely visible polygons and 0.0 invisible ones. The values for alpha_face, alpha_lines
and alpha_points will be derived from this alpha value if they are set to None. This argu-
ment has no effect if alpha_face, alpha_lines and alpha_points are all set anything other
than None.

• alpha_face (None or number, optional) – The opacity of the polygon’s inner areas (exclud-
ing the perimeters), where 1.0 denotes completely visible inner areas and 0.0 invisible
ones. If this is None, it will be derived from alpha * 0.5.

• alpha_lines (None or number, optional) – The opacity of the polygon’s lines (aka perime-
ters/borders), where 1.0 denotes completely visible perimeters and 0.0 invisible ones.
If this is None, it will be derived from alpha * 1.0.

• alpha_points (None or number, optional) – The opacity of the polygon’s corner points,
where 1.0 denotes completely visible corners and 0.0 invisible ones. Currently this is
an on/off choice, i.e. only 0.0 or 1.0 are allowed. If this is None, it will be derived from
alpha * 1.0.

• size (int, optional) – Size of the polygons. The sizes of the line and points are derived
from this value, unless they are set.

• size_lines (None or int, optional) – Thickness of the polygon lines (aka perimeter/border).
If None, this value is derived from size.

486 Chapter 13. API

imgaug Documentation, Release 0.3.0

• size_points (int, optional) – The size of all corner points. If set to C, each corner point
will be drawn as a square of size C x C.

• raise_if_out_of_image (bool, optional) – Whether to raise an error if any polygon is fully
outside of the image. If set to False, no error will be raised and only the parts inside the
image will be drawn.

Returns Image with drawn polygons.

Return type (H,W,C) ndarray

empty
Estimate whether this object contains zero polygons.

Returns True if this object contains zero polygons.

Return type bool

fill_from_xy_array_(self, xy)
Modify the corner coordinates of all polygons in-place.

Note: This currently expects that xy contains exactly as many coordinates as the polygons within this
instance have corner points. Otherwise, an AssertionError will be raised.

Warning: This does not validate the new coordinates or repair the resulting polygons. If bad coordi-
nates are provided, the result will be invalid polygons (e.g. self-intersections).

Added in 0.4.0.

Parameters xy ((N, 2) ndarray or iterable of iterable of number) – XY-Coordinates of N corner
points. N must match the number of corner points in all polygons within this instance.

Returns This instance itself, with updated coordinates. Note that the instance was modified
in-place.

Return type PolygonsOnImage

invert_to_keypoints_on_image_(self, kpsoi)
Invert the output of to_keypoints_on_image() in-place.

This function writes in-place into this PolygonsOnImage instance.

Added in 0.4.0.

Parameters kpsoi (imgaug.augmentables.kps.KeypointsOnImages) – Keypoints to convert back
to polygons, i.e. the outputs of to_keypoints_on_image().

Returns Polygons container with updated coordinates. Note that the instance is also updated
in-place.

Return type PolygonsOnImage

items
Get the polygons in this container.

Added in 0.4.0.

Returns Polygons within this container.

Return type list of Polygon

13.14. imgaug.augmentables.polys 487

imgaug Documentation, Release 0.3.0

on(self, image)
Project all polygons from one image shape to a new one.

Parameters image (ndarray or tuple of int) – New image onto which the polygons are to be
projected. May also simply be that new image’s shape tuple.

Returns Object containing all projected polygons.

Return type imgaug.augmentables.polys.PolygonsOnImage

on_(self, image)
Project all polygons from one image shape to a new one in-place.

Added in 0.4.0.

Parameters image (ndarray or tuple of int) – New image onto which the polygons are to be
projected. May also simply be that new image’s shape tuple.

Returns Object containing all projected polygons. The object and its items may have been
modified in-place.

Return type imgaug.augmentables.polys.PolygonsOnImage

remove_out_of_image(self, fully=True, partly=False)
Remove all polygons that are fully/partially outside of an image.

Parameters

• fully (bool, optional) – Whether to remove polygons that are fully outside of the image.

• partly (bool, optional) – Whether to remove polygons that are partially outside of the
image.

Returns Reduced set of polygons. Those that are fully/partially outside of the given image plane
are removed.

Return type imgaug.augmentables.polys.PolygonsOnImage

remove_out_of_image_(self, fully=True, partly=False)
Remove all polygons that are fully/partially OOI in-place.

‘OOI’ is the abbreviation for ‘out of image’.

Added in 0.4.0.

Parameters

• fully (bool, optional) – Whether to remove polygons that are fully outside of the image.

• partly (bool, optional) – Whether to remove polygons that are partially outside of the
image.

Returns Reduced set of polygons. Those that are fully/partially outside of the given image plane
are removed. The object and its items may have been modified in-place.

Return type imgaug.augmentables.polys.PolygonsOnImage

remove_out_of_image_fraction(self, fraction)
Remove all Polys with an out of image fraction of >=fraction.

Added in 0.4.0.

Parameters fraction (number) – Minimum out of image fraction that a polygon has to have in
order to be removed. A fraction of 1.0 removes only polygons that are 100% outside of the
image. A fraction of 0.0 removes all polygons.

488 Chapter 13. API

imgaug Documentation, Release 0.3.0

Returns Reduced set of polygons, with those that had an out of image fraction greater or equal
the given one removed.

Return type imgaug.augmentables.polys.PolygonsOnImage

remove_out_of_image_fraction_(self, fraction)
Remove all Polys with an OOI fraction of >=fraction in-place.

Added in 0.4.0.

Parameters fraction (number) – Minimum out of image fraction that a polygon has to have in
order to be removed. A fraction of 1.0 removes only polygons that are 100% outside of the
image. A fraction of 0.0 removes all polygons.

Returns Reduced set of polygons, with those that had an out of image fraction greater or equal
the given one removed. The object and its items may have been modified in-place.

Return type imgaug.augmentables.polys.PolygonsOnImage

shift(self, x=0, y=0, top=None, right=None, bottom=None, left=None)
Move the polygons along the x/y-axis.

The origin (0, 0) is at the top left of the image.

Parameters

• x (number, optional) – Value to be added to all x-coordinates. Positive values shift towards
the right images.

• y (number, optional) – Value to be added to all y-coordinates. Positive values shift towards
the bottom images.

• top (None or int, optional) – Deprecated since 0.4.0. Amount of pixels by which to shift
all objects from the top (towards the bottom).

• right (None or int, optional) – Deprecated since 0.4.0. Amount of pixels by which to shift
all objects from the right (towads the left).

• bottom (None or int, optional) – Deprecated since 0.4.0. Amount of pixels by which to
shift all objects from the bottom (towards the top).

• left (None or int, optional) – Deprecated since 0.4.0. Amount of pixels by which to shift
all objects from the left (towards the right).

Returns Shifted polygons.

Return type imgaug.augmentables.polys.PolygonsOnImage

shift_(self, x=0, y=0)
Move the polygons along the x/y-axis in-place.

The origin (0, 0) is at the top left of the image.

Added in 0.4.0.

Parameters

• x (number, optional) – Value to be added to all x-coordinates. Positive values shift towards
the right images.

• y (number, optional) – Value to be added to all y-coordinates. Positive values shift towards
the bottom images.

Returns Shifted polygons.

Return type imgaug.augmentables.polys.PolygonsOnImage

13.14. imgaug.augmentables.polys 489

imgaug Documentation, Release 0.3.0

subdivide(self, points_per_edge)
Interpolate N points on each polygon.

Added in 0.4.0.

Parameters points_per_edge (int) – Number of points to interpolate on each edge.

Returns Subdivided polygons.

Return type imgaug.augmentables.polys.PolygonsOnImage

subdivide_(self, points_per_edge)
Interpolate N points on each polygon.

Added in 0.4.0.

Parameters points_per_edge (int) – Number of points to interpolate on each edge.

Returns Subdivided polygons.

Return type imgaug.augmentables.polys.PolygonsOnImage

to_keypoints_on_image(self)
Convert the polygons to one KeypointsOnImage instance.

Added in 0.4.0.

Returns A keypoints instance containing N coordinates for a total of N points in all exteriors of
the polygons within this container. Order matches the order in polygons.

Return type imgaug.augmentables.kps.KeypointsOnImage

to_xy_array(self)
Convert all polygon coordinates to one array of shape (N,2).

Added in 0.4.0.

Returns Array containing all xy-coordinates of all polygons within this instance.

Return type (N, 2) ndarray

imgaug.augmentables.polys.recover_psois_(psois, psois_orig, recoverer, random_state)
Apply a polygon recoverer to input polygons in-place.

Parameters

• psois (list of imgaug.augmentables.polys.PolygonsOnImage or im-
gaug.augmentables.polys.PolygonsOnImage) – The possibly broken polygons, e.g.
after augmentation. The recoverer is applied to them.

• psois_orig (list of imgaug.augmentables.polys.PolygonsOnImage or im-
gaug.augmentables.polys.PolygonsOnImage) – Original polygons that were later changed
to psois. They are an extra input to recoverer.

• recoverer (imgaug.augmentables.polys._ConcavePolygonRecoverer) – The polygon recov-
erer used to repair broken input polygons.

• random_state (None or int or RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState) – An RNG to use during the polygon recovery.

Returns List of repaired polygons. Note that this is psois, which was changed in-place.

Return type list of imgaug.augmentables.polys.PolygonsOnImage or im-
gaug.augmentables.polys.PolygonsOnImage

490 Chapter 13. API

imgaug Documentation, Release 0.3.0

13.15 imgaug.augmentables.segmaps

Classes dealing with segmentation maps.

E.g. masks, semantic or instance segmentation maps.

imgaug.augmentables.segmaps.SegmentationMapOnImage(*args, **kwargs)
Deprecated. Use SegmentationMapsOnImage instead. (Note the plural ‘Maps’ instead of old ‘Map’.).

Object representing a segmentation map associated with an image.

class imgaug.augmentables.segmaps.SegmentationMapsOnImage(arr, shape,
nb_classes=None)

Bases: imgaug.augmentables.base.IAugmentable

Object representing a segmentation map associated with an image.

Variables DEFAULT_SEGMENT_COLORS (list of tuple of int) – Standard RGB colors
to use during drawing, ordered by class index.

Parameters

• arr ((H,W) ndarray or (H,W,C) ndarray) – Array representing the segmentation map(s).
May have dtypes bool, int or uint.

• shape (tuple of int) – Shape of the image on which the segmentation map(s) is/are placed.
Not the shape of the segmentation map(s) array, unless it is identical to the image shape
(note the likely difference between the arrays in the number of channels). This is expected
to be (H, W) or (H, W, C) with C usually being 3. If there is no corresponding image,
use (H_arr, W_arr) instead, where H_arr is the height of the segmentation map(s)
array (analogous W_arr).

• nb_classes (None or int, optional) – Deprecated.

Methods

copy(self[, arr, shape]) Create a shallow copy of the segmentation map ob-
ject.

deepcopy(self[, arr, shape]) Create a deep copy of the segmentation map object.
draw(self[, size, colors]) Render the segmentation map as an RGB image.
draw_on_image(self, image[, alpha, resize, . . .]) Draw the segmentation map as an overlay over an

image.
get_arr(self) Return the seg.map array, with original dtype and

shape ndim.
get_arr_int(self, *args, **kwargs) Deprecated.
pad(self[, top, right, bottom, left, mode, cval]) Pad the segmentation maps at their

top/right/bottom/left side.
pad_to_aspect_ratio(self, aspect_ratio[,
. . .])

Pad the segmentation maps until they match a target
aspect ratio.

resize(self, sizes[, interpolation]) Resize the seg.map(s) array given a target size and
interpolation.

scale(self, *args, **kwargs) Deprecated.

DEFAULT_SEGMENT_COLORS = [(0, 0, 0), (230, 25, 75), (60, 180, 75), (255, 225, 25), (0, 130, 200), (245, 130, 48), (145, 30, 180), (70, 240, 240), (240, 50, 230), (210, 245, 60), (250, 190, 190), (0, 128, 128), (230, 190, 255), (170, 110, 40), (255, 250, 200), (128, 0, 0), (170, 255, 195), (128, 128, 0), (255, 215, 180), (0, 0, 128), (128, 128, 128), (255, 255, 255), (115, 12, 37), (30, 90, 37), (127, 112, 12), (0, 65, 100), (122, 65, 24), (72, 15, 90), (35, 120, 120), (120, 25, 115), (105, 122, 30), (125, 95, 95), (0, 64, 64), (115, 95, 127), (85, 55, 20), (127, 125, 100), (64, 0, 0), (85, 127, 97), (64, 64, 0), (127, 107, 90), (0, 0, 64), (64, 64, 64)]

copy(self, arr=None, shape=None)
Create a shallow copy of the segmentation map object.

13.15. imgaug.augmentables.segmaps 491

imgaug Documentation, Release 0.3.0

Parameters

• arr (None or (H,W) ndarray or (H,W,C) ndarray, optional) – Optionally the arr attribute
to use for the new segmentation map instance. Will be copied from the old instance if not
provided. See __init__() for details.

• shape (None or tuple of int, optional) – Optionally the shape attribute to use for the the
new segmentation map instance. Will be copied from the old instance if not provided. See
__init__() for details.

Returns Shallow copy.

Return type imgaug.augmentables.segmaps.SegmentationMapsOnImage

deepcopy(self, arr=None, shape=None)
Create a deep copy of the segmentation map object.

Parameters

• arr (None or (H,W) ndarray or (H,W,C) ndarray, optional) – Optionally the arr attribute
to use for the new segmentation map instance. Will be copied from the old instance if not
provided. See __init__() for details.

• shape (None or tuple of int, optional) – Optionally the shape attribute to use for the the
new segmentation map instance. Will be copied from the old instance if not provided. See
__init__() for details.

Returns Deep copy.

Return type imgaug.augmentables.segmaps.SegmentationMapsOnImage

draw(self, size=None, colors=None)
Render the segmentation map as an RGB image.

Parameters

• size (None or float or iterable of int or iterable of float, optional) – Size of the rendered
RGB image as (height, width). See imresize_single_image() for details.
If set to None, no resizing is performed and the size of the segmentation map array is
used.

• colors (None or list of tuple of int, optional) – Colors to use. One for each class to draw.
If None, then default colors will be used.

Returns Rendered segmentation map (dtype is uint8). One per C in the original input array
(H,W,C).

Return type list of (H,W,3) ndarray

draw_on_image(self, image, alpha=0.75, resize=’segmentation_map’, colors=None,
draw_background=False, background_class_id=0, background_threshold=None)

Draw the segmentation map as an overlay over an image.

Parameters

• image ((H,W,3) ndarray) – Image onto which to draw the segmentation map. Expected
dtype is uint8.

• alpha (float, optional) – Alpha/opacity value to use for the mixing of image and segmen-
tation map. Larger values mean that the segmentation map will be more visible and the
image less visible.

• resize ({‘segmentation_map’, ‘image’}, optional) – In case of size differences between the
image and segmentation map, either the image or the segmentation map can be resized.
This parameter controls which of the two will be resized to the other’s size.

492 Chapter 13. API

imgaug Documentation, Release 0.3.0

• colors (None or list of tuple of int, optional) – Colors to use. One for each class to draw.
If None, then default colors will be used.

• draw_background (bool, optional) – If True, the background will be drawn like any
other class. If False, the background will not be drawn, i.e. the respective background
pixels will be identical with the image’s RGB color at the corresponding spatial location
and no color overlay will be applied.

• background_class_id (int, optional) – Class id to interpret as the background class. See
draw_background.

• background_threshold (None, optional) – Deprecated. This parameter is ignored.

Returns Rendered overlays as uint8 arrays. Always a list containing one RGB image per
segmentation map array channel.

Return type list of (H,W,3) ndarray

get_arr(self)
Return the seg.map array, with original dtype and shape ndim.

Here, “original” denotes the dtype and number of shape dimensions that was used
when the SegmentationMapsOnImage instance was created, i.e. upon the call of
SegmentationMapsOnImage.__init__(). Internally, this class may use a different dtype
and shape to simplify computations.

Note: The height and width may have changed compared to the original input due to e.g. pooling
operations.

Returns Segmentation map array. Same dtype and number of dimensions as was originally used
when the SegmentationMapsOnImage instance was created.

Return type ndarray

get_arr_int(self, *args, **kwargs)
Deprecated. Use SegmentationMapsOnImage.get_arr() instead.

Return the seg.map array, with original dtype and shape ndim.

pad(self, top=0, right=0, bottom=0, left=0, mode=’constant’, cval=0)
Pad the segmentation maps at their top/right/bottom/left side.

Parameters

• top (int, optional) – Amount of pixels to add at the top side of the segmentation map. Must
be 0 or greater.

• right (int, optional) – Amount of pixels to add at the right side of the segmentation map.
Must be 0 or greater.

• bottom (int, optional) – Amount of pixels to add at the bottom side of the segmentation
map. Must be 0 or greater.

• left (int, optional) – Amount of pixels to add at the left side of the segmentation map. Must
be 0 or greater.

• mode (str, optional) – Padding mode to use. See pad() for details.

• cval (number, optional) – Value to use for padding if mode is constant. See pad() for
details.

13.15. imgaug.augmentables.segmaps 493

imgaug Documentation, Release 0.3.0

Returns Padded segmentation map with height H'=H+top+bottom and width
W'=W+left+right.

Return type imgaug.augmentables.segmaps.SegmentationMapsOnImage

pad_to_aspect_ratio(self, aspect_ratio, mode=’constant’, cval=0, return_pad_amounts=False)
Pad the segmentation maps until they match a target aspect ratio.

Depending on which dimension is smaller (height or width), only the corresponding sides (left/right or
top/bottom) will be padded. In each case, both of the sides will be padded equally.

Parameters

• aspect_ratio (float) – Target aspect ratio, given as width/height. E.g. 2.0 denotes the
image having twice as much width as height.

• mode (str, optional) – Padding mode to use. See pad() for details.

• cval (number, optional) – Value to use for padding if mode is constant. See pad() for
details.

• return_pad_amounts (bool, optional) – If False, then only the padded instance will
be returned. If True, a tuple with two entries will be returned, where the first entry
is the padded instance and the second entry are the amounts by which each array side
was padded. These amounts are again a tuple of the form (top, right, bottom,
left), with each value being an integer.

Returns

• imgaug.augmentables.segmaps.SegmentationMapsOnImage – Padded segmentation map
as SegmentationMapsOnImage instance.

• tuple of int – Amounts by which the instance’s array was padded on each side, given
as a tuple (top, right, bottom, left). This tuple is only returned if re-
turn_pad_amounts was set to True.

resize(self, sizes, interpolation=’nearest’)
Resize the seg.map(s) array given a target size and interpolation.

Parameters

• sizes (float or iterable of int or iterable of float) – New size of the array in (height,
width). See imresize_single_image() for details.

• interpolation (None or str or int, optional) – The interpolation to use during resize.
Nearest neighbour interpolation ("nearest") is almost always the best choice. See
imresize_single_image() for details.

Returns Resized segmentation map object.

Return type imgaug.augmentables.segmaps.SegmentationMapsOnImage

scale(self, *args, **kwargs)
Deprecated. Use SegmentationMapsOnImage.resize() instead. resize() has the exactly same
interface.

Resize the seg.map(s) array given a target size and interpolation.

13.16 imgaug.augmentables.utils

Utility functions used in augmentable modules.

494 Chapter 13. API

imgaug Documentation, Release 0.3.0

imgaug.augmentables.utils.convert_cbaois_to_kpsois(cbaois)
Convert coordinate-based augmentables to KeypointsOnImage instances.

Added in 0.4.0.

Parameters cbaois (list of imgaug.augmentables.bbs.BoundingBoxesOnImage
or list of imgaug.augmentables.bbs.PolygonsOnImage or
list of imgaug.augmentables.bbs.LineStringsOnImage or im-
gaug.augmentables.bbs.BoundingBoxesOnImage or imgaug.augmentables.bbs.PolygonsOnImage
or imgaug.augmentables.bbs.LineStringsOnImage) – Coordinate-based augmentables to con-
vert, e.g. bounding boxes.

Returns KeypointsOnImage instances containing the coordinates of input cbaois.

Return type list of imgaug.augmentables.kps.KeypointsOnImage or im-
gaug.augmentables.kps.KeypointsOnImage

imgaug.augmentables.utils.copy_augmentables(augmentables)

imgaug.augmentables.utils.deepcopy_fast(obj)

imgaug.augmentables.utils.interpolate_point_pair(point_a, point_b, nb_steps)
Interpolate N points on a line segment.

Parameters

• point_a (iterable of number) – Start point of the line segment, given as (x,y) coordinates.

• point_b (iterable of number) – End point of the line segment, given as (x,y) coordinates.

• nb_steps (int) – Number of points to interpolate between point_a and point_b.

Returns The interpolated points. Does not include point_a.

Return type list of tuple of number

imgaug.augmentables.utils.interpolate_points(points, nb_steps, closed=True)
Interpolate N on each line segment in a line string.

Parameters

• points (iterable of iterable of number) – Points on the line segments, each one given as
(x,y) coordinates. They are assumed to form one connected line string.

• nb_steps (int) – Number of points to interpolate on each individual line string.

• closed (bool, optional) – If True the output contains the last point in points. Otherwise it
does not (but it will contain the interpolated points leading to the last point).

Returns Coordinates of points, with additional nb_steps new points interpolated between each point
pair. If closed is False, the last point in points is not returned.

Return type list of tuple of number

imgaug.augmentables.utils.interpolate_points_by_max_distance(points,
max_distance,
closed=True)

Interpolate points with distance d on a line string.

For a list of points A, B, C, if the distance between A and B is greater than max_distance, it will place at least
one point between A and B at A + max_distance * (B - A). Multiple points can be placed between
the two points if they are far enough away from each other. The process is repeated for B and C.

Parameters

13.16. imgaug.augmentables.utils 495

imgaug Documentation, Release 0.3.0

• points (iterable of iterable of number) – Points on the line segments, each one given as
(x,y) coordinates. They are assumed to form one connected line string.

• max_distance (number) – Maximum distance between any two points in the result.

• closed (bool, optional) – If True the output contains the last point in points. Otherwise it
does not (but it will contain the interpolated points leading to the last point).

Returns Coordinates of points, with interpolated points added to the iterable. If closed is False,
the last point in points is not returned.

Return type list of tuple of number

imgaug.augmentables.utils.invert_convert_cbaois_to_kpsois_(cbaois, kpsois)
Invert the output of convert_to_cbaois_to_kpsois() in-place.

This function writes in-place into cbaois.

Added in 0.4.0.

Parameters

• cbaois (list of imgaug.augmentables.bbs.BoundingBoxesOnImage
or list of imgaug.augmentables.bbs.PolygonsOnImage or
list of imgaug.augmentables.bbs.LineStringsOnImage or im-
gaug.augmentables.bbs.BoundingBoxesOnImage or im-
gaug.augmentables.bbs.PolygonsOnImage or imgaug.augmentables.bbs.LineStringsOnImage)
– Original coordinate-based augmentables before they were converted, i.e. the same inputs
as provided to convert_to_kpsois().

• kpsois (list of imgaug.augmentables.kps.KeypointsOnImages or im-
gaug.augmentables.kps.KeypointsOnImages) – Keypoints to convert back to the types
of cbaois, i.e. the outputs of convert_cbaois_to_kpsois().

Returns Parameter cbaois, with updated coordinates and shapes derived from kpsois. cbaois is
modified in-place.

Return type list of imgaug.augmentables.bbs.BoundingBoxesOnImage
or list of imgaug.augmentables.bbs.PolygonsOnImage or
list of imgaug.augmentables.bbs.LineStringsOnImage or im-
gaug.augmentables.bbs.BoundingBoxesOnImage or imgaug.augmentables.bbs.PolygonsOnImage
or imgaug.augmentables.bbs.LineStringsOnImage

imgaug.augmentables.utils.normalize_shape(shape)
Normalize a shape tuple or array to a shape tuple.

Parameters shape (tuple of int or ndarray) – The input to normalize. May optionally be an array.

Returns Shape tuple.

Return type tuple of int

imgaug.augmentables.utils.project_coords(coords, from_shape, to_shape)
Project coordinates from one image shape to another.

This performs a relative projection, e.g. a point at 60% of the old image width will be at 60% of the new image
width after projection.

Parameters

• coords (ndarray or list of tuple of number) – Coordinates to project. Either an (N,2)
numpy array or a list containing (x,y) coordinate tuple s.

• from_shape (tuple of int or ndarray) – Old image shape.

496 Chapter 13. API

imgaug Documentation, Release 0.3.0

• to_shape (tuple of int or ndarray) – New image shape.

Returns Projected coordinates as (N,2) float32 numpy array.

Return type ndarray

imgaug.augmentables.utils.project_coords_(coords, from_shape, to_shape)
Project coordinates from one image shape to another in-place.

This performs a relative projection, e.g. a point at 60% of the old image width will be at 60% of the new image
width after projection.

Added in 0.4.0.

Parameters

• coords (ndarray or list of tuple of number) – Coordinates to project. Either an (N,2)
numpy array or a list containing (x,y) coordinate tuple s.

• from_shape (tuple of int or ndarray) – Old image shape.

• to_shape (tuple of int or ndarray) – New image shape.

Returns Projected coordinates as (N,2) float32 numpy array. This function may change the
input data in-place.

Return type ndarray

13.17 imgaug.augmenters.arithmetic

Augmenters that perform simple arithmetic changes.

List of augmenters:

• Add

• AddElementwise

• AdditiveGaussianNoise

• AdditiveLaplaceNoise

• AdditivePoissonNoise

• Multiply

• MultiplyElementwise

• Cutout

• Dropout

• CoarseDropout

• Dropout2d

• TotalDropout

• ReplaceElementwise

• ImpulseNoise

• SaltAndPepper

• CoarseSaltAndPepper

• Salt

13.17. imgaug.augmenters.arithmetic 497

imgaug Documentation, Release 0.3.0

• CoarseSalt

• Pepper

• CoarsePepper

• Invert

• Solarize

• ContrastNormalization

• JpegCompression

class imgaug.augmenters.arithmetic.Add(value=(-20, 20), per_channel=False, seed=None,
name=None, random_state=’deprecated’, determin-
istic=’deprecated’)

Bases: imgaug.augmenters.meta.Augmenter

Add a value to all pixels in an image.

Supported dtypes:

See add_scalar().

Parameters

• value (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) –

Value to add to all pixels.

– If a number, exactly that value will always be used.

– If a tuple (a, b), then a value from the discrete interval [a..b] will be sampled per
image.

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then a value will be sampled per image from that pa-
rameter.

• per_channel (bool or float or imgaug.parameters.StochasticParameter, optional) –
Whether to use (imagewise) the same sample(s) for all channels (False) or to sample
value(s) for each channel (True). Setting this to True will therefore lead to differ-
ent transformations per image and channel, otherwise only per image. If this value is a
float p, then for p percent of all images per_channel will be treated as True. If it is a
StochasticParameter it is expected to produce samples with values between 0.0
and 1.0, where values >0.5 will lead to per-channel behaviour (i.e. same as True).

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

498 Chapter 13. API

imgaug Documentation, Release 0.3.0

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Add(10)

Always adds a value of 10 to all channels of all pixels of all input images.

>>> aug = iaa.Add((-10, 10))

Adds a value from the discrete interval [-10..10] to all pixels of input images. The exact value is sampled
per image.

>>> aug = iaa.Add((-10, 10), per_channel=True)

Adds a value from the discrete interval [-10..10] to all pixels of input images. The exact value is sampled
per image and channel, i.e. to a red-channel it might add 5 while subtracting 7 from the blue channel of the
same image.

>>> aug = iaa.Add((-10, 10), per_channel=0.5)

Identical to the previous example, but the per_channel feature is only active for 50 percent of all images.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.

Continued on next page

13.17. imgaug.augmenters.arithmetic 499

imgaug Documentation, Release 0.3.0

Table 51 – continued from previous page
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

get_parameters(self)
See get_parameters().

class imgaug.augmenters.arithmetic.AddElementwise(value=(-20, 20),
per_channel=False,
seed=None, name=None, ran-
dom_state=’deprecated’, determin-
istic=’deprecated’)

Bases: imgaug.augmenters.meta.Augmenter

Add to the pixels of images values that are pixelwise randomly sampled.

While the Add Augmenter samples one value to add per image (and optionally per channel), this augmenter
samples different values per image and per pixel (and optionally per channel), i.e. intensities of neighbouring
pixels may be increased/decreased by different amounts.

Supported dtypes:

See add_elementwise().

Parameters

• value (int or tuple of int or list of int or imgaug.parameters.StochasticParameter, optional)
–

Value to add to the pixels.

– If an int, exactly that value will always be used.

– If a tuple (a, b), then values from the discrete interval [a..b] will be sampled per
image and pixel.

– If a list of integers, a random value will be sampled from the list per image and pixel.

500 Chapter 13. API

imgaug Documentation, Release 0.3.0

– If a StochasticParameter, then values will be sampled per image and pixel from
that parameter.

• per_channel (bool or float or imgaug.parameters.StochasticParameter, optional) –
Whether to use (imagewise) the same sample(s) for all channels (False) or to sample
value(s) for each channel (True). Setting this to True will therefore lead to differ-
ent transformations per image and channel, otherwise only per image. If this value is a
float p, then for p percent of all images per_channel will be treated as True. If it is a
StochasticParameter it is expected to produce samples with values between 0.0
and 1.0, where values >0.5 will lead to per-channel behaviour (i.e. same as True).

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.AddElementwise(10)

Always adds a value of 10 to all channels of all pixels of all input images.

>>> aug = iaa.AddElementwise((-10, 10))

Samples per image and pixel a value from the discrete interval [-10..10] and adds that value to the respective
pixel.

>>> aug = iaa.AddElementwise((-10, 10), per_channel=True)

Samples per image, pixel and also channel a value from the discrete interval [-10..10] and adds it to the
respective pixel’s channel value. Therefore, added values may differ between channels of the same pixel.

>>> aug = iaa.AddElementwise((-10, 10), per_channel=0.5)

Identical to the previous example, but the per_channel feature is only active for 50 percent of all images.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.

Continued on next page

13.17. imgaug.augmenters.arithmetic 501

imgaug Documentation, Release 0.3.0

Table 52 – continued from previous page
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

get_parameters(self)
See get_parameters().

502 Chapter 13. API

imgaug Documentation, Release 0.3.0

class imgaug.augmenters.arithmetic.AdditiveGaussianNoise(loc=0, scale=(0, 15),
per_channel=False,
seed=None,
name=None, ran-
dom_state=’deprecated’,
determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.arithmetic.AddElementwise

Add noise sampled from gaussian distributions elementwise to images.

This augmenter samples and adds noise elementwise, i.e. it can add different noise values to neighbouring pixels
and is comparable to AddElementwise.

Supported dtypes:

See AddElementwise.

Parameters

• loc (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) –

Mean of the normal distribution from which the noise is sampled.

– If a number, exactly that value will always be used.

– If a tuple (a, b), a random value from the interval [a, b] will be sampled per image.

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, a value will be sampled from the parameter per image.

• scale (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Standard deviation of the normal
distribution that generates the noise. Must be >=0. If 0 then loc will simply be added to all
pixels.

– If a number, exactly that value will always be used.

– If a tuple (a, b), a random value from the interval [a, b] will be sampled per image.

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, a value will be sampled from the parameter per image.

• per_channel (bool or float or imgaug.parameters.StochasticParameter, optional) –
Whether to use (imagewise) the same sample(s) for all channels (False) or to sample
value(s) for each channel (True). Setting this to True will therefore lead to differ-
ent transformations per image and channel, otherwise only per image. If this value is a
float p, then for p percent of all images per_channel will be treated as True. If it is a
StochasticParameter it is expected to produce samples with values between 0.0
and 1.0, where values >0.5 will lead to per-channel behaviour (i.e. same as True).

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage

13.17. imgaug.augmenters.arithmetic 503

imgaug Documentation, Release 0.3.0

will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.AdditiveGaussianNoise(scale=0.1*255)

Adds gaussian noise from the distribution N(0, 0.1*255) to images. The samples are drawn per image and
pixel.

>>> aug = iaa.AdditiveGaussianNoise(scale=(0, 0.1*255))

Adds gaussian noise from the distribution N(0, s) to images, where s is sampled per image from the interval
[0, 0.1*255].

>>> aug = iaa.AdditiveGaussianNoise(scale=0.1*255, per_channel=True)

Adds gaussian noise from the distribution N(0, 0.1*255) to images, where the noise value is different per
image and pixel and channel (e.g. a different one for red, green and blue channels of the same pixel). This leads
to “colorful” noise.

>>> aug = iaa.AdditiveGaussianNoise(scale=0.1*255, per_channel=0.5)

Identical to the previous example, but the per_channel feature is only active for 50 percent of all images.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
Continued on next page

504 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 53 – continued from previous page
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.arithmetic.AdditiveLaplaceNoise(loc=0, scale=(0, 15),
per_channel=False,
seed=None,
name=None, ran-
dom_state=’deprecated’,
determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.arithmetic.AddElementwise

Add noise sampled from laplace distributions elementwise to images.

The laplace distribution is similar to the gaussian distribution, but puts more weight on the long tail. Hence, this
noise will add more outliers (very high/low values). It is somewhere between gaussian noise and salt and pepper
noise.

Values of around 255 * 0.05 for scale lead to visible noise (for uint8). Values of around 255 * 0.10
for scale lead to very visible noise (for uint8). It is recommended to usually set per_channel to True.

This augmenter samples and adds noise elementwise, i.e. it can add different noise values to neighbouring pixels
and is comparable to AddElementwise.

Supported dtypes:

13.17. imgaug.augmenters.arithmetic 505

imgaug Documentation, Release 0.3.0

See AddElementwise.

Parameters

• loc (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) –

Mean of the laplace distribution that generates the noise.

– If a number, exactly that value will always be used.

– If a tuple (a, b), a random value from the interval [a, b] will be sampled per image.

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, a value will be sampled from the parameter per image.

• scale (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Standard deviation of the laplace
distribution that generates the noise. Must be >=0. If 0 then only loc will be used.
Recommended to be around 255*0.05.

– If a number, exactly that value will always be used.

– If a tuple (a, b), a random value from the interval [a, b] will be sampled per image.

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, a value will be sampled from the parameter per image.

• per_channel (bool or float or imgaug.parameters.StochasticParameter, optional) –
Whether to use (imagewise) the same sample(s) for all channels (False) or to sample
value(s) for each channel (True). Setting this to True will therefore lead to differ-
ent transformations per image and channel, otherwise only per image. If this value is a
float p, then for p percent of all images per_channel will be treated as True. If it is a
StochasticParameter it is expected to produce samples with values between 0.0
and 1.0, where values >0.5 will lead to per-channel behaviour (i.e. same as True).

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.AdditiveLaplaceNoise(scale=0.1*255)

Adds laplace noise from the distribution Laplace(0, 0.1*255) to images. The samples are drawn per
image and pixel.

506 Chapter 13. API

imgaug Documentation, Release 0.3.0

>>> aug = iaa.AdditiveLaplaceNoise(scale=(0, 0.1*255))

Adds laplace noise from the distribution Laplace(0, s) to images, where s is sampled per image from the
interval [0, 0.1*255].

>>> aug = iaa.AdditiveLaplaceNoise(scale=0.1*255, per_channel=True)

Adds laplace noise from the distribution Laplace(0, 0.1*255) to images, where the noise value is differ-
ent per image and pixel and channel (e.g. a different one for the red, green and blue channels of the same pixel).
This leads to “colorful” noise.

>>> aug = iaa.AdditiveLaplaceNoise(scale=0.1*255, per_channel=0.5)

Identical to the previous example, but the per_channel feature is only active for 50 percent of all images.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.

Continued on next page

13.17. imgaug.augmenters.arithmetic 507

imgaug Documentation, Release 0.3.0

Table 54 – continued from previous page
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.arithmetic.AdditivePoissonNoise(lam=(0.0, 15.0),
per_channel=False,
seed=None,
name=None, ran-
dom_state=’deprecated’,
determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.arithmetic.AddElementwise

Add noise sampled from poisson distributions elementwise to images.

Poisson noise is comparable to gaussian noise, as e.g. generated via AdditiveGaussianNoise. As poisson
distributions produce only positive numbers, the sign of the sampled values are here randomly flipped.

Values of around 10.0 for lam lead to visible noise (for uint8). Values of around 20.0 for lam lead to very
visible noise (for uint8). It is recommended to usually set per_channel to True.

This augmenter samples and adds noise elementwise, i.e. it can add different noise values to neighbouring pixels
and is comparable to AddElementwise.

Supported dtypes:

See AddElementwise.

Parameters

• lam (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Lambda parameter of the poisson
distribution. Must be >=0. Recommended values are around 0.0 to 10.0.

– If a number, exactly that value will always be used.

– If a tuple (a, b), a random value from the interval [a, b] will be sampled per image.

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, a value will be sampled from the parameter per image.

• per_channel (bool or float or imgaug.parameters.StochasticParameter, optional) –
Whether to use (imagewise) the same sample(s) for all channels (False) or to sample

508 Chapter 13. API

imgaug Documentation, Release 0.3.0

value(s) for each channel (True). Setting this to True will therefore lead to differ-
ent transformations per image and channel, otherwise only per image. If this value is a
float p, then for p percent of all images per_channel will be treated as True. If it is a
StochasticParameter it is expected to produce samples with values between 0.0
and 1.0, where values >0.5 will lead to per-channel behaviour (i.e. same as True).

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.AdditivePoissonNoise(lam=5.0)

Adds poisson noise sampled from a poisson distribution with a lambda parameter of 5.0 to images. The
samples are drawn per image and pixel.

>>> aug = iaa.AdditivePoissonNoise(lam=(0.0, 15.0))

Adds poisson noise sampled from Poisson(x) to images, where x is randomly sampled per image from the
interval [0.0, 15.0].

>>> aug = iaa.AdditivePoissonNoise(lam=5.0, per_channel=True)

Adds poisson noise sampled from Poisson(5.0) to images, where the values are different per image and
pixel and channel (e.g. a different one for red, green and blue channels for the same pixel).

>>> aug = iaa.AdditivePoissonNoise(lam=(0.0, 15.0), per_channel=True)

Adds poisson noise sampled from Poisson(x) to images, with x being sampled from uniform(0.0,
15.0) per image and channel. This is the recommended configuration.

>>> aug = iaa.AdditivePoissonNoise(lam=(0.0, 15.0), per_channel=0.5)

Identical to the previous example, but the per_channel feature is only active for 50 percent of all images.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.

Continued on next page

13.17. imgaug.augmenters.arithmetic 509

imgaug Documentation, Release 0.3.0

Table 55 – continued from previous page
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

510 Chapter 13. API

imgaug Documentation, Release 0.3.0

class imgaug.augmenters.arithmetic.CoarseDropout(p=(0.02, 0.1), size_px=None,
size_percent=None,
per_channel=False, min_size=3,
seed=None, name=None, ran-
dom_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.arithmetic.MultiplyElementwise

Set rectangular areas within images to zero.

In contrast to Dropout, these areas can have larger sizes. (E.g. you might end up with three large black
rectangles in an image.) Note that the current implementation leads to correlated sizes, so if e.g. there is any
thin and high rectangle that is dropped, there is a high likelihood that all other dropped areas are also thin and
high.

This method is implemented by generating the dropout mask at a lower resolution (than the image has) and then
upsampling the mask before dropping the pixels.

This augmenter is similar to Cutout. Usually, cutout is defined as an operation that drops exactly one rectangle
from an image, while here CoarseDropout can drop multiple rectangles (with some correlation between the
sizes of these rectangles).

Supported dtypes:

See MultiplyElementwise.

Parameters

• p (float or tuple of float or imgaug.parameters.StochasticParameter, optional) – The proba-
bility of any pixel being dropped (i.e. set to zero) in the lower-resolution dropout mask.

– If a float, then that value will be used for all pixels. A value of 1.0 would mean, that all
pixels will be dropped. A value of 0.0 would lead to no pixels being dropped.

– If a tuple (a, b), then a value p will be sampled from the interval [a, b] per image
and be used as the dropout probability.

– If a list, then a value will be sampled from that list per batch and used as the probability.

– If a StochasticParameter, then this parameter will be used to determine per pixel
whether it should be kept (sampled value of >0.5) or shouldn’t be kept (sampled value
of <=0.5). If you instead want to provide the probability as a stochastic parameter, you
can usually do imgaug.parameters.Binomial(1-p) to convert parameter p to a
0/1 representation.

• size_px (None or int or tuple of int or imgaug.parameters.StochasticParameter, optional) –
The size of the lower resolution image from which to sample the dropout mask in absolute
pixel dimensions. Note that this means that lower values of this parameter lead to larger
areas being dropped (as any pixel in the lower resolution image will correspond to a larger
area at the original resolution).

– If None then size_percent must be set.

– If an integer, then that size will always be used for both height and width. E.g. a value of
3 would lead to a 3x3 mask, which is then upsampled to HxW, where H is the image size
and W the image width.

– If a tuple (a, b), then two values M, N will be sampled from the discrete interval [a.
.b]. The dropout mask will then be generated at size MxN and upsampled to HxW.

– If a StochasticParameter, then this parameter will be used to determine the sizes.
It is expected to be discrete.

13.17. imgaug.augmenters.arithmetic 511

imgaug Documentation, Release 0.3.0

• size_percent (None or float or tuple of float or imgaug.parameters.StochasticParameter,
optional) – The size of the lower resolution image from which to sample the dropout mask
in percent of the input image. Note that this means that lower values of this parameter lead
to larger areas being dropped (as any pixel in the lower resolution image will correspond to
a larger area at the original resolution).

– If None then size_px must be set.

– If a float, then that value will always be used as the percentage of the height and
width (relative to the original size). E.g. for value p, the mask will be sampled from
(p*H)x(p*W) and later upsampled to HxW.

– If a tuple (a, b), then two values m, n will be sampled from the interval (a, b) and
used as the size fractions, i.e the mask size will be (m*H)x(n*W).

– If a StochasticParameter, then this parameter will be used to sample the percent-
age values. It is expected to be continuous.

• per_channel (bool or float or imgaug.parameters.StochasticParameter, optional) –
Whether to use (imagewise) the same sample(s) for all channels (False) or to sample
value(s) for each channel (True). Setting this to True will therefore lead to differ-
ent transformations per image and channel, otherwise only per image. If this value is a
float p, then for p percent of all images per_channel will be treated as True. If it is a
StochasticParameter it is expected to produce samples with values between 0.0
and 1.0, where values >0.5 will lead to per-channel behaviour (i.e. same as True).

• min_size (int, optional) – Minimum height and width of the low resolution mask. If
size_percent or size_px leads to a lower value than this, min_size will be used instead. This
should never have a value of less than 2, otherwise one may end up with a 1x1 low resolu-
tion mask, leading easily to the whole image being dropped.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.CoarseDropout(0.02, size_percent=0.5)

Drops 2 percent of all pixels on a lower-resolution image that has 50 percent of the original image’s size, leading
to dropped areas that have roughly 2x2 pixels size.

>>> aug = iaa.CoarseDropout((0.0, 0.05), size_percent=(0.05, 0.5))

512 Chapter 13. API

imgaug Documentation, Release 0.3.0

Generates a dropout mask at 5 to 50 percent of each input image’s size. In that mask, 0 to 5 percent of all
pixels are marked as being dropped. The mask is afterwards projected to the input image’s size to apply the
actual dropout operation.

>>> aug = iaa.CoarseDropout((0.0, 0.05), size_px=(2, 16))

Same as the previous example, but the lower resolution image has 2 to 16 pixels size. On images
of e.g. 224x224` pixels in size this would lead to fairly large areas being
dropped (height/width of ``224/2 to 224/16).

>>> aug = iaa.CoarseDropout(0.02, size_percent=0.5, per_channel=True)

Drops 2 percent of all pixels at 50 percent resolution (2x2 sizes) in a channel-wise fashion, i.e. it is unlikely
for any pixel to have all channels set to zero (black pixels).

>>> aug = iaa.CoarseDropout(0.02, size_percent=0.5, per_channel=0.5)

Same as the previous example, but the per_channel feature is only active for 50 percent of all images.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

Continued on next page

13.17. imgaug.augmenters.arithmetic 513

imgaug Documentation, Release 0.3.0

Table 56 – continued from previous page
find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.arithmetic.CoarsePepper(p=(0.02, 0.1), size_px=None,
size_percent=None,
per_channel=False, min_size=3,
seed=None, name=None, ran-
dom_state=’deprecated’, deter-
ministic=’deprecated’)

Bases: imgaug.augmenters.arithmetic.ReplaceElementwise

Replace rectangular areas in images with black-ish pixel noise.

Supported dtypes:

See ReplaceElementwise.

Parameters

• p (float or tuple of float or list of float or imgaug.parameters.StochasticParameter, optional)
–

Probability of changing a pixel to pepper noise.

– If a float, then that value will always be used as the probability.

– If a tuple (a, b), then a probability will be sampled uniformly per image from the
interval [a, b].

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then a lower-resolution mask will be sampled from that
parameter per image. Any value >0.5 in that mask will denote a spatial location that is
to be replaced by pepper noise.

• size_px (int or tuple of int or imgaug.parameters.StochasticParameter, optional) – The size
of the lower resolution image from which to sample the replacement mask in absolute pixel
dimensions. Note that this means that lower values of this parameter lead to larger areas

514 Chapter 13. API

imgaug Documentation, Release 0.3.0

being replaced (as any pixel in the lower resolution image will correspond to a larger area at
the original resolution).

– If None then size_percent must be set.

– If an integer, then that size will always be used for both height and width. E.g. a value of
3 would lead to a 3x3 mask, which is then upsampled to HxW, where H is the image size
and W the image width.

– If a tuple (a, b), then two values M, N will be sampled from the discrete interval [a.
.b]. The mask will then be generated at size MxN and upsampled to HxW.

– If a StochasticParameter, then this parameter will be used to determine the sizes.
It is expected to be discrete.

• size_percent (float or tuple of float or imgaug.parameters.StochasticParameter, optional)
– The size of the lower resolution image from which to sample the replacement mask in
percent of the input image. Note that this means that lower values of this parameter lead to
larger areas being replaced (as any pixel in the lower resolution image will correspond to a
larger area at the original resolution).

– If None then size_px must be set.

– If a float, then that value will always be used as the percentage of the height and
width (relative to the original size). E.g. for value p, the mask will be sampled from
(p*H)x(p*W) and later upsampled to HxW.

– If a tuple (a, b), then two values m, n will be sampled from the interval (a, b) and
used as the size fractions, i.e the mask size will be (m*H)x(n*W).

– If a StochasticParameter, then this parameter will be used to sample the percent-
age values. It is expected to be continuous.

• per_channel (bool or float or imgaug.parameters.StochasticParameter, optional) –
Whether to use (imagewise) the same sample(s) for all channels (False) or to sample
value(s) for each channel (True). Setting this to True will therefore lead to differ-
ent transformations per image and channel, otherwise only per image. If this value is a
float p, then for p percent of all images per_channel will be treated as True. If it is a
StochasticParameter it is expected to produce samples with values between 0.0
and 1.0, where values >0.5 will lead to per-channel behaviour (i.e. same as True).

• min_size (int, optional) – Minimum size of the low resolution mask, both width and height.
If size_percent or size_px leads to a lower value than this, min_size will be used instead.
This should never have a value of less than 2, otherwise one may end up with a 1x1 low
resolution mask, leading easily to the whole image being replaced.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

13.17. imgaug.augmenters.arithmetic 515

imgaug Documentation, Release 0.3.0

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.CoarsePepper(0.05, size_percent=(0.01, 0.1))

Mark 5% of all pixels in a mask to be replaced by pepper noise. The mask has 1% to 10% the size of the input
image. The mask is then upscaled to the input image size, leading to large rectangular areas being marked as to
be replaced. These areas are then replaced in the input image by pepper noise.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
Continued on next page

516 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 57 – continued from previous page
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.arithmetic.CoarseSalt(p=(0.02, 0.1), size_px=None,
size_percent=None, per_channel=False,
min_size=3, seed=None, name=None,
random_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.arithmetic.ReplaceElementwise

Replace rectangular areas in images with white-ish pixel noise.

See also the similar CoarseSaltAndPepper.

Supported dtypes:

See ReplaceElementwise.

Parameters

• p (float or tuple of float or list of float or imgaug.parameters.StochasticParameter, optional)
–

Probability of changing a pixel to salt noise.

– If a float, then that value will always be used as the probability.

– If a tuple (a, b), then a probability will be sampled uniformly per image from the
interval [a, b].

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then a lower-resolution mask will be sampled from that
parameter per image. Any value >0.5 in that mask will denote a spatial location that is
to be replaced by salt noise.

• size_px (int or tuple of int or imgaug.parameters.StochasticParameter, optional) – The size
of the lower resolution image from which to sample the replacement mask in absolute pixel
dimensions. Note that this means that lower values of this parameter lead to larger areas
being replaced (as any pixel in the lower resolution image will correspond to a larger area at
the original resolution).

– If None then size_percent must be set.

– If an integer, then that size will always be used for both height and width. E.g. a value of
3 would lead to a 3x3 mask, which is then upsampled to HxW, where H is the image size
and W the image width.

13.17. imgaug.augmenters.arithmetic 517

imgaug Documentation, Release 0.3.0

– If a tuple (a, b), then two values M, N will be sampled from the discrete interval [a.
.b]. The mask will then be generated at size MxN and upsampled to HxW.

– If a StochasticParameter, then this parameter will be used to determine the sizes.
It is expected to be discrete.

• size_percent (float or tuple of float or imgaug.parameters.StochasticParameter, optional)
– The size of the lower resolution image from which to sample the replacement mask in
percent of the input image. Note that this means that lower values of this parameter lead to
larger areas being replaced (as any pixel in the lower resolution image will correspond to a
larger area at the original resolution).

– If None then size_px must be set.

– If a float, then that value will always be used as the percentage of the height and
width (relative to the original size). E.g. for value p, the mask will be sampled from
(p*H)x(p*W) and later upsampled to HxW.

– If a tuple (a, b), then two values m, n will be sampled from the interval (a, b) and
used as the size fractions, i.e the mask size will be (m*H)x(n*W).

– If a StochasticParameter, then this parameter will be used to sample the percent-
age values. It is expected to be continuous.

• per_channel (bool or float or imgaug.parameters.StochasticParameter, optional) –
Whether to use (imagewise) the same sample(s) for all channels (False) or to sample
value(s) for each channel (True). Setting this to True will therefore lead to differ-
ent transformations per image and channel, otherwise only per image. If this value is a
float p, then for p percent of all images per_channel will be treated as True. If it is a
StochasticParameter it is expected to produce samples with values between 0.0
and 1.0, where values >0.5 will lead to per-channel behaviour (i.e. same as True).

• min_size (int, optional) – Minimum height and width of the low resolution mask. If
size_percent or size_px leads to a lower value than this, min_size will be used instead. This
should never have a value of less than 2, otherwise one may end up with a 1x1 low resolu-
tion mask, leading easily to the whole image being replaced.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.CoarseSalt(0.05, size_percent=(0.01, 0.1))

518 Chapter 13. API

imgaug Documentation, Release 0.3.0

Mark 5% of all pixels in a mask to be replaced by salt noise. The mask has 1% to 10% the size of the input
image. The mask is then upscaled to the input image size, leading to large rectangular areas being marked as to
be replaced. These areas are then replaced in the input image by salt noise.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
Continued on next page

13.17. imgaug.augmenters.arithmetic 519

imgaug Documentation, Release 0.3.0

Table 58 – continued from previous page
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.arithmetic.CoarseSaltAndPepper(p=(0.02, 0.1),
size_px=None,
size_percent=None,
per_channel=False,
min_size=3, seed=None,
name=None, ran-
dom_state=’deprecated’,
determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.arithmetic.ReplaceElementwise

Replace rectangular areas in images with white/black-ish pixel noise.

This adds salt and pepper noise (noisy white-ish and black-ish pixels) to rectangular areas within the image.
Note that this means that within these rectangular areas the color varies instead of each rectangle having only
one color.

See also the similar CoarseDropout.

TODO replace dtype support with uint8 only, because replacement is geared towards that value range

Supported dtypes:

See ReplaceElementwise.

Parameters

• p (float or tuple of float or list of float or imgaug.parameters.StochasticParameter, optional)
–

Probability of changing a pixel to salt/pepper noise.

– If a float, then that value will always be used as the probability.

– If a tuple (a, b), then a probability will be sampled uniformly per image from the
interval [a, b].

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then a lower-resolution mask will be sampled from that
parameter per image. Any value >0.5 in that mask will denote a spatial location that is
to be replaced by salt and pepper noise.

• size_px (int or tuple of int or imgaug.parameters.StochasticParameter, optional) – The size
of the lower resolution image from which to sample the replacement mask in absolute pixel
dimensions. Note that this means that lower values of this parameter lead to larger areas
being replaced (as any pixel in the lower resolution image will correspond to a larger area at
the original resolution).

– If None then size_percent must be set.

520 Chapter 13. API

imgaug Documentation, Release 0.3.0

– If an integer, then that size will always be used for both height and width. E.g. a value of
3 would lead to a 3x3 mask, which is then upsampled to HxW, where H is the image size
and W the image width.

– If a tuple (a, b), then two values M, N will be sampled from the discrete interval [a.
.b]. The mask will then be generated at size MxN and upsampled to HxW.

– If a StochasticParameter, then this parameter will be used to determine the sizes.
It is expected to be discrete.

• size_percent (float or tuple of float or imgaug.parameters.StochasticParameter, optional)
– The size of the lower resolution image from which to sample the replacement mask in
percent of the input image. Note that this means that lower values of this parameter lead to
larger areas being replaced (as any pixel in the lower resolution image will correspond to a
larger area at the original resolution).

– If None then size_px must be set.

– If a float, then that value will always be used as the percentage of the height and
width (relative to the original size). E.g. for value p, the mask will be sampled from
(p*H)x(p*W) and later upsampled to HxW.

– If a tuple (a, b), then two values m, n will be sampled from the interval (a, b) and
used as the size fractions, i.e the mask size will be (m*H)x(n*W).

– If a StochasticParameter, then this parameter will be used to sample the percent-
age values. It is expected to be continuous.

• per_channel (bool or float or imgaug.parameters.StochasticParameter, optional) –
Whether to use (imagewise) the same sample(s) for all channels (False) or to sample
value(s) for each channel (True). Setting this to True will therefore lead to differ-
ent transformations per image and channel, otherwise only per image. If this value is a
float p, then for p percent of all images per_channel will be treated as True. If it is a
StochasticParameter it is expected to produce samples with values between 0.0
and 1.0, where values >0.5 will lead to per-channel behaviour (i.e. same as True).

• min_size (int, optional) – Minimum height and width of the low resolution mask. If
size_percent or size_px leads to a lower value than this, min_size will be used instead. This
should never have a value of less than 2, otherwise one may end up with a 1x1 low resolu-
tion mask, leading easily to the whole image being replaced.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

13.17. imgaug.augmenters.arithmetic 521

imgaug Documentation, Release 0.3.0

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.CoarseSaltAndPepper(0.05, size_percent=(0.01, 0.1))

Marks 5% of all pixels in a mask to be replaced by salt/pepper noise. The mask has 1% to 10% the size of the
input image. The mask is then upscaled to the input image size, leading to large rectangular areas being marked
as to be replaced. These areas are then replaced in the input image by salt/pepper noise.

>>> aug = iaa.CoarseSaltAndPepper(0.05, size_px=(4, 16))

Same as in the previous example, but the replacement mask before upscaling has a size between 4x4 and 16x16
pixels (the axis sizes are sampled independently, i.e. the mask may be rectangular).

>>> aug = iaa.CoarseSaltAndPepper(
>>> 0.05, size_percent=(0.01, 0.1), per_channel=True)

Same as in the first example, but mask and replacement are each sampled independently per image channel.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

Continued on next page

522 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 59 – continued from previous page
find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

imgaug.augmenters.arithmetic.ContrastNormalization(alpha=1.0, per_channel=False,
seed=None, name=None, ran-
dom_state=’deprecated’, deter-
ministic=’deprecated’)

Deprecated. Use imgaug.contrast.LinearContrast instead.

Change the contrast of images.

dtype support:

See imgaug.augmenters.contrast.LinearContrast.

Deprecated since 0.3.0.

Parameters

• alpha (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Strength of the contrast normalization.
Higher values than 1.0 lead to higher contrast, lower values decrease the contrast.

– If a number, then that value will be used for all images.

– If a tuple (a, b), then a value will be sampled per image uniformly from the interval
[a, b] and be used as the alpha value.

– If a list, then a random value will be picked per image from that list.

– If a StochasticParameter, then this parameter will be used to sample the alpha
value per image.

• per_channel (bool or float or imgaug.parameters.StochasticParameter, optional) –
Whether to use (imagewise) the same sample(s) for all channels (False) or to sample
value(s) for each channel (True). Setting this to True will therefore lead to differ-
ent transformations per image and channel, otherwise only per image. If this value is a
float p, then for p percent of all images per_channel will be treated as True. If it is a

13.17. imgaug.augmenters.arithmetic 523

imgaug Documentation, Release 0.3.0

StochasticParameter it is expected to produce samples with values between 0.0
and 1.0, where values >0.5 will lead to per-channel behaviour (i.e. same as True).

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> iaa.ContrastNormalization((0.5, 1.5))

Decreases oder improves contrast per image by a random factor between 0.5 and 1.5. The factor 0.5 means
that any difference from the center value (i.e. 128) will be halved, leading to less contrast.

>>> iaa.ContrastNormalization((0.5, 1.5), per_channel=0.5)

Same as before, but for 50 percent of all images the normalization is done independently per channel (i.e. factors
can vary per channel for the same image). In the other 50 percent of all images, the factor is the same for all
channels.

class imgaug.augmenters.arithmetic.Cutout(nb_iterations=1, position=’uniform’,
size=0.2, squared=True, fill_mode=’constant’,
cval=128, fill_per_channel=False, seed=None,
name=None, random_state=’deprecated’,
deterministic=’deprecated’)

Bases: imgaug.augmenters.meta.Augmenter

Fill one or more rectangular areas in an image using a fill mode.

See paper “Improved Regularization of Convolutional Neural Networks with Cutout” by DeVries and Taylor.

In contrast to the paper, this implementation also supports replacing image sub-areas with gaussian noise, ran-
dom intensities or random RGB colors. It also supports non-squared areas. While the paper uses absolute pixel
values for the size and position, this implementation uses relative values, which seems more appropriate for
mixed-size datasets. The position parameter furthermore allows more flexibility, e.g. gaussian distributions
around the center.

Note: This augmenter affects only image data. Other datatypes (e.g. segmentation map pixels or keypoints
within the filled areas) are not affected.

Note: Gaussian fill mode will assume that float input images contain values in the interval [0.0, 1.0] and
hence sample values from a gaussian within that interval, i.e. from N(0.5, std=0.5/3).

524 Chapter 13. API

imgaug Documentation, Release 0.3.0

Added in 0.4.0.

Supported dtypes:

See cutout_().

Parameters

• nb_iterations (int or tuple of int or list of int or imgaug.parameters.StochasticParameter,
optional) –

How many rectangular areas to fill.

– If int: Exactly that many areas will be filled on all images.

– If tuple (a, b): A value from the interval [a, b] will be sampled per image.

– If list: A random value will be sampled from that list per image.

– If StochasticParameter: That parameter will be used to sample (B,) values per
batch of B images.

• position ({‘uniform’, ‘normal’, ‘center’, ‘left-top’, ‘left-center’, ‘left-bottom’, ‘center-top’,
‘center-center’, ‘center-bottom’, ‘right-top’, ‘right-center’, ‘right-bottom’} or tuple of float
or StochasticParameter or tuple of StochasticParameter, optional) – Defines the position
of each area to fill. Analogous to the definition in e.g. CropToFixedSize. Usually,
uniform (anywhere in the image) or normal (anywhere in the image with preference
around the center) are sane values.

• size (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – The size of the rectangle to fill as
a fraction of the corresponding image size, i.e. with value range [0.0, 1.0]. The size is
sampled independently per image axis.

– If number: Exactly that size is always used.

– If tuple (a, b): A value from the interval [a, b]will be sampled per area and axis.

– If list: A random value will be sampled from that list per area and axis.

– If StochasticParameter: That parameter will be used to sample (N, 2) values
per batch, where N is the total number of areas to fill within the whole batch.

• squared (bool or float or imgaug.parameters.StochasticParameter, optional) – Whether to
generate only squared areas cutout areas or allow rectangular ones. If this evaluates to a
true-like value, the first value from size will be converted to absolute pixels and used for
both axes.

If this value is a float p, then for p percent of all areas to be filled per_channel will be treated
as True. If it is a StochasticParameter it is expected to produce samples with values
between 0.0 and 1.0, where values >0.5 will lead to per-channel behaviour (i.e. same as
True).

• fill_mode (str or list of str or imgaug.parameters.StochasticParameter, optional) – Mode to
use in order to fill areas. Corresponds to mode parameter in some other augmenters. Valid
strings for the mode are:

– contant: Fill each area with a single value.

– gaussian: Fill each area with gaussian noise.

Valid datatypes are:

– If str: Exactly that mode will alaways be used.

13.17. imgaug.augmenters.arithmetic 525

imgaug Documentation, Release 0.3.0

– If list: A random value will be sampled from that list per area.

– If StochasticParameter: That parameter will be used to sample (N,) values per
batch, where N is the total number of areas to fill within the whole batch.

• cval (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – The value to use (i.e. the color) to
fill areas if fill_mode is `constant.

– If number: Exactly that value is used for all areas and channels.

– If tuple (a, b): A value from the interval [a, b] will be sampled per area (and
channel if per_channel=True).

– If list: A random value will be sampled from that list per area (and channel if
per_channel=True).

– If StochasticParameter: That parameter will be used to sample (N, Cmax)
values per batch, where N is the total number of areas to fill within the whole
batch and Cmax is the maximum number of channels in any image (usually 3). If
per_channel=False, only the first value of the second axis is used.

• fill_per_channel (bool or float or imgaug.parameters.StochasticParameter, optional) –
Whether to fill each area in a channelwise fashion (True) or not (False). The behaviour
per fill mode is:

– constant: Whether to fill all channels with the same value (i.e, grayscale) or different
values (i.e. usually RGB color).

– gaussian: Whether to sample once from a gaussian and use the values for all channels
(i.e. grayscale) or to sample channelwise (i.e. RGB colors)

If this value is a float p, then for p percent of all areas to be filled per_channel will be treated
as True. If it is a StochasticParameter it is expected to produce samples with values
between 0.0 and 1.0, where values >0.5 will lead to per-channel behaviour (i.e. same as
True).

• name (None or str, optional) – See __init__().

• deterministic (bool, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.bit_generator.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Cutout(nb_iterations=2)

Fill per image two random areas, by default with grayish pixels.

>>> aug = iaa.Cutout(nb_iterations=(1, 5), size=0.2, squared=False)

Fill per image between one and five areas, each having 20% of the corresponding size of the height and width
(for non-square images this results in non-square areas to be filled).

>>> aug = iaa.Cutout(fill_mode="constant", cval=255)

Fill all areas with white pixels.

526 Chapter 13. API

imgaug Documentation, Release 0.3.0

>>> aug = iaa.Cutout(fill_mode="constant", cval=(0, 255),
>>> fill_per_channel=0.5)

Fill 50% of all areas with a random intensity value between 0 and 256. Fill the other 50% of all areas with
random colors.

>>> aug = iaa.Cutout(fill_mode="gaussian", fill_per_channel=True)

Fill areas with gaussian channelwise noise (i.e. usually RGB).

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
Continued on next page

13.17. imgaug.augmenters.arithmetic 527

imgaug Documentation, Release 0.3.0

Table 60 – continued from previous page
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

get_parameters(self)
See get_parameters().

class imgaug.augmenters.arithmetic.Dropout(p=(0.0, 0.05), per_channel=False,
seed=None, name=None, ran-
dom_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.arithmetic.MultiplyElementwise

Set a fraction of pixels in images to zero.

Supported dtypes:

See MultiplyElementwise.

Parameters

• p (float or tuple of float or imgaug.parameters.StochasticParameter, optional) –

The probability of any pixel being dropped (i.e. to set it to zero).

– If a float, then that value will be used for all images. A value of 1.0 would mean that
all pixels will be dropped and 0.0 that no pixels will be dropped. A value of 0.05
corresponds to 5 percent of all pixels being dropped.

– If a tuple (a, b), then a value p will be sampled from the interval [a, b] per image
and be used as the pixel’s dropout probability.

– If a list, then a value will be sampled from that list per batch and used as the probability.

– If a StochasticParameter, then this parameter will be used to determine per pixel
whether it should be kept (sampled value of >0.5) or shouldn’t be kept (sampled value
of <=0.5). If you instead want to provide the probability as a stochastic parameter, you
can usually do imgaug.parameters.Binomial(1-p) to convert parameter p to a
0/1 representation.

• per_channel (bool or float or imgaug.parameters.StochasticParameter, optional) –
Whether to use (imagewise) the same sample(s) for all channels (False) or to sample
value(s) for each channel (True). Setting this to True will therefore lead to differ-
ent transformations per image and channel, otherwise only per image. If this value is a
float p, then for p percent of all images per_channel will be treated as True. If it is a
StochasticParameter it is expected to produce samples with values between 0.0
and 1.0, where values >0.5 will lead to per-channel behaviour (i.e. same as True).

528 Chapter 13. API

imgaug Documentation, Release 0.3.0

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Dropout(0.02)

Drops 2 percent of all pixels.

>>> aug = iaa.Dropout((0.0, 0.05))

Drops in each image a random fraction of all pixels, where the fraction is uniformly sampled from the interval
[0.0, 0.05].

>>> aug = iaa.Dropout(0.02, per_channel=True)

Drops 2 percent of all pixels in a channelwise fashion, i.e. it is unlikely for any pixel to have all channels set to
zero (black pixels).

>>> aug = iaa.Dropout(0.02, per_channel=0.5)

Identical to the previous example, but the per_channel feature is only active for 50 percent of all images.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

Continued on next page

13.17. imgaug.augmenters.arithmetic 529

imgaug Documentation, Release 0.3.0

Table 61 – continued from previous page
augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.arithmetic.Dropout2d(p=0.1, nb_keep_channels=1, seed=None,
name=None, random_state=’deprecated’,
deterministic=’deprecated’)

Bases: imgaug.augmenters.meta.Augmenter

Drop random channels from images.

For image data, dropped channels will be filled with zeros.

Note: This augmenter may also set the arrays of heatmaps and segmentation maps to zero and remove all
coordinate-based data (e.g. it removes all bounding boxes on images that were filled with zeros). It does so if
and only if all channels of an image are dropped. If nb_keep_channels >= 1 then that never happens.

530 Chapter 13. API

imgaug Documentation, Release 0.3.0

Added in 0.4.0.

Supported dtypes:

• uint8: yes; fully tested

• uint16: yes; tested

• uint32: yes; tested

• uint64: yes; tested

• int8: yes; tested

• int16: yes; tested

• int32: yes; tested

• int64: yes; tested

• float16: yes; tested

• float32: yes; tested

• float64: yes; tested

• float128: yes; tested

• bool: yes; tested

Parameters

• p (float or tuple of float or imgaug.parameters.StochasticParameter, optional) –

The probability of any channel to be dropped (i.e. set to zero).

– If a float, then that value will be used for all channels. A value of 1.0would mean, that
all channels will be dropped. A value of 0.0 would lead to no channels being dropped.

– If a tuple (a, b), then a value p will be sampled from the interval [a, b) per batch
and be used as the dropout probability.

– If a list, then a value will be sampled from that list per batch and used as the probability.

– If a StochasticParameter, then this parameter will be used to determine per chan-
nel whether it should be kept (sampled value of >=0.5) or shouldn’t be kept (sampled
value of <0.5). If you instead want to provide the probability as a stochastic parameter,
you can usually do imgaug.parameters.Binomial(1-p) to convert parameter p
to a 0/1 representation.

• nb_keep_channels (int) – Minimum number of channels to keep unaltered in all images.
E.g. a value of 1 means that at least one channel in every image will not be dropped, even if
p=1.0. Set to 0 to allow dropping all channels.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

13.17. imgaug.augmenters.arithmetic 531

imgaug Documentation, Release 0.3.0

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Dropout2d(p=0.5)

Create a dropout augmenter that drops on average half of all image channels. Dropped channels will be filled
with zeros. At least one channel is kept unaltered in each image (default setting).

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Dropout2d(p=0.5, nb_keep_channels=0)

Create a dropout augmenter that drops on average half of all image channels and may drop all channels in an
image (i.e. images may contain nothing but zeros).

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

Continued on next page

532 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 62 – continued from previous page
find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

get_parameters(self)
See get_parameters().

class imgaug.augmenters.arithmetic.ImpulseNoise(p=(0.0, 0.03), seed=None,
name=None, ran-
dom_state=’deprecated’, deter-
ministic=’deprecated’)

Bases: imgaug.augmenters.arithmetic.SaltAndPepper

Add impulse noise to images.

This is identical to SaltAndPepper, except that per_channel is always set to True.

Supported dtypes:

See SaltAndPepper.

Parameters

• p (float or tuple of float or list of float or imgaug.parameters.StochasticParameter, optional)
–

Probability of replacing a pixel to impulse noise.

– If a float, then that value will always be used as the probability.

– If a tuple (a, b), then a probability will be sampled uniformly per image from the
interval [a, b].

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then a image-sized mask will be sampled from that
parameter per image. Any value >0.5 in that mask will be replaced with impulse noise
noise.

13.17. imgaug.augmenters.arithmetic 533

imgaug Documentation, Release 0.3.0

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.ImpulseNoise(0.1)

Replace 10% of all pixels with impulse noise.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
Continued on next page

534 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 63 – continued from previous page
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.arithmetic.Invert(p=1, per_channel=False, min_value=None,
max_value=None, threshold=None, in-
vert_above_threshold=0.5, seed=None,
name=None, random_state=’deprecated’,
deterministic=’deprecated’)

Bases: imgaug.augmenters.meta.Augmenter

Invert all values in images, e.g. turn 5 into 255-5=250.

For the standard value range of 0-255 it converts 0 to 255, 255 to 0 and 10 to (255-10)=245. Let M be the
maximum value possible, m the minimum value possible, v a value. Then the distance of v to m is d=abs(v-m)
and the new value is given by v'=M-d.

Supported dtypes:

See invert_().

Parameters

• p (float or imgaug.parameters.StochasticParameter, optional) –

The probability of an image to be inverted.

– If a float, then that probability will be used for all images, i.e. p percent of all images will
be inverted.

– If a StochasticParameter, then that parameter will be queried per image and is
expected to return values in the interval [0.0, 1.0], where values >0.5 mean that
the image is supposed to be inverted. Recommended to be some form of imgaug.
parameters.Binomial.

13.17. imgaug.augmenters.arithmetic 535

imgaug Documentation, Release 0.3.0

• per_channel (bool or float or imgaug.parameters.StochasticParameter, optional) –
Whether to use (imagewise) the same sample(s) for all channels (False) or to sample
value(s) for each channel (True). Setting this to True will therefore lead to differ-
ent transformations per image and channel, otherwise only per image. If this value is a
float p, then for p percent of all images per_channel will be treated as True. If it is a
StochasticParameter it is expected to produce samples with values between 0.0
and 1.0, where values >0.5 will lead to per-channel behaviour (i.e. same as True).

• min_value (None or number, optional) – Minimum of the value range of input images, e.g.
0 for uint8 images. If set to None, the value will be automatically derived from the
image’s dtype.

• max_value (None or number, optional) – Maximum of the value range of input images, e.g.
255 for uint8 images. If set to None, the value will be automatically derived from the
image’s dtype.

• threshold (None or number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – A threshold to use in order to invert only
numbers above or below the threshold. If None no thresholding will be used.

– If None: No thresholding will be used.

– If number: The value will be used for all images.

– If tuple (a, b): A value will be uniformly sampled per image from the interval [a,
b).

– If list: A random value will be picked from the list per image.

– If StochasticParameter: Per batch of size N, the parameter will be queried once to
return (N,) samples.

• invert_above_threshold (bool or float or imgaug.parameters.StochasticParameter, op-
tional) – If True, only values >=threshold will be inverted. Otherwise, only values
<threshold will be inverted. If a number, then expected to be in the interval [0.0,
1.0] and denoting an imagewise probability. If a StochasticParameter then (N,)
values will be sampled from the parameter per batch of size N and interpreted as True if
>0.5. If threshold is None this parameter has no effect.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Invert(0.1)

536 Chapter 13. API

imgaug Documentation, Release 0.3.0

Inverts the colors in 10 percent of all images.

>>> aug = iaa.Invert(0.1, per_channel=True)

Inverts the colors in 10 percent of all image channels. This may or may not lead to multiple channels in an
image being inverted.

>>> aug = iaa.Invert(0.1, per_channel=0.5)

Identical to the previous example, but the per_channel feature is only active for 50 percent of all images.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
Continued on next page

13.17. imgaug.augmenters.arithmetic 537

imgaug Documentation, Release 0.3.0

Table 64 – continued from previous page
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

ALLOW_DTYPES_CUSTOM_MINMAX = [dtype('uint8'), dtype('uint16'), dtype('uint32'), dtype('int8'), dtype('int16'), dtype('int32'), dtype('float16'), dtype('float32')]

get_parameters(self)
See get_parameters().

class imgaug.augmenters.arithmetic.JpegCompression(compression=(0, 100),
seed=None, name=None,
random_state=’deprecated’,
deterministic=’deprecated’)

Bases: imgaug.augmenters.meta.Augmenter

Degrade the quality of images by JPEG-compressing them.

During JPEG compression, high frequency components (e.g. edges) are removed. With low compression
(strength) only the highest frequency components are removed, while very high compression (strength) will
lead to only the lowest frequency components “surviving”. This lowers the image quality. For more details, see
https://en.wikipedia.org/wiki/Compression_artifact.

Note that this augmenter still returns images as numpy arrays (i.e. saves the images with JPEG compression and
then reloads them into arrays). It does not return the raw JPEG file content.

Supported dtypes:

See compress_jpeg().

Parameters

• compression (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Degree of compression used during
JPEG compression within value range [0, 100]. Higher values denote stronger compres-
sion and will cause low-frequency components to disappear. Note that JPEG’s compression
strength is also often set as a quality, which is the inverse of this parameter. Common
choices for the quality setting are around 80 to 95, depending on the image. This translates
here to a compression parameter of around 20 to 5.

– If a single number, then that value always will be used as the compression.

– If a tuple (a, b), then the compression will be a value sampled uniformly from the
interval [a, b].

– If a list, then a random value will be sampled from that list per image and used as the
compression.

538 Chapter 13. API

https://en.wikipedia.org/wiki/Compression_artifact

imgaug Documentation, Release 0.3.0

– If a StochasticParameter, then N samples will be drawn from that parameter per
N input images, each representing the compression for the n-th image.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.JpegCompression(compression=(70, 99))

Remove high frequency components in images via JPEG compression with a compression strength between 70
and 99 (randomly and uniformly sampled per image). This corresponds to a (very low) quality setting of 1 to
30.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

Continued on next page

13.17. imgaug.augmenters.arithmetic 539

imgaug Documentation, Release 0.3.0

Table 65 – continued from previous page
copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence

(in-place).
deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

get_parameters(self)
See get_parameters().

class imgaug.augmenters.arithmetic.Multiply(mul=(0.8, 1.2), per_channel=False,
seed=None, name=None, ran-
dom_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.meta.Augmenter

Multiply all pixels in an image with a random value sampled once per image.

This augmenter can be used to make images lighter or darker.

Supported dtypes:

See multiply_scalar().

Parameters

• mul (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) –

The value with which to multiply the pixel values in each image.

– If a number, then that value will always be used.

540 Chapter 13. API

imgaug Documentation, Release 0.3.0

– If a tuple (a, b), then a value from the interval [a, b] will be sampled per image
and used for all pixels.

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then that parameter will be used to sample a new value
per image.

• per_channel (bool or float or imgaug.parameters.StochasticParameter, optional) –
Whether to use (imagewise) the same sample(s) for all channels (False) or to sample
value(s) for each channel (True). Setting this to True will therefore lead to differ-
ent transformations per image and channel, otherwise only per image. If this value is a
float p, then for p percent of all images per_channel will be treated as True. If it is a
StochasticParameter it is expected to produce samples with values between 0.0
and 1.0, where values >0.5 will lead to per-channel behaviour (i.e. same as True).

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Multiply(2.0)

Multiplies all images by a factor of 2, making the images significantly brighter.

>>> aug = iaa.Multiply((0.5, 1.5))

Multiplies images by a random value sampled uniformly from the interval [0.5, 1.5], making some images
darker and others brighter.

>>> aug = iaa.Multiply((0.5, 1.5), per_channel=True)

Identical to the previous example, but the sampled multipliers differ by image and channel, instead of only by
image.

>>> aug = iaa.Multiply((0.5, 1.5), per_channel=0.5)

Identical to the previous example, but the per_channel feature is only active for 50 percent of all images.

Methods

13.17. imgaug.augmenters.arithmetic 541

imgaug Documentation, Release 0.3.0

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
Continued on next page

542 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 66 – continued from previous page
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

get_parameters(self)
See get_parameters().

class imgaug.augmenters.arithmetic.MultiplyElementwise(mul=(0.8, 1.2),
per_channel=False,
seed=None, name=None,
random_state=’deprecated’,
determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.meta.Augmenter

Multiply image pixels with values that are pixelwise randomly sampled.

While the Multiply Augmenter uses a constant multiplier per image (and optionally channel), this augmenter
samples the multipliers to use per image and per pixel (and optionally per channel).

Supported dtypes:

See multiply_elementwise().

Parameters

• mul (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) –

The value with which to multiply pixel values in the image.

– If a number, then that value will always be used.

– If a tuple (a, b), then a value from the interval [a, b] will be sampled per image
and pixel.

– If a list, then a random value will be sampled from that list per image and pixel.

– If a StochasticParameter, then that parameter will be used to sample a new value
per image and pixel.

• per_channel (bool or float or imgaug.parameters.StochasticParameter, optional) –
Whether to use (imagewise) the same sample(s) for all channels (False) or to sample
value(s) for each channel (True). Setting this to True will therefore lead to differ-
ent transformations per image and channel, otherwise only per image. If this value is a
float p, then for p percent of all images per_channel will be treated as True. If it is a
StochasticParameter it is expected to produce samples with values between 0.0
and 1.0, where values >0.5 will lead to per-channel behaviour (i.e. same as True).

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

13.17. imgaug.augmenters.arithmetic 543

imgaug Documentation, Release 0.3.0

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.MultiplyElementwise(2.0)

Multiply all images by a factor of 2.0, making them significantly bighter.

>>> aug = iaa.MultiplyElementwise((0.5, 1.5))

Samples per image and pixel uniformly a value from the interval [0.5, 1.5] and multiplies the pixel with
that value.

>>> aug = iaa.MultiplyElementwise((0.5, 1.5), per_channel=True)

Samples per image and pixel and channel uniformly a value from the interval [0.5, 1.5] and multiplies the
pixel with that value. Therefore, used multipliers may differ between channels of the same pixel.

>>> aug = iaa.MultiplyElementwise((0.5, 1.5), per_channel=0.5)

Identical to the previous example, but the per_channel feature is only active for 50 percent of all images.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

Continued on next page

544 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 67 – continued from previous page
deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

get_parameters(self)
See get_parameters().

class imgaug.augmenters.arithmetic.Pepper(p=(0.0, 0.05), per_channel=False, seed=None,
name=None, random_state=’deprecated’, de-
terministic=’deprecated’)

Bases: imgaug.augmenters.arithmetic.ReplaceElementwise

Replace pixels in images with pepper noise, i.e. black-ish pixels.

This augmenter is similar to SaltAndPepper, but adds no salt noise to images.

This augmenter is similar to Dropout, but slower and the black pixels are not uniformly black.

Supported dtypes:

See ReplaceElementwise.

Parameters

• p (float or tuple of float or list of float or imgaug.parameters.StochasticParameter, optional)
–

Probability of replacing a pixel with pepper noise.

– If a float, then that value will always be used as the probability.

– If a tuple (a, b), then a probability will be sampled uniformly per image from the
interval [a, b].

13.17. imgaug.augmenters.arithmetic 545

imgaug Documentation, Release 0.3.0

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then a image-sized mask will be sampled from that
parameter per image. Any value >0.5 in that mask will be replaced with pepper noise.

• per_channel (bool or float or imgaug.parameters.StochasticParameter, optional) –
Whether to use (imagewise) the same sample(s) for all channels (False) or to sample
value(s) for each channel (True). Setting this to True will therefore lead to differ-
ent transformations per image and channel, otherwise only per image. If this value is a
float p, then for p percent of all images per_channel will be treated as True. If it is a
StochasticParameter it is expected to produce samples with values between 0.0
and 1.0, where values >0.5 will lead to per-channel behaviour (i.e. same as True).

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Pepper(0.05)

Replace 5% of all pixels with pepper noise (black-ish colors).

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

Continued on next page

546 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 68 – continued from previous page
augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.arithmetic.ReplaceElementwise(mask, replacement,
per_channel=False,
seed=None, name=None,
random_state=’deprecated’,
deterministic=’deprecated’)

Bases: imgaug.augmenters.meta.Augmenter

Replace pixels in an image with new values.

Supported dtypes:

See replace_elementwise_().

Parameters

• mask (float or tuple of float or list of float or imgaug.parameters.StochasticParameter) –
Mask that indicates the pixels that are supposed to be replaced. The mask will be binarized

13.17. imgaug.augmenters.arithmetic 547

imgaug Documentation, Release 0.3.0

using a threshold of 0.5. A value of 1 then indicates a pixel that is supposed to be replaced.

– If this is a float, then that value will be used as the probability of being a 1 in the mask
(sampled per image and pixel) and hence being replaced.

– If a tuple (a, b), then the probability will be uniformly sampled per image from the
interval [a, b].

– If a list, then a random value will be sampled from that list per image and pixel.

– If a StochasticParameter, then this parameter will be used to sample a mask per
image.

• replacement (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter) – The replacement to use at all locations that
are marked as 1 in the mask.

– If this is a number, then that value will always be used as the replacement.

– If a tuple (a, b), then the replacement will be sampled uniformly per image and pixel
from the interval [a, b].

– If a list, then a random value will be sampled from that list per image and pixel.

– If a StochasticParameter, then this parameter will be used sample replacement
values per image and pixel.

• per_channel (bool or float or imgaug.parameters.StochasticParameter, optional) –
Whether to use (imagewise) the same sample(s) for all channels (False) or to sample
value(s) for each channel (True). Setting this to True will therefore lead to differ-
ent transformations per image and channel, otherwise only per image. If this value is a
float p, then for p percent of all images per_channel will be treated as True. If it is a
StochasticParameter it is expected to produce samples with values between 0.0
and 1.0, where values >0.5 will lead to per-channel behaviour (i.e. same as True).

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = ReplaceElementwise(0.05, [0, 255])

Replaces 5 percent of all pixels in each image by either 0 or 255.

>>> import imgaug.augmenters as iaa
>>> aug = ReplaceElementwise(0.1, [0, 255], per_channel=0.5)

548 Chapter 13. API

imgaug Documentation, Release 0.3.0

For 50% of all images, replace 10% of all pixels with either the value 0 or the value 255 (same as in the previous
example). For the other 50% of all images, replace channelwise 10% of all pixels with either the value 0 or the
value 255. So, it will be very rare for each pixel to have all channels replaced by 255 or 0.

>>> import imgaug.augmenters as iaa
>>> import imgaug.parameters as iap
>>> aug = ReplaceElementwise(0.1, iap.Normal(128, 0.4*128), per_channel=0.5)

Replace 10% of all pixels by gaussian noise centered around 128. Both the replacement mask and the gaussian
noise are sampled channelwise for 50% of all images.

>>> import imgaug.augmenters as iaa
>>> import imgaug.parameters as iap
>>> aug = ReplaceElementwise(
>>> iap.FromLowerResolution(iap.Binomial(0.1), size_px=8),
>>> iap.Normal(128, 0.4*128),
>>> per_channel=0.5)

Replace 10% of all pixels by gaussian noise centered around 128. Sample the replacement mask at a lower
resolution (8x8 pixels) and upscale it to the image size, resulting in coarse areas being replaced by gaussian
noise.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.

Continued on next page

13.17. imgaug.augmenters.arithmetic 549

imgaug Documentation, Release 0.3.0

Table 69 – continued from previous page
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

get_parameters(self)
See get_parameters().

class imgaug.augmenters.arithmetic.Salt(p=(0.0, 0.03), per_channel=False, seed=None,
name=None, random_state=’deprecated’, deter-
ministic=’deprecated’)

Bases: imgaug.augmenters.arithmetic.ReplaceElementwise

Replace pixels in images with salt noise, i.e. white-ish pixels.

This augmenter is similar to SaltAndPepper, but adds no pepper noise to images.

Supported dtypes:

See ReplaceElementwise.

Parameters

• p (float or tuple of float or list of float or imgaug.parameters.StochasticParameter, optional)
–

Probability of replacing a pixel with salt noise.

– If a float, then that value will always be used as the probability.

– If a tuple (a, b), then a probability will be sampled uniformly per image from the
interval [a, b].

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then a image-sized mask will be sampled from that
parameter per image. Any value >0.5 in that mask will be replaced with salt noise.

550 Chapter 13. API

imgaug Documentation, Release 0.3.0

• per_channel (bool or float or imgaug.parameters.StochasticParameter, optional) –
Whether to use (imagewise) the same sample(s) for all channels (False) or to sample
value(s) for each channel (True). Setting this to True will therefore lead to differ-
ent transformations per image and channel, otherwise only per image. If this value is a
float p, then for p percent of all images per_channel will be treated as True. If it is a
StochasticParameter it is expected to produce samples with values between 0.0
and 1.0, where values >0.5 will lead to per-channel behaviour (i.e. same as True).

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Salt(0.05)

Replace 5% of all pixels with salt noise (white-ish colors).

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

Continued on next page

13.17. imgaug.augmenters.arithmetic 551

imgaug Documentation, Release 0.3.0

Table 70 – continued from previous page
copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.arithmetic.SaltAndPepper(p=(0.0, 0.03), per_channel=False,
seed=None, name=None, ran-
dom_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.arithmetic.ReplaceElementwise

Replace pixels in images with salt/pepper noise (white/black-ish colors).

Supported dtypes:

See ReplaceElementwise.

Parameters

• p (float or tuple of float or list of float or imgaug.parameters.StochasticParameter, optional)
–

Probability of replacing a pixel to salt/pepper noise.

– If a float, then that value will always be used as the probability.

552 Chapter 13. API

imgaug Documentation, Release 0.3.0

– If a tuple (a, b), then a probability will be sampled uniformly per image from the
interval [a, b].

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then a image-sized mask will be sampled from that
parameter per image. Any value >0.5 in that mask will be replaced with salt and pepper
noise.

• per_channel (bool or float or imgaug.parameters.StochasticParameter, optional) –
Whether to use (imagewise) the same sample(s) for all channels (False) or to sample
value(s) for each channel (True). Setting this to True will therefore lead to differ-
ent transformations per image and channel, otherwise only per image. If this value is a
float p, then for p percent of all images per_channel will be treated as True. If it is a
StochasticParameter it is expected to produce samples with values between 0.0
and 1.0, where values >0.5 will lead to per-channel behaviour (i.e. same as True).

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.SaltAndPepper(0.05)

Replace 5% of all pixels with salt and pepper noise.

>>> import imgaug.augmenters as iaa
>>> aug = iaa.SaltAndPepper(0.05, per_channel=True)

Replace channelwise 5% of all pixels with salt and pepper noise.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

Continued on next page

13.17. imgaug.augmenters.arithmetic 553

imgaug Documentation, Release 0.3.0

Table 71 – continued from previous page
augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.arithmetic.Solarize(p=1, per_channel=False, min_value=None,
max_value=None, threshold=(64, 192),
invert_above_threshold=True, seed=None,
name=None, random_state=’deprecated’,
deterministic=’deprecated’)

Bases: imgaug.augmenters.arithmetic.Invert

554 Chapter 13. API

imgaug Documentation, Release 0.3.0

Invert all pixel values above a threshold.

This is the same as Invert, but sets a default threshold around 128 (+/- 64, decided per image) and default
invert_above_threshold to True (i.e. only values above the threshold will be inverted).

See Invert for more details.

Added in 0.4.0.

Supported dtypes:

See Invert.

Parameters

• p (float or imgaug.parameters.StochasticParameter) – See Invert.

• per_channel (bool or float or imgaug.parameters.StochasticParameter, optional) – See
Invert.

• min_value (None or number, optional) – See Invert.

• max_value (None or number, optional) – See Invert.

• threshold (None or number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – See Invert.

• invert_above_threshold (bool or float or imgaug.parameters.StochasticParameter, op-
tional) – See Invert.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Solarize(0.5, threshold=(32, 128))

Invert the colors in 50 percent of all images for pixels with a value between 32 and 128 or more. The threshold
is sampled once per image. The thresholding operation happens per channel.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.

Continued on next page

13.17. imgaug.augmenters.arithmetic 555

imgaug Documentation, Release 0.3.0

Table 72 – continued from previous page
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

556 Chapter 13. API

imgaug Documentation, Release 0.3.0

class imgaug.augmenters.arithmetic.TotalDropout(p=1, seed=None, name=None, ran-
dom_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.meta.Augmenter

Drop all channels of a defined fraction of all images.

For image data, all components of dropped images will be filled with zeros.

Note: This augmenter also sets the arrays of heatmaps and segmentation maps to zero and removes all
coordinate-based data (e.g. it removes all bounding boxes on images that were filled with zeros).

Added in 0.4.0.

Supported dtypes:

• uint8: yes; fully tested

• uint16: yes; tested

• uint32: yes; tested

• uint64: yes; tested

• int8: yes; tested

• int16: yes; tested

• int32: yes; tested

• int64: yes; tested

• float16: yes; tested

• float32: yes; tested

• float64: yes; tested

• float128: yes; tested

• bool: yes; tested

Parameters

• p (float or tuple of float or imgaug.parameters.StochasticParameter, optional) –

The probability of an image to be filled with zeros.

– If float: The value will be used for all images. A value of 1.0 would mean that all
images will be set to zero. A value of 0.0 would lead to no images being set to zero.

– If tuple (a, b): A value p will be sampled from the interval [a, b) per batch and
be used as the dropout probability.

– If a list, then a value will be sampled from that list per batch and used as the probability.

– If StochasticParameter: The parameter will be used to determine per image
whether it should be kept (sampled value of >=0.5) or shouldn’t be kept (sampled value
of <0.5). If you instead want to provide the probability as a stochastic parameter, you
can usually do imgaug.parameters.Binomial(1-p) to convert parameter p to a
0/1 representation.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

13.17. imgaug.augmenters.arithmetic 557

imgaug Documentation, Release 0.3.0

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.TotalDropout(1.0)

Create an augmenter that sets all components of all images to zero.

>>> aug = iaa.TotalDropout(0.5)

Create an augmenter that sets all components of 50% of all images to zero.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
Continued on next page

558 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 73 – continued from previous page
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

get_parameters(self)
See get_parameters().

imgaug.augmenters.arithmetic.add_elementwise(image, values)
Add an array of values to an image.

This method ensures that uint8 does not overflow during the addition.

Supported dtypes:

• uint8: yes; fully tested

• uint16: limited; tested (1)

• uint32: no

• uint64: no

• int8: limited; tested (1)

• int16: limited; tested (1)

• int32: no

• int64: no

• float16: limited; tested (1)

• float32: limited; tested (1)

• float64: no

13.17. imgaug.augmenters.arithmetic 559

imgaug Documentation, Release 0.3.0

• float128: no

• bool: limited; tested (1)

• (1) Non-uint8 dtypes can overflow. For floats, this can result in +/-inf.

Parameters

• image (ndarray) – Image array of shape (H,W,[C]).

• values (ndarray) – The values to add to the image. Expected to have the same height and
width as image and either no channels or one channel or the same number of channels as
image.

Returns Image with values added to it.

Return type ndarray

imgaug.augmenters.arithmetic.add_scalar(image, value)
Add a single scalar value or one scalar value per channel to an image.

This method ensures that uint8 does not overflow during the addition.

Supported dtypes:

• uint8: yes; fully tested

• uint16: limited; tested (1)

• uint32: no

• uint64: no

• int8: limited; tested (1)

• int16: limited; tested (1)

• int32: no

• int64: no

• float16: limited; tested (1)

• float32: limited; tested (1)

• float64: no

• float128: no

• bool: limited; tested (1)

• (1) Non-uint8 dtypes can overflow. For floats, this can result in +/-inf.

Parameters

• image (ndarray) – Image array of shape (H,W,[C]). If value contains more than one
value, the shape of the image is expected to be (H,W,C).

• value (number or ndarray) – The value to add to the image. Either a single value or an array
containing exactly one component per channel, i.e. C components.

Returns Image with value added to it.

Return type ndarray

560 Chapter 13. API

imgaug Documentation, Release 0.3.0

imgaug.augmenters.arithmetic.compress_jpeg(image, compression)
Compress an image using jpeg compression.

Supported dtypes:

• uint8: yes; fully tested

• uint16: ?

• uint32: ?

• uint64: ?

• int8: ?

• int16: ?

• int32: ?

• int64: ?

• float16: ?

• float32: ?

• float64: ?

• float128: ?

• bool: ?

Parameters

• image (ndarray) – Image of dtype uint8 and shape (H,W,[C]). If C is provided, it must
be 1 or 3.

• compression (int) – Strength of the compression in the interval [0, 100].

Returns Input image after applying jpeg compression to it and reloading the result into a new array.
Same shape and dtype as the input.

Return type ndarray

imgaug.augmenters.arithmetic.cutout(image, x1, y1, x2, y2, fill_mode=’constant’, cval=0,
fill_per_channel=False, seed=None)

Fill a single area within an image using a fill mode.

This cutout method uses the top-left and bottom-right corner coordinates of the cutout region given as absolute
pixel values.

Note: Gaussian fill mode will assume that float input images contain values in the interval [0.0, 1.0] and
hence sample values from a gaussian within that interval, i.e. from N(0.5, std=0.5/3).

Supported dtypes:

See cutout_().

Added in 0.4.0.

Parameters

• image (ndarray) – Image to modify.

• x1 (number) – See cutout_().

• y1 (number) – See cutout_().

13.17. imgaug.augmenters.arithmetic 561

imgaug Documentation, Release 0.3.0

• x2 (number) – See cutout_().

• y2 (number) – See cutout_().

• fill_mode ({‘constant’, ‘gaussian’}, optional) – See cutout_().

• cval (number or tuple of number, optional) – See cutout_().

• fill_per_channel (number or bool, optional) – See cutout_().

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See cutout_().

Returns Image with area filled in.

Return type ndarray

imgaug.augmenters.arithmetic.cutout_(image, x1, y1, x2, y2, fill_mode=’constant’, cval=0,
fill_per_channel=False, seed=None)

Fill a single area within an image using a fill mode (in-place).

This cutout method uses the top-left and bottom-right corner coordinates of the cutout region given as absolute
pixel values.

Note: Gaussian fill mode will assume that float input images contain values in the interval [0.0, 1.0] and
hence sample values from a gaussian within that interval, i.e. from N(0.5, std=0.5/3).

Added in 0.4.0.

Supported dtypes:

minimum of (_fill_rectangle_gaussian_(), _fill_rectangle_constant_()

)

Parameters

• image (ndarray) – Image to modify. Might be modified in-place.

• x1 (number) – X-coordinate of the top-left corner of the cutout region.

• y1 (number) – Y-coordinate of the top-left corner of the cutout region.

• x2 (number) – X-coordinate of the bottom-right corner of the cutout region.

• y2 (number) – Y-coordinate of the bottom-right corner of the cutout region.

• fill_mode ({‘constant’, ‘gaussian’}, optional) – Fill mode to use.

• cval (number or tuple of number, optional) – The constant value to use when filling with
mode constant. May be an intensity value or color tuple.

• fill_per_channel (number or bool, optional) – Whether to fill in a channelwise fashion. If
number then a value >=0.5 will be interpreted as True.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – A random number generator to sample random
values from. Usually an integer seed value or an RNG instance. See imgaug.random.
RNG for details.

Returns Image with area filled in. The input image might have been modified in-place.

Return type ndarray

562 Chapter 13. API

imgaug Documentation, Release 0.3.0

imgaug.augmenters.arithmetic.invert(image, min_value=None, max_value=None, thresh-
old=None, invert_above_threshold=True)

Invert an array.

Supported dtypes:

See invert_().

Parameters

• image (ndarray) – See invert_().

• min_value (None or number, optional) – See invert_().

• max_value (None or number, optional) – See invert_().

• threshold (None or number, optional) – See invert_().

• invert_above_threshold (bool, optional) – See invert_().

Returns Inverted image.

Return type ndarray

imgaug.augmenters.arithmetic.invert_(image, min_value=None, max_value=None, thresh-
old=None, invert_above_threshold=True)

Invert an array in-place.

Added in 0.4.0.

Supported dtypes:

if (min_value=None and max_value=None):

• uint8: yes; fully tested

• uint16: yes; tested

• uint32: yes; tested

• uint64: yes; tested

• int8: yes; tested

• int16: yes; tested

• int32: yes; tested

• int64: yes; tested

• float16: yes; tested

• float32: yes; tested

• float64: yes; tested

• float128: yes; tested

• bool: yes; tested

if (min_value!=None or max_value!=None):

• uint8: yes; fully tested

• uint16: yes; tested

• uint32: yes; tested

• uint64: no (1)

• int8: yes; tested

13.17. imgaug.augmenters.arithmetic 563

imgaug Documentation, Release 0.3.0

• int16: yes; tested

• int32: yes; tested

• int64: no (2)

• float16: yes; tested

• float32: yes; tested

• float64: no (2)

• float128: no (3)

• bool: no (4)

• (1) Not allowed due to numpy’s clip converting from uint64 to float64.

• (2) Not allowed as int/float have to be increased in resolution when using min/max values.

• (3) Not tested.

• (4) Makes no sense when using min/max values.

Parameters

• image (ndarray) – Image array of shape (H,W,[C]). The array might be modified in-
place.

• min_value (None or number, optional) – Minimum of the value range of input images, e.g.
0 for uint8 images. If set to None, the value will be automatically derived from the
image’s dtype.

• max_value (None or number, optional) – Maximum of the value range of input images, e.g.
255 for uint8 images. If set to None, the value will be automatically derived from the
image’s dtype.

• threshold (None or number, optional) – A threshold to use in order to invert only numbers
above or below the threshold. If None no thresholding will be used.

• invert_above_threshold (bool, optional) – If True, only values >=threshold will be
inverted. Otherwise, only values <threshold will be inverted. If threshold is None this
parameter has no effect.

Returns Inverted image. This can be the same array as input in image, modified in-place.

Return type ndarray

imgaug.augmenters.arithmetic.multiply_elementwise(image, multipliers)
Multiply an image with an array of values.

This method ensures that uint8 does not overflow during the addition.

Supported dtypes:

• uint8: yes; fully tested

• uint16: limited; tested (1)

• uint32: no

• uint64: no

• int8: limited; tested (1)

• int16: limited; tested (1)

564 Chapter 13. API

imgaug Documentation, Release 0.3.0

• int32: no

• int64: no

• float16: limited; tested (1)

• float32: limited; tested (1)

• float64: no

• float128: no

• bool: limited; tested (1)

• (1) Non-uint8 dtypes can overflow. For floats, this can result in +/-inf.

note:

Tests were only conducted for rather small multipliers, around
``-10.0`` to ``+10.0``.

In general, the multipliers sampled from `multipliers` must be in a
value range that corresponds to the input image's dtype. E.g. if the
input image has dtype ``uint16`` and the samples generated from
`multipliers` are ``float64``, this function will still force all
samples to be within the value range of ``float16``, as it has the
same number of bytes (two) as ``uint16``. This is done to make
overflows less likely to occur.

Parameters

• image (ndarray) – Image array of shape (H,W,[C]).

• multipliers (ndarray) – The multipliers with which to multiply the image. Expected to
have the same height and width as image and either no channels or one channel or the same
number of channels as image.

Returns Image, multiplied by multipliers.

Return type ndarray

imgaug.augmenters.arithmetic.multiply_scalar(image, multiplier)
Multiply an image by a single scalar or one scalar per channel.

This method ensures that uint8 does not overflow during the multiplication.

Supported dtypes:

• uint8: yes; fully tested

• uint16: limited; tested (1)

• uint32: no

• uint64: no

• int8: limited; tested (1)

• int16: limited; tested (1)

• int32: no

• int64: no

• float16: limited; tested (1)

13.17. imgaug.augmenters.arithmetic 565

imgaug Documentation, Release 0.3.0

• float32: limited; tested (1)

• float64: no

• float128: no

• bool: limited; tested (1)

• (1) Non-uint8 dtypes can overflow. For floats, this can result in +/-inf.

note:

Tests were only conducted for rather small multipliers, around
``-10.0`` to ``+10.0``.

In general, the multipliers sampled from `multiplier` must be in a
value range that corresponds to the input image's dtype. E.g. if the
input image has dtype ``uint16`` and the samples generated from
`multiplier` are ``float64``, this function will still force all
samples to be within the value range of ``float16``, as it has the
same number of bytes (two) as ``uint16``. This is done to make
overflows less likely to occur.

Parameters

• image (ndarray) – Image array of shape (H,W,[C]). If value contains more than one
value, the shape of the image is expected to be (H,W,C).

• multiplier (number or ndarray) – The multiplier to use. Either a single value or an array
containing exactly one component per channel, i.e. C components.

Returns Image, multiplied by multiplier.

Return type ndarray

imgaug.augmenters.arithmetic.replace_elementwise_(image, mask, replacements)
Replace components in an image array with new values.

Supported dtypes:

• uint8: yes; fully tested

• uint16: yes; tested

• uint32: yes; tested

• uint64: no (1)

• int8: yes; tested

• int16: yes; tested

• int32: yes; tested

• int64: no (2)

• float16: yes; tested

• float32: yes; tested

• float64: yes; tested

• float128: no

• bool: yes; tested

566 Chapter 13. API

imgaug Documentation, Release 0.3.0

• (1) uint64 is currently not supported, because clip_to_dtype_value_range_() does
not support it, which again is because numpy.clip() seems to not support it.

• (2) int64 is disallowed due to being converted to float64 by numpy.clip() since 1.17 (pos-
sibly also before?).

Parameters

• image (ndarray) – Image array of shape (H,W,[C]).

• mask (ndarray) – Mask of shape (H,W,[C]) denoting which components to replace. If C
is provided, it must be 1 or match the C of image. May contain floats in the interval [0.0,
1.0].

• replacements (iterable) – Replacements to place in image at the locations defined by mask.
This 1-dimensional iterable must contain exactly as many values as there are replaced com-
ponents in image.

Returns Image with replaced components.

Return type ndarray

imgaug.augmenters.arithmetic.solarize(image, threshold=128)
Invert pixel values above a threshold.

Added in 0.4.0.

Supported dtypes:

See solarize_().

Parameters

• image (ndarray) – See solarize_().

• threshold (None or number, optional) – See solarize_().

Returns Inverted image.

Return type ndarray

imgaug.augmenters.arithmetic.solarize_(image, threshold=128)
Invert pixel values above a threshold in-place.

This function is a wrapper around invert().

This function performs the same transformation as PIL.ImageOps.solarize().

Added in 0.4.0.

Supported dtypes:

See ~imgaug.augmenters.arithmetic.invert_(min_value=None and
max_value=None).

Parameters

• image (ndarray) – See invert_().

• threshold (None or number, optional) – See invert_(). Note: The default threshold is
optimized for uint8 images.

Returns Inverted image. This can be the same array as input in image, modified in-place.

Return type ndarray

13.17. imgaug.augmenters.arithmetic 567

imgaug Documentation, Release 0.3.0

13.18 imgaug.augmenters.artistic

Augmenters that apply artistic image filters.

List of augmenters:

• Cartoon

Added in 0.4.0.

class imgaug.augmenters.artistic.Cartoon(blur_ksize=(1, 5), segmentation_size=(0.8, 1.2),
saturation=(1.5, 2.5), edge_prevalence=(0.9,
1.1), from_colorspace=’RGB’, seed=None,
name=None, random_state=’deprecated’, deter-
ministic=’deprecated’)

Bases: imgaug.augmenters.meta.Augmenter

Convert the style of images to a more cartoonish one.

This augmenter was primarily designed for images with a size of 200 to 800 pixels. Smaller or larger images
may cause issues.

Note that the quality of the results can currently not compete with learned style transfer, let alone human-made
images. A lack of detected edges or also too many detected edges are probably the most significant drawbacks.

Added in 0.4.0.

Supported dtypes:

See stylize_cartoon().

Parameters

• blur_ksize (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Median filter kernel size. See
stylize_cartoon() for details.

– If number: That value will be used for all images.

– If tuple (a, b) of number: A random value will be uniformly sampled per im-
age from the interval [a, b).

– If list: A random value will be picked per image from the list.

– If StochasticParameter: The parameter will be queried once per batch for (N,)
values, where N is the number of images.

• segmentation_size (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Mean-Shift segmentation size multiplier.
See stylize_cartoon() for details.

– If number: That value will be used for all images.

– If tuple (a, b) of number: A random value will be uniformly sampled per im-
age from the interval [a, b).

– If list: A random value will be picked per image from the list.

– If StochasticParameter: The parameter will be queried once per batch for (N,)
values, where N is the number of images.

• saturation (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Saturation multiplier. See
stylize_cartoon() for details.

568 Chapter 13. API

imgaug Documentation, Release 0.3.0

– If number: That value will be used for all images.

– If tuple (a, b) of number: A random value will be uniformly sampled per im-
age from the interval [a, b).

– If list: A random value will be picked per image from the list.

– If StochasticParameter: The parameter will be queried once per batch for (N,)
values, where N is the number of images.

• edge_prevalence (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Multiplier for the prevalence of
edges. See stylize_cartoon() for details.

– If number: That value will be used for all images.

– If tuple (a, b) of number: A random value will be uniformly sampled per im-
age from the interval [a, b).

– If list: A random value will be picked per image from the list.

– If StochasticParameter: The parameter will be queried once per batch for (N,)
values, where N is the number of images.

• from_colorspace (str, optional) – The source colorspace. Use one of imgaug.
augmenters.color.CSPACE_*. Defaults to RGB.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Cartoon()

Create an example image, then apply a cartoon filter to it.

>>> aug = iaa.Cartoon(blur_ksize=3, segmentation_size=1.0,
>>> saturation=2.0, edge_prevalence=1.0)

Create a non-stochastic cartoon augmenter that produces decent-looking images.

Methods

13.18. imgaug.augmenters.artistic 569

imgaug Documentation, Release 0.3.0

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
Continued on next page

570 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 74 – continued from previous page
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

get_parameters(self)
See get_parameters().

imgaug.augmenters.artistic.stylize_cartoon(image, blur_ksize=3, segmentation_size=1.0,
saturation=2.0, edge_prevalence=1.0, sup-
press_edges=True, from_colorspace=’RGB’)

Convert the style of an image to a more cartoonish one.

This function was primarily designed for images with a size of 200 to 800 pixels. Smaller or larger images
may cause issues.

Note that the quality of the results can currently not compete with learned style transfer, let alone human-made
images. A lack of detected edges or also too many detected edges are probably the most significant drawbacks.

This method is loosely based on the one proposed in https://stackoverflow.com/a/11614479/3760780

Added in 0.4.0.

Supported dtypes:

• uint8: yes; fully tested

• uint16: no

• uint32: no

• uint64: no

• int8: no

• int16: no

• int32: no

• int64: no

• float16: no

• float32: no

• float64: no

• float128: no

• bool: no

Parameters

• image (ndarray) – A (H,W,3) uint8 image array.

• blur_ksize (int, optional) – Kernel size of the median blur filter applied initially to the input
image. Expected to be an odd value and >=0. If an even value, thn automatically increased
to an odd one. If <=1, no blur will be applied.

• segmentation_size (float, optional) – Size multiplier to decrease/increase the base size of
the initial mean-shift segmentation of the image. Expected to be >=0. Note that the base
size is increased by roughly a factor of two for images with height and/or width >=400.

• edge_prevalence (float, optional) – Multiplier for the prevalance of edges. Higher values
lead to more edges. Note that the default value of 1.0 is already fairly conservative, so
there is limit effect from lowerin it further.

13.18. imgaug.augmenters.artistic 571

https://stackoverflow.com/a/11614479/3760780

imgaug Documentation, Release 0.3.0

• saturation (float, optional) – Multiplier for the saturation. Set to 1.0 to not change the
image’s saturation.

• suppress_edges (bool, optional) – Whether to run edge suppression to remove blobs con-
taining too many or too few edge pixels.

• from_colorspace (str, optional) – The source colorspace. Use one of imgaug.
augmenters.color.CSPACE_*. Defaults to RGB.

Returns Image in cartoonish style.

Return type ndarray

13.19 imgaug.augmenters.base

Base classes and functions used by all/most augmenters.

This module is planned to contain imgaug.augmenters.meta.Augmenter in the future.

Added in 0.4.0.

exception imgaug.augmenters.base.SuspiciousMultiImageShapeWarning
Bases: UserWarning

Warning multi-image inputs that look like a single image.

exception imgaug.augmenters.base.SuspiciousSingleImageShapeWarning
Bases: UserWarning

Warning for single-image inputs that look like multiple images.

13.20 imgaug.augmenters.blend

Augmenters that blend two images with each other.

List of augmenters:

• BlendAlpha

• BlendAlphaMask

• BlendAlphaElementwise

• BlendAlphaSimplexNoise

• BlendAlphaFrequencyNoise

• BlendAlphaSomeColors

• BlendAlphaHorizontalLinearGradient

• BlendAlphaVerticalLinearGradient

• BlendAlphaSegMapClassIds

• BlendAlphaBoundingBoxes

• BlendAlphaRegularGrid

• BlendAlphaCheckerboard

572 Chapter 13. API

imgaug Documentation, Release 0.3.0

imgaug.augmenters.blend.Alpha(factor=0, first=None, second=None, per_channel=False,
seed=None, name=None, random_state=’deprecated’, determin-
istic=’deprecated’)

Deprecated. Use Alpha instead. Alpha is deprecated. Use BlendAlpha instead. The order of parameters is the
same. Parameter ‘first’ was renamed to ‘foreground’. Parameter ‘second’ was renamed to ‘background’.

See BlendAlpha.

Deprecated since 0.4.0.

imgaug.augmenters.blend.AlphaElementwise(factor=0, first=None, second=None,
per_channel=False, seed=None, name=None,
random_state=’deprecated’, determinis-
tic=’deprecated’)

Deprecated. Use AlphaElementwise instead. AlphaElementwise is deprecated. Use BlendAlphaElemen-
twise instead. The order of parameters is the same. Parameter ‘first’ was renamed to ‘foreground’. Parameter
‘second’ was renamed to ‘background’.

See BlendAlphaElementwise.

Deprecated since 0.4.0.

class imgaug.augmenters.blend.BlendAlpha(factor=(0.0, 1.0), foreground=None, back-
ground=None, per_channel=False, seed=None,
name=None, random_state=’deprecated’, deter-
ministic=’deprecated’)

Bases: imgaug.augmenters.meta.Augmenter

Alpha-blend two image sources using an alpha/opacity value.

The two image sources can be imagined as branches. If a source is not given, it is automatically the same as the
input. Let FG be the foreground branch and BG be the background branch. Then the result images are defined
as factor * FG + (1-factor) * BG, where factor is an overlay factor.

Note: It is not recommended to use BlendAlpha with augmenters that change the geometry of images (e.g.
horizontal flips, affine transformations) if you also want to augment coordinates (e.g. keypoints, polygons, . . .),
as it is unclear which of the two coordinate results (foreground or background branch) should be used as the
coordinates after augmentation.

Currently, if factor >= 0.5 (per image), the results of the foreground branch are used as the new coordi-
nates, otherwise the results of the background branch.

Added in 0.4.0. (Before that named Alpha.)

Supported dtypes:

See blend_alpha().

Parameters

• factor (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Opacity of the results of the foreground
branch. Values close to 0.0 mean that the results from the background branch (see
parameter background) make up most of the final image.

– If float, then that value will be used for all images.

– If tuple (a, b), then a random value from the interval [a, b] will be sampled per
image.

– If a list, then a random value will be picked from that list per image.

13.20. imgaug.augmenters.blend 573

imgaug Documentation, Release 0.3.0

– If StochasticParameter, then that parameter will be used to sample a value per
image.

• foreground (None or imgaug.augmenters.meta.Augmenter or iterable of im-
gaug.augmenters.meta.Augmenter, optional) – Augmenter(s) that make up the foreground
branch. High alpha values will show this branch’s results.

– If None, then the input images will be reused as the output of the foreground branch.

– If Augmenter, then that augmenter will be used as the branch.

– If iterable of Augmenter, then that iterable will be converted into a Sequential and
used as the augmenter.

• background (None or imgaug.augmenters.meta.Augmenter or iterable of im-
gaug.augmenters.meta.Augmenter, optional) – Augmenter(s) that make up the background
branch. Low alpha values will show this branch’s results.

– If None, then the input images will be reused as the output of the background branch.

– If Augmenter, then that augmenter will be used as the branch.

– If iterable of Augmenter, then that iterable will be converted into a Sequential and
used as the augmenter.

• per_channel (bool or float or imgaug.parameters.StochasticParameter, optional) –
Whether to use the same factor for all channels (False) or to sample a new value for
each channel (True). If this value is a float p, then for p percent of all images per_channel
will be treated as True, otherwise as False.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.BlendAlpha(0.5, iaa.Grayscale(1.0))

Convert each image to pure grayscale and alpha-blend the result with the original image using an alpha of 50%,
thereby removing about 50% of all color. This is equivalent to iaa.Grayscale(0.5).

>>> aug = iaa.BlendAlpha((0.0, 1.0), iaa.Grayscale(1.0))

Same as in the previous example, but the alpha factor is sampled uniformly from the interval [0.0, 1.0] once
per image, thereby removing a random fraction of all colors. This is equivalent to iaa.Grayscale((0.0,
1.0)).

574 Chapter 13. API

imgaug Documentation, Release 0.3.0

>>> aug = iaa.BlendAlpha(
>>> (0.0, 1.0),
>>> iaa.Affine(rotate=(-20, 20)),
>>> per_channel=0.5)

First, rotate each image by a random degree sampled uniformly from the interval [-20, 20]. Then, alpha-
blend that new image with the original one using a random factor sampled uniformly from the interval [0.0,
1.0]. For 50% of all images, the blending happens channel-wise and the factor is sampled independently per
channel (per_channel=0.5). As a result, e.g. the red channel may look visibly rotated (factor near 1.0),
while the green and blue channels may not look rotated (factors near 0.0).

>>> aug = iaa.BlendAlpha(
>>> (0.0, 1.0),
>>> foreground=iaa.Add(100),
>>> background=iaa.Multiply(0.2))

Apply two branches of augmenters – A and B – independently to input images and alpha-blend the results of
these branches using a factor f. Branch A increases image pixel intensities by 100 and B multiplies the pixel
intensities by 0.2. f is sampled uniformly from the interval [0.0, 1.0] per image. The resulting images
contain a bit of A and a bit of B.

>>> aug = iaa.BlendAlpha([0.25, 0.75], iaa.MedianBlur(13))

Apply median blur to each image and alpha-blend the result with the original image using an alpha factor of
either exactly 0.25 or exactly 0.75 (sampled once per image).

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

Continued on next page

13.20. imgaug.augmenters.blend 575

imgaug Documentation, Release 0.3.0

Table 75 – continued from previous page
deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) See get_children_lists().
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

get_children_lists(self)
See get_children_lists().

get_parameters(self)
See get_parameters().

class imgaug.augmenters.blend.BlendAlphaBoundingBoxes(labels, foreground=None,
background=None,
nb_sample_labels=None,
seed=None, name=None,
random_state=’deprecated’,
deterministic=’deprecated’)

Bases: imgaug.augmenters.blend.BlendAlphaMask

Blend images from two branches based on areas enclosed in bounding boxes.

This class generates masks that are 1.0 within bounding boxes of given labels. A mask pixel will be set to 1.0
if at least one bounding box covers the area and has one of the requested labels.

This class is a thin wrapper around BlendAlphaMask together with BoundingBoxesMaskGen.

Note: Avoid using augmenters as children that affect pixel locations (e.g. horizontal flips). See
BlendAlphaMask for details.

576 Chapter 13. API

imgaug Documentation, Release 0.3.0

Note: This class will produce an AssertionError if there are no bounding boxes in a batch.

Added in 0.4.0.

Supported dtypes:

See BlendAlphaMask.

Parameters

• labels (None or str or list of str or imgaug.parameters.StochasticParameter) – See
BoundingBoxesMaskGen.

• foreground (None or imgaug.augmenters.meta.Augmenter or iterable of im-
gaug.augmenters.meta.Augmenter, optional) – Augmenter(s) that make up the foreground
branch. High alpha values will show this branch’s results.

– If None, then the input images will be reused as the output of the foreground branch.

– If Augmenter, then that augmenter will be used as the branch.

– If iterable of Augmenter, then that iterable will be converted into a Sequential and
used as the augmenter.

• background (None or imgaug.augmenters.meta.Augmenter or iterable of im-
gaug.augmenters.meta.Augmenter, optional) – Augmenter(s) that make up the background
branch. Low alpha values will show this branch’s results.

– If None, then the input images will be reused as the output of the background branch.

– If Augmenter, then that augmenter will be used as the branch.

– If iterable of Augmenter, then that iterable will be converted into a Sequential and
used as the augmenter.

• nb_sample_labels (None or tuple of int or list of int or im-
gaug.parameters.StochasticParameter, optional) – See BoundingBoxesMaskGen.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.BlendAlphaBoundingBoxes("person",
>>> foreground=iaa.Grayscale(1.0))

13.20. imgaug.augmenters.blend 577

imgaug Documentation, Release 0.3.0

Create an augmenter that removes color within bounding boxes having the label person.

>>> aug = iaa.BlendAlphaBoundingBoxes(["person", "car"],
>>> foreground=iaa.AddToHue((-255, 255)))

Create an augmenter that randomizes the hue within bounding boxes that have the label person or car.

>>> aug = iaa.BlendAlphaBoundingBoxes(["person", "car"],
>>> foreground=iaa.AddToHue((-255, 255)),
>>> nb_sample_labels=1)

Create an augmenter that randomizes the hue within bounding boxes that have either the label person
or car. Only one label is picked per image. Note that the sampling happens with replacement, so if
nb_sample_classes would be >1, it could still lead to only one unique label being sampled.

>>> aug = iaa.BlendAlphaBoundingBoxes(None,
>>> background=iaa.Multiply(0.0))

Create an augmenter that zeros all pixels (Multiply(0.0)) that are not (background branch) within
bounding boxes of any (None) label. In other words, all pixels outside of bounding boxes become black.
Note that we don’t use TotalDropout here, because by default it will also remove all coordinate-based
augmentables, which will break the blending of such inputs.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
Continued on next page

578 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 76 – continued from previous page
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) See get_children_lists().
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.blend.BlendAlphaCheckerboard(nb_rows, nb_cols, fore-
ground=None, back-
ground=None, seed=None,
name=None, ran-
dom_state=’deprecated’,
deterministic=’deprecated’)

Bases: imgaug.augmenters.blend.BlendAlphaMask

Blend images from two branches according to a checkerboard pattern.

This class generates for each image a mask following a checkboard layout of H rows and W columns. Each cell
is then filled with either 1.0 or 0.0. The cell at the top-left is always 1.0. Its right and bottom neighbour cells
are 0.0. The 4-neighbours of any cell always have a value opposite to the cell’s value (0.0 vs. 1.0).

This class is a thin wrapper around BlendAlphaMask together with CheckerboardMaskGen.

Note: Avoid using augmenters as children that affect pixel locations (e.g. horizontal flips). See
BlendAlphaMask for details.

Added in 0.4.0.

Supported dtypes:

See BlendAlphaMask.

Parameters

• nb_rows (int or tuple of int or list of int or imgaug.parameters.StochasticParameter) –
Number of rows of the checkerboard. See CheckerboardMaskGen for details.

13.20. imgaug.augmenters.blend 579

imgaug Documentation, Release 0.3.0

• nb_cols (int or tuple of int or list of int or imgaug.parameters.StochasticParameter)
– Number of columns of the checkerboard. Analogous to nb_rows. See
CheckerboardMaskGen for details.

• foreground (None or imgaug.augmenters.meta.Augmenter or iterable of im-
gaug.augmenters.meta.Augmenter, optional) – Augmenter(s) that make up the foreground
branch. High alpha values will show this branch’s results.

– If None, then the input images will be reused as the output of the foreground branch.

– If Augmenter, then that augmenter will be used as the branch.

– If iterable of Augmenter, then that iterable will be converted into a Sequential and
used as the augmenter.

• background (None or imgaug.augmenters.meta.Augmenter or iterable of im-
gaug.augmenters.meta.Augmenter, optional) – Augmenter(s) that make up the background
branch. Low alpha values will show this branch’s results.

– If None, then the input images will be reused as the output of the background branch.

– If Augmenter, then that augmenter will be used as the branch.

– If iterable of Augmenter, then that iterable will be converted into a Sequential and
used as the augmenter.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.BlendAlphaCheckerboard(nb_rows=2, nb_cols=(1, 4),
>>> foreground=iaa.AddToHue((-100, 100)))

Create an augmenter that places a HxW grid on each image, where H (rows) is always 2 and W is randomly and
uniformly sampled from the interval [1, 4]. For half of the cells in the grid the hue is randomly modified, the
other half of the cells is unaltered.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.

Continued on next page

580 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 77 – continued from previous page
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) See get_children_lists().
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

13.20. imgaug.augmenters.blend 581

imgaug Documentation, Release 0.3.0

class imgaug.augmenters.blend.BlendAlphaElementwise(factor=(0.0, 1.0),
foreground=None,
background=None,
per_channel=False,
seed=None, name=None,
random_state=’deprecated’,
deterministic=’deprecated’)

Bases: imgaug.augmenters.blend.BlendAlphaMask

Alpha-blend two image sources using alpha/opacity values sampled per pixel.

This is the same as BlendAlpha, except that the opacity factor is sampled once per pixel instead of once per
image (or a few times per image, if BlendAlpha.per_channel is set to True).

See BlendAlpha for more details.

This class is a wrapper around BlendAlphaMask.

Note: Avoid using augmenters as children that affect pixel locations (e.g. horizontal flips). See
BlendAlphaMask for details.

Added in 0.4.0. (Before that named AlphaElementwise.)

Supported dtypes:

See BlendAlphaMask.

Parameters

• factor (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Opacity of the results of the foreground
branch. Values close to 0.0 mean that the results from the background branch (see
parameter background) make up most of the final image.

– If float, then that value will be used for all images.

– If tuple (a, b), then a random value from the interval [a, b] will be sampled per
image.

– If a list, then a random value will be picked from that list per image.

– If StochasticParameter, then that parameter will be used to sample a value per
image.

• foreground (None or imgaug.augmenters.meta.Augmenter or iterable of im-
gaug.augmenters.meta.Augmenter, optional) – Augmenter(s) that make up the foreground
branch. High alpha values will show this branch’s results.

– If None, then the input images will be reused as the output of the foreground branch.

– If Augmenter, then that augmenter will be used as the branch.

– If iterable of Augmenter, then that iterable will be converted into a Sequential and
used as the augmenter.

• background (None or imgaug.augmenters.meta.Augmenter or iterable of im-
gaug.augmenters.meta.Augmenter, optional) – Augmenter(s) that make up the background
branch. Low alpha values will show this branch’s results.

– If None, then the input images will be reused as the output of the background branch.

– If Augmenter, then that augmenter will be used as the branch.

582 Chapter 13. API

imgaug Documentation, Release 0.3.0

– If iterable of Augmenter, then that iterable will be converted into a Sequential and
used as the augmenter.

• per_channel (bool or float, optional) – Whether to use the same factor for all channels
(False) or to sample a new value for each channel (True). If this value is a float p, then
for p percent of all images per_channel will be treated as True, otherwise as False.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.BlendAlphaElementwise(0.5, iaa.Grayscale(1.0))

Convert each image to pure grayscale and alpha-blend the result with the original image using an alpha of 50%
for all pixels, thereby removing about 50% of all color. This is equivalent to iaa.Grayscale(0.5). This
is also equivalent to iaa.BlendAlpha(0.5, iaa.Grayscale(1.0)), as the opacity has a fixed value
of 0.5 and is hence identical for all pixels.

>>> aug = iaa.BlendAlphaElementwise((0, 1.0), iaa.AddToHue(100))

Same as in the previous example, but here with hue-shift instead of grayscaling and additionally the alpha factor
is sampled uniformly from the interval [0.0, 1.0] once per pixel, thereby shifting the hue by a random
fraction for each pixel.

>>> aug = iaa.BlendAlphaElementwise(
>>> (0.0, 1.0),
>>> iaa.Affine(rotate=(-20, 20)),
>>> per_channel=0.5)

First, rotate each image by a random degree sampled uniformly from the interval [-20, 20]. Then, alpha-
blend that new image with the original one using a random factor sampled uniformly from the interval [0.
0, 1.0] per pixel. For 50% of all images, the blending happens channel-wise and the factor is sampled
independently per pixel and channel (per_channel=0.5). As a result, e.g. the red channel may look visibly
rotated (factor near 1.0), while the green and blue channels may not look rotated (factors near 0.0).

>>> aug = iaa.BlendAlphaElementwise(
>>> (0.0, 1.0),
>>> foreground=iaa.Add(100),
>>> background=iaa.Multiply(0.2))

Apply two branches of augmenters – A and B – independently to input images and alpha-blend the results of
these branches using a factor f. Branch A increases image pixel intensities by 100 and B multiplies the pixel

13.20. imgaug.augmenters.blend 583

imgaug Documentation, Release 0.3.0

intensities by 0.2. f is sampled uniformly from the interval [0.0, 1.0] per pixel. The resulting images
contain a bit of A and a bit of B.

>>> aug = iaa.BlendAlphaElementwise([0.25, 0.75], iaa.MedianBlur(13))

Apply median blur to each image and alpha-blend the result with the original image using an alpha factor of
either exactly 0.25 or exactly 0.75 (sampled once per pixel).

Attributes

factor

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) See get_children_lists().
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
Continued on next page

584 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 78 – continued from previous page
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

factor

class imgaug.augmenters.blend.BlendAlphaFrequencyNoise(exponent=(-4, 4),
foreground=None,
background=None,
per_channel=False,
size_px_max=(4, 16),
upscale_method=None,
iterations=(1, 3), aggre-
gation_method=[’avg’,
’max’], sigmoid=0.5,
sigmoid_thresh=None,
seed=None, name=None,
random_state=’deprecated’,
determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.blend.BlendAlphaElementwise

Alpha-blend two image sources using frequency noise masks.

The alpha masks are sampled using frequency noise of varying scales, which can sometimes create large con-
nected blobs of 1 s surrounded by 0 s and other times results in smaller patterns. If nearest neighbour upsampling
is used, these blobs can be rectangular with sharp edges.

Added in 0.4.0. (Before that named FrequencyNoiseAlpha.)

Supported dtypes:

See BlendAlphaElementwise.

Parameters

• exponent (number or tuple of number of list of number or im-
gaug.parameters.StochasticParameter, optional) – Exponent to use when scaling in
the frequency domain. Sane values are in the range -4 (large blobs) to 4 (small patterns).
To generate cloud-like structures, use roughly -2.

– If number, then that number will be used as the exponent for all iterations.

– If tuple of two numbers (a, b), then a value will be sampled per iteration from the
interval [a, b].

13.20. imgaug.augmenters.blend 585

imgaug Documentation, Release 0.3.0

– If a list of numbers, then a value will be picked per iteration at random from that list.

– If a StochasticParameter, then a value will be sampled from that parameter per
iteration.

• foreground (None or imgaug.augmenters.meta.Augmenter or iterable of im-
gaug.augmenters.meta.Augmenter, optional) – Augmenter(s) that make up the foreground
branch. High alpha values will show this branch’s results.

– If None, then the input images will be reused as the output of the foreground branch.

– If Augmenter, then that augmenter will be used as the branch.

– If iterable of Augmenter, then that iterable will be converted into a Sequential and
used as the augmenter.

• background (None or imgaug.augmenters.meta.Augmenter or iterable of im-
gaug.augmenters.meta.Augmenter, optional) – Augmenter(s) that make up the background
branch. Low alpha values will show this branch’s results.

– If None, then the input images will be reused as the output of the background branch.

– If Augmenter, then that augmenter will be used as the branch.

– If iterable of Augmenter, then that iterable will be converted into a Sequential and
used as the augmenter.

• per_channel (bool or float, optional) – Whether to use the same factor for all channels
(False) or to sample a new value for each channel (True). If this value is a float p, then
for p percent of all images per_channel will be treated as True, otherwise as False.

• size_px_max (int or tuple of int or list of int or imgaug.parameters.StochasticParameter,
optional) – The noise is generated in a low resolution environment. This parameter defines
the maximum size of that environment (in pixels). The environment is initialized at the same
size as the input image and then downscaled, so that no side exceeds size_px_max (aspect
ratio is kept).

– If int, then that number will be used as the size for all iterations.

– If tuple of two int s (a, b), then a value will be sampled per iteration from the discrete
interval [a..b].

– If a list of int s, then a value will be picked per iteration at random from that list.

– If a StochasticParameter, then a value will be sampled from that parameter per
iteration.

• upscale_method (None or imgaug.ALL or str or list of str or im-
gaug.parameters.StochasticParameter, optional) – After generating the noise maps in
low resolution environments, they have to be upscaled to the input image size. This
parameter controls the upscaling method.

– If None, then either nearest or linear or cubic is picked. Most weight is put on
linear, followed by cubic.

– If imgaug.ALL, then either nearest or linear or area or cubic is picked per
iteration (all same probability).

– If string, then that value will be used as the method (must be nearest or linear or
area or cubic).

– If list of string, then a random value will be picked from that list per iteration.

586 Chapter 13. API

imgaug Documentation, Release 0.3.0

– If StochasticParameter, then a random value will be sampled from that parameter
per iteration.

• iterations (int or tuple of int or list of int or imgaug.parameters.StochasticParameter, op-
tional) – How often to repeat the simplex noise generation process per image.

– If int, then that number will be used as the iterations for all images.

– If tuple of two int s (a, b), then a value will be sampled per image from the discrete
interval [a..b].

– If a list of int s, then a value will be picked per image at random from that list.

– If a StochasticParameter, then a value will be sampled from that parameter per
image.

• aggregation_method (imgaug.ALL or str or list of str or im-
gaug.parameters.StochasticParameter, optional) – The noise maps (from each iteration)
are combined to one noise map using an aggregation process. This parameter defines the
method used for that process. Valid methods are min, max or avg, where ‘min’ combines
the noise maps by taking the (elementwise) minimum over all iteration’s results, max the
(elementwise) maximum and avg the (elementwise) average.

– If imgaug.ALL, then a random value will be picked per image from the valid ones.

– If a string, then that value will always be used as the method.

– If a list of string, then a random value will be picked from that list per image.

– If a StochasticParameter, then a random value will be sampled from that param-
eter per image.

• sigmoid (bool or number, optional) – Whether to apply a sigmoid function to the final noise
maps, resulting in maps that have more extreme values (close to 0.0 or 1.0).

– If bool, then a sigmoid will always (True) or never (False) be applied.

– If a number p with 0<=p<=1, then a sigmoid will be applied to p percent of all final
noise maps.

• sigmoid_thresh (None or number or tuple of number or im-
gaug.parameters.StochasticParameter, optional) – Threshold of the sigmoid, when
applied. Thresholds above zero (e.g. 5.0) will move the saddle point towards the right,
leading to more values close to 0.0.

– If None, then Normal(0, 5.0) will be used.

– If number, then that threshold will be used for all images.

– If tuple of two numbers (a, b), then a random value will be sampled per image from
the range [a, b].

– If StochasticParameter, then a random value will be sampled from that parameter
per image.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage

13.20. imgaug.augmenters.blend 587

imgaug Documentation, Release 0.3.0

will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.BlendAlphaFrequencyNoise(foreground=iaa.EdgeDetect(1.0))

Detect per image all edges, mark them in a black and white image and then alpha-blend the result with the
original image using frequency noise masks.

>>> aug = iaa.BlendAlphaFrequencyNoise(
>>> foreground=iaa.EdgeDetect(1.0),
>>> upscale_method="nearest")

Same as the first example, but using only linear upscaling to scale the frequency noise masks to the final image
sizes, i.e. no nearest neighbour upsampling is used. This results in smooth edges.

>>> aug = iaa.BlendAlphaFrequencyNoise(
>>> foreground=iaa.EdgeDetect(1.0),
>>> upscale_method="linear")

Same as the first example, but using only linear upscaling to scale the frequency noise masks to the final image
sizes, i.e. no nearest neighbour upsampling is used. This results in smooth edges.

>>> aug = iaa.BlendAlphaFrequencyNoise(
>>> foreground=iaa.EdgeDetect(1.0),
>>> upscale_method="linear",
>>> exponent=-2,
>>> sigmoid=False)

Same as in the previous example, but with the exponent set to a constant -2 and the sigmoid deactivated,
resulting in cloud-like patterns without sharp edges.

>>> aug = iaa.BlendAlphaFrequencyNoise(
>>> foreground=iaa.EdgeDetect(1.0),
>>> sigmoid_thresh=iap.Normal(10.0, 5.0))

Same as the first example, but using a threshold for the sigmoid function that is further to the right. This is
more conservative, i.e. the generated noise masks will be mostly black (values around 0.0), which means that
most of the original images (parameter/branch background) will be kept, rather than using the results of the
augmentation (parameter/branch foreground).

Attributes

factor

Methods

__call__(self, *args, **kwargs) Alias for augment().
Continued on next page

588 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 79 – continued from previous page
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) See get_children_lists().
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

13.20. imgaug.augmenters.blend 589

imgaug Documentation, Release 0.3.0

class imgaug.augmenters.blend.BlendAlphaHorizontalLinearGradient(foreground=None,
back-
ground=None,
min_value=(0.0,
0.2),
max_value=(0.8,
1.0),
start_at=(0.0,
0.2),
end_at=(0.8,
1.0),
seed=None,
name=None,
ran-
dom_state=’deprecated’,
determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.blend.BlendAlphaMask

Blend images from two branches along a horizontal linear gradient.

This class generates a horizontal linear gradient mask (i.e. usually a mask with low values on the left and high
values on the right) and alphas-blends between foreground and background branch using that mask.

This class is a thin wrapper around BlendAlphaMask together with
HorizontalLinearGradientMaskGen.

Note: Avoid using augmenters as children that affect pixel locations (e.g. horizontal flips). See
BlendAlphaMask for details.

Added in 0.4.0.

Supported dtypes:

See BlendAlphaMask.

Parameters

• foreground (None or imgaug.augmenters.meta.Augmenter or iterable of im-
gaug.augmenters.meta.Augmenter, optional) – Augmenter(s) that make up the foreground
branch. High alpha values will show this branch’s results.

– If None, then the input images will be reused as the output of the foreground branch.

– If Augmenter, then that augmenter will be used as the branch.

– If iterable of Augmenter, then that iterable will be converted into a Sequential and
used as the augmenter.

• background (None or imgaug.augmenters.meta.Augmenter or iterable of im-
gaug.augmenters.meta.Augmenter, optional) – Augmenter(s) that make up the background
branch. Low alpha values will show this branch’s results.

– If None, then the input images will be reused as the output of the background branch.

– If Augmenter, then that augmenter will be used as the branch.

– If iterable of Augmenter, then that iterable will be converted into a Sequential and
used as the augmenter.

590 Chapter 13. API

imgaug Documentation, Release 0.3.0

• min_value (number or tuple of number or list of num-
ber or imgaug.parameters.StochasticParameter, optional) – See
HorizontalLinearGradientMaskGen.

• max_value (number or tuple of number or list of num-
ber or imgaug.parameters.StochasticParameter, optional) – See
HorizontalLinearGradientMaskGen.

• start_at (number or tuple of number or list of num-
ber or imgaug.parameters.StochasticParameter, optional) – See
HorizontalLinearGradientMaskGen.

• end_at (number or tuple of number or list of num-
ber or imgaug.parameters.StochasticParameter, optional) – See
HorizontalLinearGradientMaskGen.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.BlendAlphaHorizontalLinearGradient(iaa.AddToHue((-100, 100)))

Create an augmenter that randomizes the hue towards the right of the image.

>>> aug = iaa.BlendAlphaHorizontalLinearGradient(
>>> iaa.TotalDropout(1.0),
>>> min_value=0.2, max_value=0.8)

Create an augmenter that replaces pixels towards the right with darker and darker values. However it always
keeps at least 20% (1.0 - max_value) of the original pixel value on the far right and always replaces at
least 20% on the far left (min_value=0.2).

>>> aug = iaa.BlendAlphaHorizontalLinearGradient(
>>> iaa.AveragePooling(11),
>>> start_at=(0.0, 1.0), end_at=(0.0, 1.0))

Create an augmenter that blends with an average-pooled image according to a horizontal gradient that starts at
a random x-coordinate and reaches its maximum at another random x-coordinate. Due to that randomness, the
gradient may increase towards the left or right.

13.20. imgaug.augmenters.blend 591

imgaug Documentation, Release 0.3.0

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) See get_children_lists().
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.

Continued on next page

592 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 80 – continued from previous page
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.blend.BlendAlphaMask(mask_generator, foreground=None, back-
ground=None, seed=None, name=None,
random_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.meta.Augmenter

Alpha-blend two image sources using non-binary masks generated per image.

This augmenter queries for each image a mask generator to generate a (H,W) or (H,W,C) channelwise mask
[0.0, 1.0], where H is the image height and W the width. The mask will then be used to alpha-blend
pixel- and possibly channel-wise between a foreground branch of augmenters and a background branch. (Both
branches default to the identity operation if not provided.)

See also BlendAlpha.

Note: It is not recommended to use BlendAlphaMask with augmenters that change the geometry of images
(e.g. horizontal flips, affine transformations) if you also want to augment coordinates (e.g. keypoints, polygons,
. . .), as it is unclear which of the two coordinate results (foreground or background branch) should be used as
the final output coordinates after augmentation.

Currently, for keypoints the results of the foreground and background branch will be mixed. That means that
for each coordinate the augmented result will be picked from the foreground or background branch based on the
average alpha mask value at the corresponding spatial location.

For bounding boxes, line strings and polygons, either all objects (on an image) of the foreground or all of the
background branch will be used, based on the average over the whole alpha mask.

Added in 0.4.0.

Supported dtypes:

See blend_alpha().

Parameters

• mask_generator (IBatchwiseMaskGenerator) – A generator that will be queried per image
to generate a mask.

• foreground (None or imgaug.augmenters.meta.Augmenter or iterable of im-
gaug.augmenters.meta.Augmenter, optional) – Augmenter(s) that make up the foreground
branch. High alpha values will show this branch’s results.

– If None, then the input images will be reused as the output of the foreground branch (i.e.
identity function).

– If Augmenter, then that augmenter will be used as the branch.

– If iterable of Augmenter, then that iterable will be converted into a Sequential and
used as the augmenter.

• background (None or imgaug.augmenters.meta.Augmenter or iterable of im-
gaug.augmenters.meta.Augmenter, optional) – Augmenter(s) that make up the background
branch. Low alpha values will show this branch’s results.

13.20. imgaug.augmenters.blend 593

imgaug Documentation, Release 0.3.0

– If None, then the input images will be reused as the output of the background branch (i.e.
identity function).

– If Augmenter, then that augmenter will be used as the branch.

– If iterable of Augmenter, then that iterable will be converted into a Sequential and
used as the augmenter.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.BlendAlphaMask(
>>> iaa.InvertMaskGen(0.5, iaa.VerticalLinearGradientMaskGen()),
>>> iaa.Sequential([
>>> iaa.Clouds(),
>>> iaa.WithChannels([1, 2], iaa.Multiply(0.5))
>>>])
>>>)

Create an augmenter that sometimes adds clouds at the bottom and sometimes at the top of the image.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

Continued on next page

594 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 81 – continued from previous page
augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) See get_children_lists().
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

get_children_lists(self)
See get_children_lists().

get_parameters(self)
See get_parameters().

class imgaug.augmenters.blend.BlendAlphaRegularGrid(nb_rows, nb_cols, fore-
ground=None, back-
ground=None, alpha=[0.0,
1.0], seed=None, name=None,
random_state=’deprecated’,
deterministic=’deprecated’)

Bases: imgaug.augmenters.blend.BlendAlphaMask

Blend images from two branches according to a regular grid.

13.20. imgaug.augmenters.blend 595

imgaug Documentation, Release 0.3.0

This class generates for each image a mask that splits the image into a grid-like pattern of H rows and W columns.
Each cell is then filled with an alpha value, sampled randomly per cell.

The difference to AlphaBlendCheckerboard is that this class samples random alpha values per grid cell,
while in the checkerboard the alpha values follow a fixed pattern.

This class is a thin wrapper around BlendAlphaMask together with RegularGridMaskGen.

Note: Avoid using augmenters as children that affect pixel locations (e.g. horizontal flips). See
BlendAlphaMask for details.

Added in 0.4.0.

Supported dtypes:

See BlendAlphaMask.

Parameters

• nb_rows (int or tuple of int or list of int or imgaug.parameters.StochasticParameter) –
Number of rows of the checkerboard. See CheckerboardMaskGen for details.

• nb_cols (int or tuple of int or list of int or imgaug.parameters.StochasticParameter)
– Number of columns of the checkerboard. Analogous to nb_rows. See
CheckerboardMaskGen for details.

• foreground (None or imgaug.augmenters.meta.Augmenter or iterable of im-
gaug.augmenters.meta.Augmenter, optional) – Augmenter(s) that make up the foreground
branch. High alpha values will show this branch’s results.

– If None, then the input images will be reused as the output of the foreground branch.

– If Augmenter, then that augmenter will be used as the branch.

– If iterable of Augmenter, then that iterable will be converted into a Sequential and
used as the augmenter.

• background (None or imgaug.augmenters.meta.Augmenter or iterable of im-
gaug.augmenters.meta.Augmenter, optional) – Augmenter(s) that make up the background
branch. Low alpha values will show this branch’s results.

– If None, then the input images will be reused as the output of the background branch.

– If Augmenter, then that augmenter will be used as the branch.

– If iterable of Augmenter, then that iterable will be converted into a Sequential and
used as the augmenter.

• alpha (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Alpha value of each cell.

– If number: Exactly that value will be used for all images.

– If tuple (a, b): A random value will be uniformly sampled per image from the
interval [a, b].

– If list: A random value will be picked per image from that list.

– If StochasticParameter: That parameter will be queried once per batch for (N,)
values – one per image.

596 Chapter 13. API

imgaug Documentation, Release 0.3.0

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.BlendAlphaRegularGrid(nb_rows=(4, 6), nb_cols=(1, 4),
>>> foreground=iaa.Multiply(0.0))

Create an augmenter that places a HxW grid on each image, where H (rows) is randomly and uniformly sampled
from the interval [4, 6] and W is analogously sampled from the interval [1, 4]. Roughly half of the cells
in the grid are filled with 0.0, the remaining ones are unaltered. Which cells exactly are “dropped” is randomly
decided per image. The resulting effect is similar to CoarseDropout.

>>> aug = iaa.BlendAlphaRegularGrid(nb_rows=2, nb_cols=2,
>>> foreground=iaa.Multiply(0.0),
>>> background=iaa.AveragePooling(8),
>>> alpha=[0.0, 0.0, 1.0])

Create an augmenter that always placed 2x2 cells on each image and sets about 1/3 of them to zero (foreground
branch) and the remaining 2/3 to a pixelated version (background branch).

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

Continued on next page

13.20. imgaug.augmenters.blend 597

imgaug Documentation, Release 0.3.0

Table 82 – continued from previous page
augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) See get_children_lists().
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.blend.BlendAlphaSegMapClassIds(class_ids, fore-
ground=None, back-
ground=None,
nb_sample_classes=None,
seed=None, name=None,
random_state=’deprecated’,
determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.blend.BlendAlphaMask

Blend images from two branches based on segmentation map ids.

This class generates masks that are 1.0 at pixel locations covered by specific classes in segmentation maps.

This class is a thin wrapper around BlendAlphaMask together with SegMapClassIdsMaskGen.

598 Chapter 13. API

imgaug Documentation, Release 0.3.0

Note: Avoid using augmenters as children that affect pixel locations (e.g. horizontal flips). See
BlendAlphaMask for details.

Note: Segmentation maps can have multiple channels. If that is the case then for each position (x, y) it is
sufficient that any class id in any channel matches one of the desired class ids.

Note: This class will produce an AssertionError if there are no segmentation maps in a batch.

Added in 0.4.0.

Supported dtypes:

See BlendAlphaMask.

Parameters

• class_ids (int or tuple of int or list of int or imgaug.parameters.StochasticParameter) – See
SegMapClassIdsMaskGen.

• foreground (None or imgaug.augmenters.meta.Augmenter or iterable of im-
gaug.augmenters.meta.Augmenter, optional) – Augmenter(s) that make up the foreground
branch. High alpha values will show this branch’s results.

– If None, then the input images will be reused as the output of the foreground branch.

– If Augmenter, then that augmenter will be used as the branch.

– If iterable of Augmenter, then that iterable will be converted into a Sequential and
used as the augmenter.

• background (None or imgaug.augmenters.meta.Augmenter or iterable of im-
gaug.augmenters.meta.Augmenter, optional) – Augmenter(s) that make up the background
branch. Low alpha values will show this branch’s results.

– If None, then the input images will be reused as the output of the background branch.

– If Augmenter, then that augmenter will be used as the branch.

– If iterable of Augmenter, then that iterable will be converted into a Sequential and
used as the augmenter.

• nb_sample_classes (None or tuple of int or list of int or im-
gaug.parameters.StochasticParameter, optional) – See SegMapClassIdsMaskGen.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

13.20. imgaug.augmenters.blend 599

imgaug Documentation, Release 0.3.0

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.BlendAlphaSegMapClassIds(
>>> [1, 3],
>>> foreground=iaa.AddToHue((-100, 100)))

Create an augmenter that randomizes the hue wherever the segmentation maps contain the classes 1 or 3.

>>> aug = iaa.BlendAlphaSegMapClassIds(
>>> [1, 2, 3, 4],
>>> nb_sample_classes=2,
>>> foreground=iaa.GaussianBlur(3.0))

Create an augmenter that randomly picks 2 classes from the list [1, 2, 3, 4] and blurs the image content
wherever these classes appear in the segmentation map. Note that as the sampling of class ids happens with
replacement, it is not guaranteed to sample two unique class ids.

>>> aug = iaa.Sometimes(0.2,
>>> iaa.BlendAlphaSegMapClassIds(
>>> 2,
>>> background=iaa.TotalDropout(1.0)))

Create an augmenter that zeros for roughly every fifth image all image pixels that do not belong to class id
2 (note that the background branch was used, not the foreground branch). Example use case: Human body
landmark detection where both the landmarks/keypoints and the body segmentation map are known. Train the
model to detect landmarks and sometimes remove all non-body information to force the model to become more
independent of the background.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

Continued on next page

600 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 83 – continued from previous page
augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) See get_children_lists().
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.blend.BlendAlphaSimplexNoise(foreground=None,
background=None,
per_channel=False,
size_px_max=(2, 16), up-
scale_method=None, it-
erations=(1, 3), aggre-
gation_method=’max’,
sigmoid=True, sig-
moid_thresh=None,
seed=None, name=None,
random_state=’deprecated’,
deterministic=’deprecated’)

Bases: imgaug.augmenters.blend.BlendAlphaElementwise

Alpha-blend two image sources using simplex noise alpha masks.

The alpha masks are sampled using a simplex noise method, roughly creating connected blobs of 1s surrounded

13.20. imgaug.augmenters.blend 601

imgaug Documentation, Release 0.3.0

by 0s. If nearest neighbour upsampling is used, these blobs can be rectangular with sharp edges.

Added in 0.4.0. (Before that named SimplexNoiseAlpha.)

Supported dtypes:

See BlendAlphaElementwise.

Parameters

• foreground (None or imgaug.augmenters.meta.Augmenter or iterable of im-
gaug.augmenters.meta.Augmenter, optional) – Augmenter(s) that make up the foreground
branch. High alpha values will show this branch’s results.

– If None, then the input images will be reused as the output of the foreground branch.

– If Augmenter, then that augmenter will be used as the branch.

– If iterable of Augmenter, then that iterable will be converted into a Sequential and
used as the augmenter.

• background (None or imgaug.augmenters.meta.Augmenter or iterable of im-
gaug.augmenters.meta.Augmenter, optional) – Augmenter(s) that make up the background
branch. Low alpha values will show this branch’s results.

– If None, then the input images will be reused as the output of the background branch.

– If Augmenter, then that augmenter will be used as the branch.

– If iterable of Augmenter, then that iterable will be converted into a Sequential and
used as the augmenter.

• per_channel (bool or float, optional) – Whether to use the same factor for all channels
(False) or to sample a new value for each channel (True). If this value is a float p, then
for p percent of all images per_channel will be treated as True, otherwise as False.

• size_px_max (int or tuple of int or list of int or imgaug.parameters.StochasticParameter,
optional) – The simplex noise is always generated in a low resolution environment. This
parameter defines the maximum size of that environment (in pixels). The environment is
initialized at the same size as the input image and then downscaled, so that no side exceeds
size_px_max (aspect ratio is kept).

– If int, then that number will be used as the size for all iterations.

– If tuple of two int s (a, b), then a value will be sampled per iteration from the discrete
interval [a..b].

– If a list of int s, then a value will be picked per iteration at random from that list.

– If a StochasticParameter, then a value will be sampled from that parameter per
iteration.

• upscale_method (None or imgaug.ALL or str or list of str or im-
gaug.parameters.StochasticParameter, optional) – After generating the noise maps in
low resolution environments, they have to be upscaled to the input image size. This
parameter controls the upscaling method.

– If None, then either nearest or linear or cubic is picked. Most weight is put on
linear, followed by cubic.

– If imgaug.ALL, then either nearest or linear or area or cubic is picked per
iteration (all same probability).

– If a string, then that value will be used as the method (must be nearest or linear or
area or cubic).

602 Chapter 13. API

imgaug Documentation, Release 0.3.0

– If list of string, then a random value will be picked from that list per iteration.

– If StochasticParameter, then a random value will be sampled from that parameter
per iteration.

• iterations (int or tuple of int or list of int or imgaug.parameters.StochasticParameter, op-
tional) –

How often to repeat the simplex noise generation process per image.

– If int, then that number will be used as the iterations for all images.

– If tuple of two int s (a, b), then a value will be sampled per image from the discrete
interval [a..b].

– If a list of int s, then a value will be picked per image at random from that list.

– If a StochasticParameter, then a value will be sampled from that parameter per
image.

• aggregation_method (imgaug.ALL or str or list of str or im-
gaug.parameters.StochasticParameter, optional) – The noise maps (from each iteration)
are combined to one noise map using an aggregation process. This parameter defines the
method used for that process. Valid methods are min, max or avg, where min combines
the noise maps by taking the (elementwise) minimum over all iteration’s results, max the
(elementwise) maximum and avg the (elementwise) average.

– If imgaug.ALL, then a random value will be picked per image from the valid ones.

– If a string, then that value will always be used as the method.

– If a list of string, then a random value will be picked from that list per image.

– If a StochasticParameter, then a random value will be sampled from that paramter
per image.

• sigmoid (bool or number, optional) – Whether to apply a sigmoid function to the final noise
maps, resulting in maps that have more extreme values (close to 0.0 or 1.0).

– If bool, then a sigmoid will always (True) or never (False) be applied.

– If a number p with 0<=p<=1, then a sigmoid will be applied to p percent of all final
noise maps.

• sigmoid_thresh (None or number or tuple of number or im-
gaug.parameters.StochasticParameter, optional) – Threshold of the sigmoid, when
applied. Thresholds above zero (e.g. 5.0) will move the saddle point towards the right,
leading to more values close to 0.0.

– If None, then Normal(0, 5.0) will be used.

– If number, then that threshold will be used for all images.

– If tuple of two numbers (a, b), then a random value will be sampled per image from
the interval [a, b].

– If StochasticParameter, then a random value will be sampled from that parameter
per image.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

13.20. imgaug.augmenters.blend 603

imgaug Documentation, Release 0.3.0

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.BlendAlphaSimplexNoise(iaa.EdgeDetect(1.0))

Detect per image all edges, mark them in a black and white image and then alpha-blend the result with the
original image using simplex noise masks.

>>> aug = iaa.BlendAlphaSimplexNoise(
>>> iaa.EdgeDetect(1.0),
>>> upscale_method="nearest")

Same as in the previous example, but using only nearest neighbour upscaling to scale the simplex noise masks
to the final image sizes, i.e. no nearest linear upsampling is used. This leads to rectangles with sharp edges.

>>> aug = iaa.BlendAlphaSimplexNoise(
>>> iaa.EdgeDetect(1.0),
>>> upscale_method="linear")

Same as in the previous example, but using only linear upscaling to scale the simplex noise masks to the final
image sizes, i.e. no nearest neighbour upsampling is used. This leads to rectangles with smooth edges.

>>> aug = iaa.BlendAlphaSimplexNoise(
>>> iaa.EdgeDetect(1.0),
>>> sigmoid_thresh=iap.Normal(10.0, 5.0))

Same as in the first example, but using a threshold for the sigmoid function that is further to the right. This
is more conservative, i.e. the generated noise masks will be mostly black (values around 0.0), which means
that most of the original images (parameter/branch background) will be kept, rather than using the results of the
augmentation (parameter/branch foreground).

Attributes

factor

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.

Continued on next page

604 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 84 – continued from previous page
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) See get_children_lists().
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

13.20. imgaug.augmenters.blend 605

imgaug Documentation, Release 0.3.0

class imgaug.augmenters.blend.BlendAlphaSomeColors(foreground=None, back-
ground=None, nb_bins=(5,
15), smoothness=(0.1, 0.3), al-
pha=[0.0, 1.0], rotation_deg=(0,
360), from_colorspace=’RGB’,
seed=None, name=None, ran-
dom_state=’deprecated’, deter-
ministic=’deprecated’)

Bases: imgaug.augmenters.blend.BlendAlphaMask

Blend images from two branches using colorwise masks.

This class generates masks that “mark” a few colors and replace the pixels within these colors with the results of
the foreground branch. The remaining pixels are replaced with the results of the background branch (usually the
identity function). That allows to e.g. selectively grayscale a few colors, while keeping other colors unchanged.

This class is a thin wrapper around BlendAlphaMask together with SomeColorsMaskGen.

Note: The underlying mask generator will produce an AssertionError for batches that contain no images.

Note: Avoid using augmenters as children that affect pixel locations (e.g. horizontal flips). See
BlendAlphaMask for details.

Added in 0.4.0.

Supported dtypes:

See change_colorspaces_().

Parameters

• foreground (None or imgaug.augmenters.meta.Augmenter or iterable of im-
gaug.augmenters.meta.Augmenter, optional) – Augmenter(s) that make up the foreground
branch. High alpha values will show this branch’s results.

– If None, then the input images will be reused as the output of the foreground branch.

– If Augmenter, then that augmenter will be used as the branch.

– If iterable of Augmenter, then that iterable will be converted into a Sequential and
used as the augmenter.

• background (None or imgaug.augmenters.meta.Augmenter or iterable of im-
gaug.augmenters.meta.Augmenter, optional) – Augmenter(s) that make up the background
branch. Low alpha values will show this branch’s results.

– If None, then the input images will be reused as the output of the background branch.

– If Augmenter, then that augmenter will be used as the branch.

– If iterable of Augmenter, then that iterable will be converted into a Sequential and
used as the augmenter.

• nb_bins (int or tuple of int or list of int or imgaug.parameters.StochasticParameter, op-
tional) – See SomeColorsMaskGen.

• smoothness (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – See SomeColorsMaskGen.

606 Chapter 13. API

imgaug Documentation, Release 0.3.0

• alpha (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – See SomeColorsMaskGen.

• rotation_deg (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – See SomeColorsMaskGen.

• from_colorspace (str, optional) – See SomeColorsMaskGen.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.BlendAlphaSomeColors(iaa.Grayscale(1.0))

Create an augmenter that turns randomly removes some colors in images by grayscaling them.

>>> aug = iaa.BlendAlphaSomeColors(iaa.TotalDropout(1.0))

Create an augmenter that removes some colors in images by replacing them with black pixels.

>>> aug = iaa.BlendAlphaSomeColors(
>>> iaa.MultiplySaturation(0.5), iaa.MultiplySaturation(1.5))

Create an augmenter that desaturates some colors and increases the saturation of the remaining ones.

>>> aug = iaa.BlendAlphaSomeColors(
>>> iaa.AveragePooling(7), alpha=[0.0, 1.0], smoothness=0.0)

Create an augmenter that applies average pooling to some colors. Each color tune is either selected (alpha of
1.0) or not selected (0.0). There is no gradual change between similar colors.

>>> aug = iaa.BlendAlphaSomeColors(
>>> iaa.AveragePooling(7), nb_bins=2, smoothness=0.0)

Create an augmenter that applies average pooling to some colors. Choose on average half of all colors in images
for the blending operation.

>>> aug = iaa.BlendAlphaSomeColors(
>>> iaa.AveragePooling(7), from_colorspace="BGR")

Create an augmenter that applies average pooling to some colors with input images being in BGR colorspace.

13.20. imgaug.augmenters.blend 607

imgaug Documentation, Release 0.3.0

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) See get_children_lists().
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.

Continued on next page

608 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 85 – continued from previous page
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.blend.BlendAlphaVerticalLinearGradient(foreground=None,
back-
ground=None,
min_value=(0.0,
0.2),
max_value=(0.8,
1.0),
start_at=(0.0,
0.2),
end_at=(0.8,
1.0),
seed=None,
name=None,
ran-
dom_state=’deprecated’,
determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.blend.BlendAlphaMask

Blend images from two branches along a vertical linear gradient.

This class generates a vertical linear gradient mask (i.e. usually a mask with low values on the left and high
values on the right) and alphas-blends between foreground and background branch using that mask.

This class is a thin wrapper around BlendAlphaMask together with
VerticalLinearGradientMaskGen.

Note: Avoid using augmenters as children that affect pixel locations (e.g. horizontal flips). See
BlendAlphaMask for details.

Added in 0.4.0.

Supported dtypes:

See BlendAlphaMask.

Parameters

• foreground (None or imgaug.augmenters.meta.Augmenter or iterable of im-
gaug.augmenters.meta.Augmenter, optional) – Augmenter(s) that make up the foreground
branch. High alpha values will show this branch’s results.

– If None, then the input images will be reused as the output of the foreground branch.

– If Augmenter, then that augmenter will be used as the branch.

– If iterable of Augmenter, then that iterable will be converted into a Sequential and
used as the augmenter.

• background (None or imgaug.augmenters.meta.Augmenter or iterable of im-
gaug.augmenters.meta.Augmenter, optional) – Augmenter(s) that make up the background
branch. Low alpha values will show this branch’s results.

13.20. imgaug.augmenters.blend 609

imgaug Documentation, Release 0.3.0

– If None, then the input images will be reused as the output of the background branch.

– If Augmenter, then that augmenter will be used as the branch.

– If iterable of Augmenter, then that iterable will be converted into a Sequential and
used as the augmenter.

• min_value (number or tuple of number or list of num-
ber or imgaug.parameters.StochasticParameter, optional) – See
VerticalLinearGradientMaskGen.

• max_value (number or tuple of number or list of num-
ber or imgaug.parameters.StochasticParameter, optional) – See
VerticalLinearGradientMaskGen.

• start_at (number or tuple of number or list of num-
ber or imgaug.parameters.StochasticParameter, optional) – See
VerticalLinearGradientMaskGen.

• end_at (number or tuple of number or list of num-
ber or imgaug.parameters.StochasticParameter, optional) – See
VerticalLinearGradientMaskGen.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.BlendAlphaVerticalLinearGradient(iaa.AddToHue((-100, 100)))

Create an augmenter that randomizes the hue towards the bottom of the image.

>>> aug = iaa.BlendAlphaVerticalLinearGradient(
>>> iaa.TotalDropout(1.0),
>>> min_value=0.2, max_value=0.8)

Create an augmenter that replaces pixels towards the bottom with darker and darker values. However it always
keeps at least 20% (1.0 - max_value) of the original pixel value on the far bottom and always replaces at
least 20% on the far top (min_value=0.2).

>>> aug = iaa.BlendAlphaVerticalLinearGradient(
>>> iaa.AveragePooling(11),
>>> start_at=(0.0, 1.0), end_at=(0.0, 1.0))

610 Chapter 13. API

imgaug Documentation, Release 0.3.0

Create an augmenter that blends with an average-pooled image according to a vertical gradient that starts at a
random y-coordinate and reaches its maximum at another random y-coordinate. Due to that randomness, the
gradient may increase towards the bottom or top.

>>> aug = iaa.BlendAlphaVerticalLinearGradient(
>>> iaa.Clouds(),
>>> start_at=(0.15, 0.35), end_at=0.0)

Create an augmenter that draws clouds in roughly the top quarter of the image.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) See get_children_lists().
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
Continued on next page

13.20. imgaug.augmenters.blend 611

imgaug Documentation, Release 0.3.0

Table 86 – continued from previous page
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.blend.BoundingBoxesMaskGen(labels=None,
nb_sample_labels=None)

Bases: imgaug.augmenters.blend.IBatchwiseMaskGenerator

Generator that produces masks highlighting bounding boxes.

This class produces for each row (i.e. image + bounding boxes) in a batch a mask in which the inner areas
of bounding box rectangles with given labels are marked (i.e. set to 1.0). The labels may be provided as a
fixed list of strings or a stochastic parameter from which labels will be sampled. If no labels are provided, all
bounding boxes will be marked.

A pixel will be set to 1.0 if at least one bounding box at that location has one of the requested labels, even if
there is also one bounding box at that location with a not requested label.

Note: This class will produce an AssertionError if there are no bounding boxes in a batch.

Added in 0.4.0.

Parameters

• labels (None or str or list of str or imgaug.parameters.StochasticParameter) – Labels of
bounding boxes to select for.

If nb_sample_labels is None then this is expected to be either also None (select all BBs) or
a single str (select BBs with this one label) or a list of str s (always select BBs with
these labels).

If nb_sample_labels is set, then this parameter will be treated as a stochastic parameter with
the following valid types:

– If None: Ignore the sampling count and always use all bounding boxes.

– If str: Exactly that label will be used for all images.

– If list of str: N random values will be picked per image from that list and used as the
labels.

– If StochasticParameter: That parameter will be queried once per batch for
(sum(N),) values.

N denotes the number of labels to sample per segmentation map (derived from
nb_sample_labels) and sum(N) denotes the sum of N s over all images.

612 Chapter 13. API

imgaug Documentation, Release 0.3.0

• nb_sample_labels (None or tuple of int or list of int or im-
gaug.parameters.StochasticParameter, optional) – Number of labels to sample (with
replacement) per image. As sampling happens with replacement, fewer unique labels may
be sampled.

– If None: labels is expected to also be None or a fixed value of labels to be used for all
images.

– If int: Exactly that many labels will be sampled for all images.

– If tuple (a, b): A random value will be uniformly sampled per image from the
discrete interval [a..b].

– If list: A random value will be picked per image from that list.

– If StochasticParameter: That parameter will be queried once per batch for (B,)
values, where B is the number of images.

Methods

draw_masks(self, batch[, random_state]) See draw_masks().
generate_mask(bbsoi, labels) Generate a mask of the areas of bounding boxes with

given labels.

draw_masks(self, batch, random_state=None)
See draw_masks().

Added in 0.4.0.

classmethod generate_mask(bbsoi, labels)
Generate a mask of the areas of bounding boxes with given labels.

Added in 0.4.0.

Parameters

• bbsoi (imgaug.augmentables.bbs.BoundingBoxesOnImage) – The bounding boxes for
which to generate the mask.

• labels (None or iterable of str) – Labels of the bounding boxes to set to 1.0. For an (x,
y) position, it is enough that any bounding box at the given location has one of the labels.
If this is None, all bounding boxes will be marked.

Returns float32 mask array with same height and width as segmap.shape. Values are in
[0.0, 1.0].

Return type ndarray

class imgaug.augmenters.blend.CheckerboardMaskGen(nb_rows, nb_cols)
Bases: imgaug.augmenters.blend.IBatchwiseMaskGenerator

Generate masks following a checkerboard-like pattern.

This mask generator splits each image into a regular grid of H rows and W columns. Each cell is then filled with
either 1.0 or 0.0. The cell at the top-left is always 1.0. Its right and bottom neighbour cells are 0.0. The
4-neighbours of any cell always have a value opposite to the cell’s value (0.0 vs. 1.0).

Added in 0.4.0.

Parameters

13.20. imgaug.augmenters.blend 613

imgaug Documentation, Release 0.3.0

• nb_rows (int or tuple of int or list of int or imgaug.parameters.StochasticParameter, op-
tional) –

Number of rows of the checkerboard.

– If int: Exactly that value will be used for all images.

– If tuple (a, b): A random value will be uniformly sampled per image from the
discrete interval [a..b].

– If list: A random value will be picked per image from that list.

– If StochasticParameter: That parameter will be queried once per batch for (N,)
values – one per image.

• nb_cols (int or tuple of int or list of int or imgaug.parameters.StochasticParameter, op-
tional) – Number of columns of the checkerboard. Analogous to nb_rows.

Attributes

nb_cols Get the number of columns of the checkerboard grid.

nb_rows Get the number of rows of the checkerboard grid.

Methods

draw_masks(self, batch[, random_state]) See draw_masks().
generate_mask(shape, nb_rows, nb_cols) Generate a mask following a checkerboard pattern.

draw_masks(self, batch, random_state=None)
See draw_masks().

Added in 0.4.0.

classmethod generate_mask(shape, nb_rows, nb_cols)
Generate a mask following a checkerboard pattern.

Added in 0.4.0.

Parameters

• shape (tuple of int) – Height and width of the output mask.

• nb_rows (int) – Number of rows of the checkerboard pattern.

• nb_cols (int) – Number of columns of the checkerboard pattern.

Returns float32 mask array with same height and width as segmap.shape. Values are in
[0.0, 1.0].

Return type ndarray

nb_cols
Get the number of columns of the checkerboard grid.

Added in 0.4.0.

Returns The number of columns.

Return type int

nb_rows
Get the number of rows of the checkerboard grid.

614 Chapter 13. API

imgaug Documentation, Release 0.3.0

Added in 0.4.0.

Returns The number of rows.

Return type int

imgaug.augmenters.blend.FrequencyNoiseAlpha(exponent=(-4, 4), first=None, second=None,
per_channel=False, size_px_max=(4, 16),
upscale_method=None, iterations=(1,
3), aggregation_method=[’avg’, ’max’],
sigmoid=0.5, sigmoid_thresh=None,
seed=None, name=None, ran-
dom_state=’deprecated’, determinis-
tic=’deprecated’)

Deprecated. Use BlendAlphaFrequencyNoise instead. FrequencyNoiseAlpha is deprecated. Use
BlendAlphaFrequencyNoise instead. The order of parameters is the same. Parameter ‘first’ was renamed to
‘foreground’. Parameter ‘second’ was renamed to ‘background’.

See BlendAlphaFrequencyNoise.

Deprecated since 0.4.0.

class imgaug.augmenters.blend.HorizontalLinearGradientMaskGen(min_value=(0.0,
0.2),
max_value=(0.8,
1.0),
start_at=(0.0,
0.2), end_at=(0.8,
1.0))

Bases: imgaug.augmenters.blend._LinearGradientMaskGen

Generator that produces horizontal linear gradient masks.

This class receives batches and produces for each row (i.e. image) a horizontal linear gradient that matches the
row’s shape (i.e. image shape). The gradient increases linearly from a minimum value to a maximum value
along the x-axis. The start and end points (i.e. where the minimum value starts to increase and where it reaches
the maximum) may be defines as fractions of the width. E.g. for width 100 and start=0.25, end=0.75, the
gradient would have its minimum in interval [0px, 25px] and its maximum in interval [75px, 100px].

Note that this has nothing to do with a derivative along the x-axis.

Added in 0.4.0.

Parameters

• min_value (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Minimum value that the mask will
have up to the start point of the linear gradient. Note that min_value is allowed to be larger
than max_value, in which case the gradient will start at the (higher) min_value and decrease
towards the (lower) max_value.

– If number: Exactly that value will be used for all images.

– If tuple (a, b): A random value will be uniformly sampled per image from the
interval [a, b].

– If list: A random value will be picked per image from that list.

– If StochasticParameter: That parameter will be queried once per batch for (N,)
values – one per image.

13.20. imgaug.augmenters.blend 615

imgaug Documentation, Release 0.3.0

• max_value (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Maximum value that the mask will
have at the end of the linear gradient.

Datatypes are analogous to min_value.

• start_at (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Position on the x-axis where the
linear gradient starts, given as a fraction of the axis size. Interval is [0.0, 1.0], where
0.0 is at the left of the image. If end_at < start_at the gradient will be inverted.

Datatypes are analogous to min_value.

• end_at (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Position on the x-axis where the
linear gradient ends, given as a fraction of the axis size. Interval is [0.0, 1.0], where
0.0 is at the right of the image.

Datatypes are analogous to min_value.

Methods

draw_masks(self, batch[, random_state]) See draw_masks().
generate_mask(shape, min_value, max_value,
. . .)

Generate a linear horizontal gradient mask.

classmethod generate_mask(shape, min_value, max_value, start_at, end_at)
Generate a linear horizontal gradient mask.

Added in 0.4.0.

Parameters

• shape (tuple of int) – Shape of the image. The mask will have the same height and width.

• min_value (number) – Minimum value of the gradient in interval [0.0, 1.0].

• max_value (number) – Maximum value of the gradient in interval [0.0, 1.0].

• start_at (number) – Position on the x-axis where the linear gradient starts, given as a
fraction of the axis size. Interval is [0.0, 1.0].

• end_at (number) – Position on the x-axis where the linear gradient ends, given as a fraction
of the axis size. Interval is [0.0, 1.0].

Returns float32 mask array with same height and width as the image. Values are in [0.0,
1.0].

Return type ndarray

class imgaug.augmenters.blend.IBatchwiseMaskGenerator
Bases: object

Interface for classes generating masks for batches.

Child classes are supposed to receive a batch and generate an iterable of masks, one per row (i.e. image),
matching the row shape (i.e. image shape). This is used in BlendAlphaMask.

Added in 0.4.0.

616 Chapter 13. API

imgaug Documentation, Release 0.3.0

Methods

draw_masks(self, batch[, random_state]) Generate a mask with given shape.

draw_masks(self, batch, random_state=None)
Generate a mask with given shape.

Parameters

• batch (imgaug.augmentables.batches._BatchInAugmentation) – Shape of the mask to
sample.

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – A seed or random number generator to
use during the sampling process. If None, the global RNG will be used. See also
__init__() for a similar parameter with more details.

Returns Masks, one per row in the batch. Each mask must be a float32 array in interval
[0.0, 1.0]. It must either have the same shape as the row (i.e. the image) or shape (H,
W) if all channels are supposed to have the same mask.

Return type iterable of ndarray

class imgaug.augmenters.blend.InvertMaskGen(p, child)
Bases: imgaug.augmenters.blend.IBatchwiseMaskGenerator

Generator that inverts the outputs of other mask generators.

This class receives batches and calls for each row (i.e. image) a child mask generator to produce a mask. That
mask is then inverted for p% of all rows, i.e. converted to 1.0 - mask.

Added in 0.4.0.

Parameters

• p (bool or float or imgaug.parameters.StochasticParameter, optional) – Probability of in-
verting each mask produced by the other mask generator.

• child (IBatchwiseMaskGenerator) – The other mask generator to invert.

Methods

draw_masks(self, batch[, random_state]) See draw_masks().

draw_masks(self, batch, random_state=None)
See draw_masks().

Added in 0.4.0.

class imgaug.augmenters.blend.RegularGridMaskGen(nb_rows, nb_cols, alpha=[0.0, 1.0])
Bases: imgaug.augmenters.blend.IBatchwiseMaskGenerator

Generate masks following a regular grid pattern.

This mask generator splits each image into a grid-like pattern of H rows and W columns. Each cell is then filled
with an alpha value, sampled randomly per cell.

The difference to CheckerboardMaskGen is that this mask generator samples random alpha values per cell,

13.20. imgaug.augmenters.blend 617

imgaug Documentation, Release 0.3.0

while in the checkerboard the alpha values follow a fixed pattern.

Added in 0.4.0.

Parameters

• nb_rows (int or tuple of int or list of int or imgaug.parameters.StochasticParameter) –

Number of rows of the regular grid.

– If int: Exactly that value will be used for all images.

– If tuple (a, b): A random value will be uniformly sampled per image from the
discrete interval [a..b].

– If list: A random value will be picked per image from that list.

– If StochasticParameter: That parameter will be queried once per batch for (N,)
values – one per image.

• nb_cols (int or tuple of int or list of int or imgaug.parameters.StochasticParameter) – Num-
ber of columns of the checkerboard. Analogous to nb_rows.

• alpha (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Alpha value of each cell.

– If number: Exactly that value will be used for all images.

– If tuple (a, b): A random value will be uniformly sampled per image from the
interval [a, b].

– If list: A random value will be picked per image from that list.

– If StochasticParameter: That parameter will be queried once per batch for (N,)
values – one per image.

Methods

draw_masks(self, batch[, random_state]) See draw_masks().
generate_mask(shape, nb_rows, nb_cols, al-
phas)

Generate a mask following a checkerboard pattern.

draw_masks(self, batch, random_state=None)
See draw_masks().

Added in 0.4.0.

classmethod generate_mask(shape, nb_rows, nb_cols, alphas)
Generate a mask following a checkerboard pattern.

Added in 0.4.0.

Parameters

• shape (tuple of int) – Height and width of the output mask.

• nb_rows (int) – Number of rows of the checkerboard pattern.

• nb_cols (int) – Number of columns of the checkerboard pattern.

• alphas (ndarray) – 1D or 2D array containing for each cell the alpha value, i.e.
nb_rows*nb_cols values.

618 Chapter 13. API

imgaug Documentation, Release 0.3.0

Returns float32 mask array with same height and width as segmap.shape. Values are in
[0.0, 1.0].

Return type ndarray

class imgaug.augmenters.blend.SegMapClassIdsMaskGen(class_ids,
nb_sample_classes=None)

Bases: imgaug.augmenters.blend.IBatchwiseMaskGenerator

Generator that produces masks highlighting segmentation map classes.

This class produces for each segmentation map in a batch a mask in which the locations of a set of provided
classes are highlighted (i.e. 1.0). The classes may be provided as a fixed list of class ids or a stochastic
parameter from which class ids will be sampled.

The produced masks are initially of the same height and width as the segmentation map arrays and later upscaled
to the image height and width.

Note: Segmentation maps can have multiple channels. If that is the case then for each position (x, y) it is
sufficient that any class id in any channel matches one of the desired class ids.

Note: This class will produce an AssertionError if there are no segmentation maps in a batch.

Added in 0.4.0.

Parameters

• class_ids (int or tuple of int or list of int or imgaug.parameters.StochasticParameter) –
Segmentation map classes to mark in the produced mask.

If nb_sample_classes is None then this is expected to be either a single int (always mark
this one class id) or a list of int s (always mark these class ids).

If nb_sample_classes is set, then this parameter will be treated as a stochastic parameter
with the following valid types:

– If int: Exactly that class id will be used for all segmentation maps.

– If tuple (a, b): N random values will be uniformly sampled per segmentation map
from the discrete interval [a..b] and used as the class ids.

– If list: N random values will be picked per segmentation map from that list and used
as the class ids.

– If StochasticParameter: That parameter will be queried once per batch for
(sum(N),) values.

N denotes the number of classes to sample per segmentation map (derived from
nb_sample_classes) and sum(N) denotes the sum of N s over all segmentation maps.

• nb_sample_classes (None or tuple of int or list of int or im-
gaug.parameters.StochasticParameter, optional) – Number of class ids to sample
(with replacement) per segmentation map. As sampling happens with replacement, fewer
unique class ids may be sampled.

– If None: class_ids is expected to be a fixed value of class ids to be used for all segmen-
tation maps.

– If int: Exactly that many class ids will be sampled for all segmentation maps.

13.20. imgaug.augmenters.blend 619

imgaug Documentation, Release 0.3.0

– If tuple (a, b): A random value will be uniformly sampled per segmentation map
from the discrete interval [a..b].

– If list or int: A random value will be picked per segmentation map from that list.

– If StochasticParameter: That parameter will be queried once per batch for (B,)
values, where B is the number of segmentation maps.

Methods

draw_masks(self, batch[, random_state]) See draw_masks().
generate_mask(segmap, class_ids) Generate a mask of where the segmentation map has

the given classes.

draw_masks(self, batch, random_state=None)
See draw_masks().

Added in 0.4.0.

classmethod generate_mask(segmap, class_ids)
Generate a mask of where the segmentation map has the given classes.

Added in 0.4.0.

Parameters

• segmap (imgaug.augmentables.segmap.SegmentationMapsOnImage) – The segmentation
map for which to generate the mask.

• class_ids (iterable of int) – IDs of the classes to set to 1.0. For an (x, y) position, it is
enough that any channel at the given location to have one of these class ids to be marked
as 1.0.

Returns float32 mask array with same height and width as segmap.shape. Values are in
[0.0, 1.0].

Return type ndarray

imgaug.augmenters.blend.SimplexNoiseAlpha(first=None, second=None, per_channel=False,
size_px_max=(2, 16), upscale_method=None,
iterations=(1, 3), aggregation_method=’max’,
sigmoid=True, sigmoid_thresh=None,
seed=None, name=None, ran-
dom_state=’deprecated’, determinis-
tic=’deprecated’)

Deprecated. Use BlendAlphaSimplexNoise instead. SimplexNoiseAlpha is deprecated. Use BlendAl-
phaSimplexNoise instead. The order of parameters is the same. Parameter ‘first’ was renamed to ‘foreground’.
Parameter ‘second’ was renamed to ‘background’.

See BlendAlphaSimplexNoise.

Deprecated since 0.4.0.

class imgaug.augmenters.blend.SomeColorsMaskGen(nb_bins=(5, 15), smooth-
ness=(0.1, 0.3), alpha=[0.0,
1.0], rotation_deg=(0, 360),
from_colorspace=’RGB’)

Bases: imgaug.augmenters.blend.IBatchwiseMaskGenerator

Generator that produces masks based on some similar colors in images.

620 Chapter 13. API

imgaug Documentation, Release 0.3.0

This class receives batches for which to generate masks, iterates over the batch rows (i.e. images) and generates
one mask per row. The mask contains high alpha values for some colors, while other colors get low mask values.
Which colors are chosen is random. How wide or narrow the selection is (e.g. very specific blue tone or all
blue-ish colors) is determined by the hyperparameters.

The color selection method performs roughly the following steps:

1. Split the full color range of the hue in HSV into nb_bins bins (i.e. 256/nb_bins different possible
hue tones).

2. Shift the bins by rotation_deg degrees. (This way, the 0th bin does not always start at exactly 0deg
of hue.)

3. Sample alpha values for each bin.

4. Repeat the nb_bins bins until there are 256 bins.

5. Smoothen the alpha values of neighbouring bins using a gaussian kernel. The kernel’s sigma is derived
from smoothness.

6. Associate all hue values in the image with the corresponding bin’s alpha value. This results in the alpha
mask.

Note: This mask generator will produce an AssertionError for batches that contain no images.

Added in 0.4.0.

Supported dtypes:

See change_colorspaces_().

Parameters

• nb_bins (int or tuple of int or list of int or imgaug.parameters.StochasticParameter, op-
tional) – Number of bins. For B bins, each bin denotes roughly 360/B degrees of colors in
the hue channel. Lower values lead to a coarser selection of colors. Expected value range is
[2, 256].

– If int: Exactly that value will be used for all images.

– If tuple (a, b): A random value will be uniformly sampled per image from the
discrete interval [a..b].

– If list: A random value will be picked per image from that list.

– If StochasticParameter: That parameter will be queried once per batch for (N,)
values – one per image.

• smoothness (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Strength of the 1D gaussian kernel
applied to the sampled binwise alpha values. Larger values will lead to more similar
grayscaling of neighbouring colors. Expected value range is [0.0, 1.0].

– If number: Exactly that value will be used for all images.

– If tuple (a, b): A random value will be uniformly sampled per image from the
interval [a, b].

– If list: A random value will be picked per image from that list.

– If StochasticParameter: That parameter will be queried once per batch for (N,)
values – one per image.

13.20. imgaug.augmenters.blend 621

imgaug Documentation, Release 0.3.0

• alpha (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Parameter to sample binwise alpha
blending factors from. Expected value range is [0.0, 1.0]. Note that the alpha values
will be smoothed between neighbouring bins. Hence, it is usually a good idea to set this
so that the probability distribution peaks are around 0.0 and 1.0, e.g. via a list [0.0,
1.0] or a Beta distribution. It is not recommended to set this to a deterministic value,
otherwise all bins and hence all pixels in the generated mask will have the same value.

– If number: Exactly that value will be used for all bins.

– If tuple (a, b): A random value will be uniformly sampled per bin from the interval
[a, b].

– If list: A random value will be picked per bin from that list.

– If StochasticParameter: That parameter will be queried once per batch for (N*B,
) values – one per image and bin.

• rotation_deg (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Rotiational shift of each bin as a
fraction of 360 degrees. E.g. 0.0 will not shift any bins, while a value of 0.5 will shift
by around 180 degrees. This shift is mainly used so that the 0th bin does not always start
at 0deg. Expected value range is [-360, 360]. This parameter can usually be kept at
the default value.

– If number: Exactly that value will be used for all images.

– If tuple (a, b): A random value will be uniformly sampled per image from the
interval [a, b].

– If list: A random value will be picked per image from that list.

– If StochasticParameter: That parameter will be queried once per batch for (N,)
values – one per image.

• from_colorspace (str, optional) – The source colorspace (of the input images). See
change_colorspace_().

Methods

draw_masks(self, batch[, random_state]) See draw_masks().
generate_mask(image, binwise_alphas, sigma,
. . .)

Generate a colorwise alpha mask for a single image.

draw_masks(self, batch, random_state=None)
See draw_masks().

classmethod generate_mask(image, binwise_alphas, sigma, rotation_bins, from_colorspace)
Generate a colorwise alpha mask for a single image.

Added in 0.4.0.

Parameters

• image (ndarray) – Image for which to generate the mask. Must have shape (H,W,3) in
colorspace from_colorspace.

• binwise_alphas (ndarray) – Alpha values of shape (B,)with B in [1, 256] and values
in interval [0.0, 1.0]. Will be upscaled to 256 bins by simple repetition. Each bin
represents 1/256 th of the hue.

622 Chapter 13. API

imgaug Documentation, Release 0.3.0

• sigma (float) – Sigma of the 1D gaussian kernel applied to the upscaled binwise alpha
value array.

• rotation_bins (int) – By how much to rotate the 256 bin alpha array. The rotation is given
in number of bins.

• from_colorspace (str) – Colorspace of the input image. One of imgaug.
augmenters.color.CSPACE_*.

Returns float32 mask array of shape (H, W) with values in [0.0, 1.0]

Return type ndarray

class imgaug.augmenters.blend.StochasticParameterMaskGen(parameter, per_channel)
Bases: imgaug.augmenters.blend.IBatchwiseMaskGenerator

Mask generator that queries stochastic parameters for mask values.

This class receives batches for which to generate masks, iterates over the batch rows (i.e. images) and generates
one mask per row. For a row with shape (H, W, C) (= image shape), it generates either a (H, W) mask (if
per_channel is false-like) or a (H, W, C) mask (if per_channel is true-like). The per_channel is
sampled per batch for each row/image.

Added in 0.4.0.

Parameters

• parameter (imgaug.parameters.StochasticParameter) – Stochastic parameter to draw mask
samples from. Expected to return values in interval [0.0, 1.0] (not all stochastic pa-
rameters do that) and must be able to handle sampling shapes (H, W) and (H, W, C)
(all stochastic parameters should do that).

• per_channel (bool or float or imgaug.parameters.StochasticParameter, optional) –
Whether to use the same mask for all channels (False) or to sample a new mask for each
channel (True). If this value is a float p, then for p percent of all rows (i.e. images)
per_channel will be treated as True, otherwise as False.

Methods

draw_masks(self, batch[, random_state]) See draw_masks().

draw_masks(self, batch, random_state=None)
See draw_masks().

class imgaug.augmenters.blend.VerticalLinearGradientMaskGen(min_value=(0.0,
0.2),
max_value=(0.8,
1.0), start_at=(0.0,
0.2), end_at=(0.8,
1.0))

Bases: imgaug.augmenters.blend._LinearGradientMaskGen

Generator that produces vertical linear gradient masks.

See HorizontalLinearGradientMaskGen for details.

Added in 0.4.0.

Parameters

• min_value (number or tuple of number or list of number or im-

13.20. imgaug.augmenters.blend 623

imgaug Documentation, Release 0.3.0

gaug.parameters.StochasticParameter, optional) – Minimum value that the mask will
have up to the start point of the linear gradient. Note that min_value is allowed to be larger
than max_value, in which case the gradient will start at the (higher) min_value and decrease
towards the (lower) max_value.

– If number: Exactly that value will be used for all images.

– If tuple (a, b): A random value will be uniformly sampled per image from the
interval [a, b].

– If list: A random value will be picked per image from that list.

– If StochasticParameter: That parameter will be queried once per batch for (N,)
values – one per image.

• max_value (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Maximum value that the mask will
have at the end of the linear gradient.

Datatypes are analogous to min_value.

• start_at (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Position on the y-axis where the
linear gradient starts, given as a fraction of the axis size. Interval is [0.0, 1.0], where
0.0 is at the top of the image. If end_at < start_at the gradient will be inverted.

Datatypes are analogous to min_value.

• end_at (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Position on the x-axis where the
linear gradient ends, given as a fraction of the axis size. Interval is [0.0, 1.0], where
1.0 is at the bottom of the image.

Datatypes are analogous to min_value.

Methods

draw_masks(self, batch[, random_state]) See draw_masks().
generate_mask(shape, min_value, max_value,
. . .)

Generate a linear horizontal gradient mask.

classmethod generate_mask(shape, min_value, max_value, start_at, end_at)
Generate a linear horizontal gradient mask.

Added in 0.4.0.

Parameters

• shape (tuple of int) – Shape of the image. The mask will have the same height and width.

• min_value (number) – Minimum value of the gradient in interval [0.0, 1.0].

• max_value (number) – Maximum value of the gradient in interval [0.0, 1.0].

• start_at (number) – Position on the x-axis where the linear gradient starts, given as a
fraction of the axis size. Interval is [0.0, 1.0].

• end_at (number) – Position on the x-axis where the linear gradient ends, given as a fraction
of the axis size. Interval is [0.0, 1.0].

624 Chapter 13. API

imgaug Documentation, Release 0.3.0

Returns float32 mask array with same height and width as the image. Values are in [0.0,
1.0].

Return type ndarray

imgaug.augmenters.blend.blend_alpha(image_fg, image_bg, alpha, eps=0.01)
Blend two images using an alpha blending.

In alpha blending, the two images are naively mixed using a multiplier. Let A be the foreground image and B the
background image and a is the alpha value. Each pixel intensity is then computed as a * A_ij + (1-a)

* B_ij.

Supported dtypes:

• uint8: yes; fully tested

• uint16: yes; fully tested

• uint32: yes; fully tested

• uint64: yes; fully tested (1)

• int8: yes; fully tested

• int16: yes; fully tested

• int32: yes; fully tested

• int64: yes; fully tested (1)

• float16: yes; fully tested

• float32: yes; fully tested

• float64: yes; fully tested (1)

• float128: no (2)

• bool: yes; fully tested (2)

• (1) Tests show that these dtypes work, but a conversion to float128 happens, which only has
96 bits of size instead of true 128 bits and hence not twice as much resolution. It is possible
that these dtypes result in inaccuracies, though the tests did not indicate that.

• (2) Not available due to the input dtype having to be increased to an equivalent float dtype with
two times the input resolution.

• (3) Mapped internally to float16.

Parameters

• image_fg ((H,W,[C]) ndarray) – Foreground image. Shape and dtype kind must match the
one of the background image.

• image_bg ((H,W,[C]) ndarray) – Background image. Shape and dtype kind must match the
one of the foreground image.

• alpha (number or iterable of number or ndarray) – The blending factor, between 0.0 and
1.0. Can be interpreted as the opacity of the foreground image. Values around 1.0 result in
only the foreground image being visible. Values around 0.0 result in only the background
image being visible. Multiple alphas may be provided. In these cases, there must be exactly
one alpha per channel in the foreground/background image. Alternatively, for (H,W,C)
images, either one (H,W) array or an (H,W,C) array of alphas may be provided, denoting
the elementwise alpha value.

13.20. imgaug.augmenters.blend 625

imgaug Documentation, Release 0.3.0

• eps (number, optional) – Controls when an alpha is to be interpreted as exactly 1.0 or
exactly 0.0, resulting in only the foreground/background being visible and skipping the
actual computation.

Returns image_blend – Blend of foreground and background image.

Return type (H,W,C) ndarray

13.21 imgaug.augmenters.blur

Augmenters that blur images.

List of augmenters:

• GaussianBlur

• AverageBlur

• MedianBlur

• BilateralBlur

• MotionBlur

• MeanShiftBlur

class imgaug.augmenters.blur.AverageBlur(k=(1, 7), seed=None, name=None, ran-
dom_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.meta.Augmenter

Blur an image by computing simple means over neighbourhoods.

The padding behaviour around the image borders is cv2’s BORDER_REFLECT_101.

Supported dtypes:

• uint8: yes; fully tested

• uint16: yes; tested

• uint32: no (1)

• uint64: no (2)

• int8: yes; tested (3)

• int16: yes; tested

• int32: no (4)

• int64: no (5)

• float16: yes; tested (6)

• float32: yes; tested

• float64: yes; tested

• float128: no

• bool: yes; tested (7)

• (1) rejected by cv2.blur()

• (2) loss of resolution in cv2.blur() (result is int32)

626 Chapter 13. API

imgaug Documentation, Release 0.3.0

• (3) int8 is mapped internally to int16, int8 itself leads to cv2 error “Unsupported com-
bination of source format (=1), and buffer format (=4) in function ‘getRowSumFilter’” in
cv2

• (4) results too inaccurate

• (5) loss of resolution in cv2.blur() (result is int32)

• (6) float16 is mapped internally to float32

• (7) bool is mapped internally to float32

Parameters

• k (int or tuple of int or tuple of tuple of int or imgaug.parameters.StochasticParameter or
tuple of StochasticParameter, optional) –

Kernel size to use.

– If a single int, then that value will be used for the height and width of the kernel.

– If a tuple of two int s (a, b), then the kernel size will be sampled from the interval
[a..b].

– If a tuple of two tuples of int s ((a, b), (c, d)), then per image a random kernel
height will be sampled from the interval [a..b] and a random kernel width will be
sampled from the interval [c..d].

– If a StochasticParameter, then N samples will be drawn from that parameter per
N input images, each representing the kernel size for the n-th image.

– If a tuple (a, b), where either a or b is a tuple, then a and b will be treated according
to the rules above. This leads to different values for height and width of the kernel.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.AverageBlur(k=5)

Blur all images using a kernel size of 5x5.

>>> aug = iaa.AverageBlur(k=(2, 5))

Blur images using a varying kernel size, which is sampled (per image) uniformly from the interval [2..5].

13.21. imgaug.augmenters.blur 627

imgaug Documentation, Release 0.3.0

>>> aug = iaa.AverageBlur(k=((5, 7), (1, 3)))

Blur images using a varying kernel size, which’s height is sampled (per image) uniformly from the interval
[5..7] and which’s width is sampled (per image) uniformly from [1..3].

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
Continued on next page

628 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 97 – continued from previous page
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

get_parameters(self)
See get_parameters().

class imgaug.augmenters.blur.BilateralBlur(d=(1, 9), sigma_color=(10, 250),
sigma_space=(10, 250), seed=None,
name=None, random_state=’deprecated’,
deterministic=’deprecated’)

Bases: imgaug.augmenters.meta.Augmenter

Blur/Denoise an image using a bilateral filter.

Bilateral filters blur homogenous and textured areas, while trying to preserve edges.

See http://docs.opencv.org/2.4/modules/imgproc/doc/filtering.html#bilateralfilter for more information regard-
ing the parameters.

Supported dtypes:

• uint8: yes; not tested

• uint16: ?

• uint32: ?

• uint64: ?

• int8: ?

• int16: ?

• int32: ?

• int64: ?

• float16: ?

• float32: ?

• float64: ?

• float128: ?

• bool: ?

Parameters

• d (int or tuple of int or list of int or imgaug.parameters.StochasticParameter, optional) –
Diameter of each pixel neighborhood with value range [1 .. inf). High values for d
lead to significantly worse performance. Values equal or less than 10 seem to be good. Use
<5 for real-time applications.

– If a single int, then that value will be used for the diameter.

13.21. imgaug.augmenters.blur 629

http://docs.opencv.org/2.4/modules/imgproc/doc/filtering.html#bilateralfilter

imgaug Documentation, Release 0.3.0

– If a tuple of two int s (a, b), then the diameter will be a value sampled from the
interval [a..b].

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then N samples will be drawn from that parameter per N
input images, each representing the diameter for the n-th image. Expected to be discrete.

• sigma_color (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Filter sigma in the color space
with value range [1, inf). A large value of the parameter means that farther colors
within the pixel neighborhood (see sigma_space) will be mixed together, resulting in larger
areas of semi-equal color.

– If a single int, then that value will be used for the diameter.

– If a tuple of two int s (a, b), then the diameter will be a value sampled from the
interval [a, b].

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then N samples will be drawn from that parameter per N
input images, each representing the diameter for the n-th image. Expected to be discrete.

• sigma_space (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Filter sigma in the coordinate space with
value range [1, inf). A large value of the parameter means that farther pixels will
influence each other as long as their colors are close enough (see sigma_color).

– If a single int, then that value will be used for the diameter.

– If a tuple of two int s (a, b), then the diameter will be a value sampled from the
interval [a, b].

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then N samples will be drawn from that parameter per N
input images, each representing the diameter for the n-th image. Expected to be discrete.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.BilateralBlur(
>>> d=(3, 10), sigma_color=(10, 250), sigma_space=(10, 250))

630 Chapter 13. API

imgaug Documentation, Release 0.3.0

Blur all images using a bilateral filter with a max distance sampled uniformly from the interval [3, 10] and
wide ranges for sigma_color and sigma_space.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
Continued on next page

13.21. imgaug.augmenters.blur 631

imgaug Documentation, Release 0.3.0

Table 98 – continued from previous page
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

get_parameters(self)
See get_parameters().

class imgaug.augmenters.blur.GaussianBlur(sigma=(0.0, 3.0), seed=None, name=None,
random_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.meta.Augmenter

Augmenter to blur images using gaussian kernels.

Supported dtypes:

See ~imgaug.augmenters.blur.blur_gaussian_(backend="auto").

Parameters

• sigma (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Standard deviation of the gaussian
kernel. Values in the range 0.0 (no blur) to 3.0 (strong blur) are common.

– If a single float, that value will always be used as the standard deviation.

– If a tuple (a, b), then a random value from the interval [a, b] will be picked per
image.

– If a list, then a random value will be sampled per image from that list.

– If a StochasticParameter, then N samples will be drawn from that parameter per
N input images.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.GaussianBlur(sigma=1.5)

632 Chapter 13. API

imgaug Documentation, Release 0.3.0

Blur all images using a gaussian kernel with a standard deviation of 1.5.

>>> aug = iaa.GaussianBlur(sigma=(0.0, 3.0))

Blur images using a gaussian kernel with a random standard deviation sampled uniformly (per image) from the
interval [0.0, 3.0].

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
Continued on next page

13.21. imgaug.augmenters.blur 633

imgaug Documentation, Release 0.3.0

Table 99 – continued from previous page
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

get_parameters(self)
See get_parameters().

class imgaug.augmenters.blur.MeanShiftBlur(spatial_radius=(5.0, 40.0), color_radius=(5.0,
40.0), seed=None, name=None, ran-
dom_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.meta.Augmenter

Apply a pyramidic mean shift filter to each image.

See also blur_mean_shift_() for details.

This augmenter expects input images of shape (H,W) or (H,W,1) or (H,W,3).

Note: This augmenter is quite slow.

Added in 0.4.0.

Supported dtypes:

See blur_mean_shift_().

Parameters

• spatial_radius (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) –

Spatial radius for pixels that are assumed to be similar.

– If number: Exactly that value will be used for all images.

– If tuple (a, b): A random value will be uniformly sampled per image from the
interval [a, b).

– If list: A random value will be sampled from that list per image.

– If StochasticParameter: The parameter will be queried once per batch for (N,)
values with N denoting the number of images.

• color_radius (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) –

Color radius for pixels that are assumed to be similar.

– If number: Exactly that value will be used for all images.

– If tuple (a, b): A random value will be uniformly sampled per image from the
interval [a, b).

634 Chapter 13. API

imgaug Documentation, Release 0.3.0

– If list: A random value will be sampled from that list per image.

– If StochasticParameter: The parameter will be queried once per batch for (N,)
values with N denoting the number of images.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.MeanShiftBlur()

Create a mean shift blur augmenter.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

Continued on next page

13.21. imgaug.augmenters.blur 635

imgaug Documentation, Release 0.3.0

Table 100 – continued from previous page
copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence

(in-place).
deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

get_parameters(self)
See get_parameters().

class imgaug.augmenters.blur.MedianBlur(k=(1, 7), seed=None, name=None, ran-
dom_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.meta.Augmenter

Blur an image by computing median values over neighbourhoods.

Median blurring can be used to remove small dirt from images. At larger kernel sizes, its effects have some
similarity with Superpixels.

Supported dtypes:

• uint8: yes; fully tested

• uint16: ?

• uint32: ?

• uint64: ?

• int8: ?

• int16: ?

636 Chapter 13. API

imgaug Documentation, Release 0.3.0

• int32: ?

• int64: ?

• float16: ?

• float32: ?

• float64: ?

• float128: ?

• bool: ?

Parameters

• k (int or tuple of int or list of int or imgaug.parameters.StochasticParameter, optional) –

Kernel size.

– If a single int, then that value will be used for the height and width of the kernel. Must
be an odd value.

– If a tuple of two ints (a, b), then the kernel size will be an odd value sampled from the
interval [a..b]. a and b must both be odd values.

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then N samples will be drawn from that parameter per N
input images, each representing the kernel size for the nth image. Expected to be discrete.
If a sampled value is not odd, then that value will be increased by 1.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.MedianBlur(k=5)

Blur all images using a kernel size of 5x5.

>>> aug = iaa.MedianBlur(k=(3, 7))

Blur images using varying kernel sizes, which are sampled uniformly from the interval [3..7]. Only odd
values will be sampled, i.e. 3 or 5 or 7.

13.21. imgaug.augmenters.blur 637

imgaug Documentation, Release 0.3.0

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.

Continued on next page

638 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 101 – continued from previous page
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

get_parameters(self)
See get_parameters().

class imgaug.augmenters.blur.MotionBlur(k=(3, 7), angle=(0, 360), direction=(-1.0,
1.0), order=1, seed=None, name=None,
random_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.convolutional.Convolve

Blur images in a way that fakes camera or object movements.

Supported dtypes:

See Convolve.

Parameters

• k (int or tuple of int or list of int or imgaug.parameters.StochasticParameter, optional) –

Kernel size to use.

– If a single int, then that value will be used for the height and width of the kernel.

– If a tuple of two int s (a, b), then the kernel size will be sampled from the interval
[a..b].

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then N samples will be drawn from that parameter per
N input images, each representing the kernel size for the n-th image.

• angle (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Angle of the motion blur in degrees
(clockwise, relative to top center direction).

– If a number, exactly that value will be used.

– If a tuple (a, b), a random value from the interval [a, b] will be uniformly sampled
per image.

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, a value will be sampled from the parameter per image.

• direction (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Forward/backward direction of the
motion blur. Lower values towards -1.0 will point the motion blur towards the back (with
angle provided via angle). Higher values towards 1.0 will point the motion blur forward.
A value of 0.0 leads to a uniformly (but still angled) motion blur.

– If a number, exactly that value will be used.

– If a tuple (a, b), a random value from the interval [a, b] will be uniformly sampled
per image.

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, a value will be sampled from the parameter per image.

13.21. imgaug.augmenters.blur 639

imgaug Documentation, Release 0.3.0

• order (int or iterable of int or imgaug.ALL or imgaug.parameters.StochasticParameter,
optional) – Interpolation order to use when rotating the kernel according to angle. See
__init__(). Recommended to be 0 or 1, with 0 being faster, but less continuous/smooth
as angle is changed, particularly around multiple of 45 degrees.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.MotionBlur(k=15)

Apply motion blur with a kernel size of 15x15 pixels to images.

>>> aug = iaa.MotionBlur(k=15, angle=[-45, 45])

Apply motion blur with a kernel size of 15x15 pixels and a blur angle of either -45 or 45 degrees (randomly
picked per image).

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

Continued on next page

640 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 102 – continued from previous page
augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

imgaug.augmenters.blur.blur_gaussian_(image, sigma, ksize=None, backend=’auto’,
eps=0.001)

Blur an image using gaussian blurring in-place.

This operation may change the input image in-place.

Supported dtypes:

if (backend=”auto”):

• uint8: yes; fully tested (1)

• uint16: yes; tested (1)

• uint32: yes; tested (2)

• uint64: yes; tested (2)

• int8: yes; tested (1)

• int16: yes; tested (1)

13.21. imgaug.augmenters.blur 641

imgaug Documentation, Release 0.3.0

• int32: yes; tested (1)

• int64: yes; tested (2)

• float16: yes; tested (1)

• float32: yes; tested (1)

• float64: yes; tested (1)

• float128: no

• bool: yes; tested (1)

• (1) Handled by cv2. See backend="cv2".

• (2) Handled by scipy. See backend="scipy".

if (backend=”cv2”):

• uint8: yes; fully tested

• uint16: yes; tested

• uint32: no (2)

• uint64: no (3)

• int8: yes; tested (4)

• int16: yes; tested

• int32: yes; tested (5)

• int64: no (6)

• float16: yes; tested (7)

• float32: yes; tested

• float64: yes; tested

• float128: no (8)

• bool: yes; tested (1)

• (1) Mapped internally to float32. Otherwise causes TypeError: src data type
= 0 is not supported.

• (2) Causes TypeError: src data type = 6 is not supported.

• (3) Causes cv2.error: OpenCV(3.4.5) (...)/filter.cpp:2957:
error: (-213:The function/feature is not implemented)
Unsupported combination of source format (=4), and buffer
format (=5) in function 'getLinearRowFilter'.

• (4) Mapped internally to int16. Otherwise causes cv2.error: OpenCV(3.
4.5) (...)/filter.cpp:2957: error: (-213:The function/
feature is not implemented) Unsupported combination of
source format (=1), and buffer format (=5) in function
'getLinearRowFilter'.

• (5) Mapped internally to float64. Otherwise causes cv2.error: OpenCV(3.
4.5) (...)/filter.cpp:2957: error: (-213:The function/
feature is not implemented) Unsupported combination of

642 Chapter 13. API

imgaug Documentation, Release 0.3.0

source format (=4), and buffer format (=5) in function
'getLinearRowFilter'.

• (6) Causes cv2.error: OpenCV(3.4.5) (...)/filter.cpp:2957:
error: (-213:The function/feature is not implemented)
Unsupported combination of source format (=4), and buffer
format (=5) in function 'getLinearRowFilter'.

• (7) Mapped internally to float32. Otherwise causes TypeError: src data type
= 23 is not supported.

• (8) Causes TypeError: src data type = 13 is not supported.

if (backend=”scipy”):

• uint8: yes; fully tested

• uint16: yes; tested

• uint32: yes; tested

• uint64: yes; tested

• int8: yes; tested

• int16: yes; tested

• int32: yes; tested

• int64: yes; tested

• float16: yes; tested (1)

• float32: yes; tested

• float64: yes; tested

• float128: no (2)

• bool: yes; tested (3)

• (1) Mapped internally to float32. Otherwise causes RuntimeError: array type
dtype('float16') not supported.

• (2) Causes RuntimeError: array type dtype('float128') not
supported.

• (3) Mapped internally to float32. Otherwise too inaccurate.

Parameters

• image (numpy.ndarray) – The image to blur. Expected to be of shape (H, W) or (H, W,
C).

• sigma (number) – Standard deviation of the gaussian blur. Larger numbers result in more
large-scale blurring, which is overall slower than small-scale blurring.

• ksize (None or int, optional) – Size in height/width of the gaussian kernel. This argument
is only understood by the cv2 backend. If it is set to None, an appropriate value for ksize
will automatically be derived from sigma. The value is chosen tighter for larger sigmas to
avoid as much as possible very large kernel sizes and therey improve performance.

• backend ({‘auto’, ‘cv2’, ‘scipy’}, optional) – Backend library to use. If auto, then the
likely best library will be automatically picked per image. That is usually equivalent to cv2
(OpenCV) and it will fall back to scipy for datatypes not supported by OpenCV.

13.21. imgaug.augmenters.blur 643

imgaug Documentation, Release 0.3.0

• eps (number, optional) – A threshold used to decide whether sigma can be considered zero.

Returns The blurred image. Same shape and dtype as the input. (Input image might have been
altered in-place.)

Return type numpy.ndarray

imgaug.augmenters.blur.blur_mean_shift_(image, spatial_window_radius,
color_window_radius)

Apply a pyramidic mean shift filter to the input image in-place.

This produces an output image that has similarity with one modified by a bilateral filter. That is different from
mean shift segmentation, which averages the colors in segments found by mean shift clustering.

This function is a thin wrapper around cv2.pyrMeanShiftFiltering.

Note: This function does not change the image’s colorspace to RGB before applying the mean shift filter. A
non-RGB colorspace will hence influence the results.

Note: This function is quite slow.

Added in 0.4.0.

Supported dtypes:

• uint8: yes; fully tested

• uint16: no (1)

• uint32: no (1)

• uint64: no (1)

• int8: no (1)

• int16: no (1)

• int32: no (1)

• int64: no (1)

• float16: no (1)

• float32: no (1)

• float64: no (1)

• float128: no (1)

• bool: no (1)

• (1) Not supported by cv2.pyrMeanShiftFiltering.

Parameters

• image (ndarray) – (H,W) or (H,W,1) or (H,W,3) image to blur. Images with no or one
channel will be temporarily tiled to have three channels.

• spatial_window_radius (number) – Spatial radius for pixels that are assumed to be similar.

• color_window_radius (number) – Color radius for pixels that are assumed to be similar.

644 Chapter 13. API

imgaug Documentation, Release 0.3.0

Returns Blurred input image. Same shape and dtype as the input. (Input image might have been
altered in-place.)

Return type ndarray

13.22 imgaug.augmenters.collections

Augmenters that are collections of other augmenters.

List of augmenters:

• RandAugment

Added in 0.4.0.

class imgaug.augmenters.collections.RandAugment(n=2, m=(6, 12), cval=128,
seed=None, name=None, ran-
dom_state=’deprecated’, deter-
ministic=’deprecated’)

Bases: imgaug.augmenters.meta.Sequential

Apply RandAugment to inputs as described in the corresponding paper.

See paper:

Cubuk et al.

RandAugment: Practical automated data augmentation with a reduced
search space

Note: The paper contains essentially no hyperparameters for the individual augmentation techniques. The
hyperparameters used here come mostly from the official code repository, which however seems to only contain
code for CIFAR10 and SVHN, not for ImageNet. So some guesswork was involved and a few of the hyper-
parameters were also taken from https://github.com/ildoonet/pytorch-randaugment/blob/master/RandAugment/
augmentations.py .

This implementation deviates from the code repository for all PIL enhance operations. In the repository these
use a factor of 0.1 + M*1.8/M_max, which would lead to a factor of 0.1 for the weakest M of M=0. For
e.g. Brightness that would result in a basically black image. This definition is fine for AutoAugment (from
where the code and hyperparameters are copied), which optimizes each transformation’s M individually, but not
for RandAugment, which uses a single fixed M. We hence redefine these hyperparameters to 1.0 + S * M *
0.9/M_max, where S is randomly either 1 or -1.

We also note that it is not entirely clear which transformations were used in the ImageNet experiments. The
paper lists some transformations in Figure 2, but names others in the text too (e.g. crops, flips, cutout). While
Figure 2 lists the Identity function, this transformation seems to not appear in the repository (and in fact, the
function randaugment(N, M) doesn’t seem to exist in the repository either). So we also make a best guess
here about what transformations might have been used.

Warning: This augmenter only works with image data, not e.g. bounding boxes. The used PIL-based
affine transformations are not yet able to process non-image data. (This augmenter uses PIL-based affine
transformations to ensure that outputs are as similar as possible to the paper’s implementation.)

Added in 0.4.0.

13.22. imgaug.augmenters.collections 645

https://github.com/ildoonet/pytorch-randaugment/blob/master/RandAugment/augmentations.py
https://github.com/ildoonet/pytorch-randaugment/blob/master/RandAugment/augmentations.py

imgaug Documentation, Release 0.3.0

Supported dtypes:

minimum of (Fliplr, KeepSizeByResize, Crop, Sequential, SomeOf, Identity ,
Autocontrast, Equalize, Invert, Affine, Posterize, Solarize, EnhanceColor,
EnhanceContrast, EnhanceBrightness, EnhanceSharpness, Cutout, FilterBlur,
FilterSmooth

)

Parameters n (int or tuple of int or list of int or imgaug.parameters.StochasticParameter or None,
optional) – Parameter N in the paper, i.e. number of transformations to apply. The paper suggests
N=2 for ImageNet. See also parameter n in SomeOf for more details.

Note that horizontal flips (p=50%) and crops are always applied. This parameter only determines
how many of the other transformations are applied per image.

m [int or tuple of int or list of int or imgaug.parameters.StochasticParameter or None, optional] Parameter M
in the paper, i.e. magnitude/severity/strength of the applied transformations in interval [0 .. 30] with
M=0 being the weakest. The paper suggests for ImageNet M=9 in case of ResNet-50 and M=28 in case
of EfficientNet-B7. This implementation uses a default value of (6, 12), i.e. the value is uniformly
sampled per image from the interval [6 .. 12]. This ensures greater diversity of transformations than
using a single fixed value.

• If int: That value will always be used.

• If tuple (a, b): A random value will be uniformly sampled per image from the discrete interval
[a .. b].

• If list: A random value will be picked from the list per image.

• If StochasticParameter: For B images in a batch, B values will be sampled per augmenter
(provided the augmenter is dependent on the magnitude).

cval [number or tuple of number or list of number or imgaug.ALL or imgaug.parameters.StochasticParameter,
optional] The constant value to use when filling in newly created pixels. See parameter fillcolor in Affine
for details.

The paper’s repository uses an RGB value of 125, 122, 113. This implementation uses a single
intensity value of 128, which should work better for cases where input images don’t have exactly 3
channels or come from a different dataset than used by the paper.

seed [None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or
numpy.random.SeedSequence or numpy.random.RandomState, optional] See __init__().

name [None or str, optional] See __init__().

random_state [None or int or imgaug.random.RNG or numpy.random.Generator or
numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, op-
tional] Old name for parameter seed. Its usage will not yet cause a deprecation warning, but it is still
recommended to use seed now. Outdated since 0.4.0.

deterministic [bool, optional] Deprecated since 0.4.0. See method to_deterministic() for an alterna-
tive and for details about what the “deterministic mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.RandAugment(n=2, m=9)

Create a RandAugment augmenter similar to the suggested hyperparameters in the paper.

646 Chapter 13. API

imgaug Documentation, Release 0.3.0

>>> aug = iaa.RandAugment(m=30)

Create a RandAugment augmenter with maximum magnitude/strength.

>>> aug = iaa.RandAugment(m=(0, 9))

Create a RandAugment augmenter that applies its transformations with a random magnitude between 0 (very
weak) and 9 (recommended for ImageNet and ResNet-50). m is sampled per transformation.

>>> aug = iaa.RandAugment(n=(0, 3))

Create a RandAugment augmenter that applies 0 to 3 of its child transformations to images. Horizontal flips
(p=50%) and crops are always applied.

Methods

__call__(self, *args, **kwargs) Alias for augment().
add(self, augmenter) Add an augmenter to the list of child augmenters.
append(self, object, /) Append object to the end of the list.
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

clear(self, /) Remove all items from list.
copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

count(self, value, /) Return number of occurrences of value.
deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
extend(self, iterable, /) Extend list by appending elements from the iterable.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

Continued on next page

13.22. imgaug.augmenters.collections 647

imgaug Documentation, Release 0.3.0

Table 103 – continued from previous page
find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) See get_children_lists().
get_parameters(self) See get_parameters().
index(self, value[, start, stop]) Return first index of value.
insert(self, index, object, /) Insert object before index.
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
pop(self[, index]) Remove and return item at index (default last).
remove(self, value, /) Remove first occurrence of value.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
reverse(self, /) Reverse IN PLACE.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
sort(self, /, *[, key, reverse]) Stable sort IN PLACE.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

get_parameters(self)
See get_parameters().

13.23 imgaug.augmenters.color

Augmenters that affect image colors or image colorspaces.

List of augmenters:

• InColorspace (deprecated)

• WithColorspace

• WithBrightnessChannels

• MultiplyAndAddToBrightness

• MultiplyBrightness

• AddToBrightness

• WithHueAndSaturation

• MultiplyHueAndSaturation

• MultiplyHue

648 Chapter 13. API

imgaug Documentation, Release 0.3.0

• MultiplySaturation

• RemoveSaturation

• AddToHueAndSaturation

• AddToHue

• AddToSaturation

• ChangeColorspace

• Grayscale

• ChangeColorTemperature

• KMeansColorQuantization

• UniformColorQuantization

• Posterize

class imgaug.augmenters.color.AddToBrightness(add=(-30, 30), to_colorspace=[’YCrCb’,
’HSV’, ’HLS’, ’Lab’, ’Luv’, ’YUV’],
from_colorspace=’RGB’, seed=None,
name=None, random_state=’deprecated’,
deterministic=’deprecated’)

Bases: imgaug.augmenters.color.MultiplyAndAddToBrightness

Add to the brightness channels of input images.

This is a wrapper around WithBrightnessChannels and hence performs internally the same projection to
random colorspaces.

Added in 0.4.0.

Supported dtypes:

See MultiplyAndAddToBrightness.

Parameters

• add (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – See Add.

• to_colorspace (imgaug.ALL or str or list of str or imgaug.parameters.StochasticParameter,
optional) – See WithBrightnessChannels.

• from_colorspace (str, optional) – See WithBrightnessChannels.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

13.23. imgaug.augmenters.color 649

imgaug Documentation, Release 0.3.0

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.AddToBrightness((-30, 30))

Convert each image to a colorspace with a brightness-related channel, extract that channel, add between -30
and 30 and convert back to the original colorspace.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) See get_children_lists().
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.

Continued on next page

650 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 104 – continued from previous page
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.color.AddToHue(value=(-255, 255), from_colorspace=’RGB’,
seed=None, name=None, ran-
dom_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.color.AddToHueAndSaturation

Add random values to the hue of images.

The augmenter first transforms images to HSV colorspace, then adds random values to the H channel and
afterwards converts back to RGB.

If you want to change both the hue and the saturation, it is recommended to use AddToHueAndSaturation
as otherwise the image will be converted twice to HSV and back to RGB.

This augmenter is a shortcut for AddToHueAndSaturation(value_hue=...).

Supported dtypes:

See AddToHueAndSaturation.

Parameters

• value (None or int or tuple of int or list of int or imgaug.parameters.StochasticParameter,
optional) – Value to add to the hue of all pixels. This is expected to be in the range -255 to
+255 and will automatically be projected to an angular representation using (hue/255)
* (360/2) (OpenCV’s hue representation is in the range [0, 180] instead of [0,
360]).

– If an integer, then that value will be used for all images.

– If a tuple (a, b), then a value from the discrete range [a, b] will be sampled per
image.

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then a value will be sampled from that parameter per image.

• from_colorspace (str, optional) – See change_colorspace_().

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage

13.23. imgaug.augmenters.color 651

imgaug Documentation, Release 0.3.0

will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.AddToHue((-50, 50))

Sample random values from the discrete uniform range [-50..50], convert them to angular representation
and add them to the hue, i.e. to the H channel in HSV colorspace.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
Continued on next page

652 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 105 – continued from previous page
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.color.AddToHueAndSaturation(value=None, value_hue=None,
value_saturation=None,
per_channel=False,
from_colorspace=’RGB’,
seed=None, name=None,
random_state=’deprecated’,
deterministic=’deprecated’)

Bases: imgaug.augmenters.meta.Augmenter

Increases or decreases hue and saturation by random values.

The augmenter first transforms images to HSV colorspace, then adds random values to the H and S channels
and afterwards converts back to RGB.

This augmenter is faster than using WithHueAndSaturation in combination with Add.

TODO add float support

Supported dtypes:

See change_colorspace_().

Parameters

• value (None or int or tuple of int or list of int or imgaug.parameters.StochasticParameter,
optional) – Value to add to the hue and saturation of all pixels. It is expected to be in the
range -255 to +255.

– If this is None, value_hue and/or value_saturation may be set to values other than None.

– If an integer, then that value will be used for all images.

– If a tuple (a, b), then a value from the discrete range [a, b] will be sampled per
image.

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then a value will be sampled from that parameter per image.

13.23. imgaug.augmenters.color 653

imgaug Documentation, Release 0.3.0

• value_hue (None or int or tuple of int or list of int or im-
gaug.parameters.StochasticParameter, optional) – Value to add to the hue of all pixels.
This is expected to be in the range -255 to +255 and will automatically be projected to an
angular representation using (hue/255) * (360/2) (OpenCV’s hue representation is
in the range [0, 180] instead of [0, 360]). Only this or value may be set, not both.

– If this and value_saturation are both None, value may be set to a non-None value.

– If an integer, then that value will be used for all images.

– If a tuple (a, b), then a value from the discrete range [a, b] will be sampled per
image.

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then a value will be sampled from that parameter per image.

• value_saturation (None or int or tuple of int or list of int or im-
gaug.parameters.StochasticParameter, optional) – Value to add to the saturation of
all pixels. It is expected to be in the range -255 to +255. Only this or value may be set,
not both.

– If this and value_hue are both None, value may be set to a non-None value.

– If an integer, then that value will be used for all images.

– If a tuple (a, b), then a value from the discrete range [a, b] will be sampled per
image.

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then a value will be sampled from that parameter per image.

• per_channel (bool or float, optional) – Whether to sample per image only one value from
value and use it for both hue and saturation (False) or to sample independently one value
for hue and one for saturation (True). If this value is a float p, then for p percent of all
images per_channel will be treated as True, otherwise as False.

This parameter has no effect is value_hue and/or value_saturation are used instead of value.

• from_colorspace (str, optional) – See change_colorspace_().

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.AddToHueAndSaturation((-50, 50), per_channel=True)

654 Chapter 13. API

imgaug Documentation, Release 0.3.0

Add random values between -50 and 50 to the hue and saturation (independently per channel and the same
value for all pixels within that channel).

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
Continued on next page

13.23. imgaug.augmenters.color 655

imgaug Documentation, Release 0.3.0

Table 106 – continued from previous page
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

get_parameters(self)
See get_parameters().

class imgaug.augmenters.color.AddToSaturation(value=(-75, 75),
from_colorspace=’RGB’, seed=None,
name=None, random_state=’deprecated’,
deterministic=’deprecated’)

Bases: imgaug.augmenters.color.AddToHueAndSaturation

Add random values to the saturation of images.

The augmenter first transforms images to HSV colorspace, then adds random values to the S channel and after-
wards converts back to RGB.

If you want to change both the hue and the saturation, it is recommended to use AddToHueAndSaturation
as otherwise the image will be converted twice to HSV and back to RGB.

This augmenter is a shortcut for AddToHueAndSaturation(value_saturation=...).

Supported dtypes:

See AddToHueAndSaturation.

Parameters

• value (None or int or tuple of int or list of int or imgaug.parameters.StochasticParameter,
optional) – Value to add to the saturation of all pixels. It is expected to be in the range -255
to +255.

– If an integer, then that value will be used for all images.

– If a tuple (a, b), then a value from the discrete range [a, b] will be sampled per
image.

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then a value will be sampled from that parameter per image.

• from_colorspace (str, optional) – See change_colorspace_().

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

656 Chapter 13. API

imgaug Documentation, Release 0.3.0

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.AddToSaturation((-50, 50))

Sample random values from the discrete uniform range [-50..50], and add them to the saturation, i.e. to the
S channel in HSV colorspace.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().

Continued on next page

13.23. imgaug.augmenters.color 657

imgaug Documentation, Release 0.3.0

Table 107 – continued from previous page
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.color.ChangeColorTemperature(kelvin=(1000, 11000),
from_colorspace=’RGB’,
seed=None, name=None,
random_state=’deprecated’,
deterministic=’deprecated’)

Bases: imgaug.augmenters.meta.Augmenter

Change the temperature to a provided Kelvin value.

Low Kelvin values around 1000 to 4000 will result in red, yellow or orange images. Kelvin values around
10000 to 40000 will result in progressively darker blue tones.

Color temperatures taken from http://www.vendian.org/mncharity/dir3/blackbody/UnstableURLs/bbr_color.
html

Basic method to change color temperatures taken from https://stackoverflow.com/a/11888449

Added in 0.4.0.

Supported dtypes:

See change_color_temperatures_().

Parameters kelvin (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Temperature in Kelvin. The temperatures of
images will be modified to this value. Must be in the interval [1000, 40000].

• If a number, exactly that value will always be used.

• If a tuple (a, b), then a value from the interval [a, b] will be sampled per
image.

• If a list, then a random value will be sampled from that

list per image. * If a StochasticParameter, then a value will be sampled per

image from that parameter.

658 Chapter 13. API

http://www.vendian.org/mncharity/dir3/blackbody/UnstableURLs/bbr_color.html
http://www.vendian.org/mncharity/dir3/blackbody/UnstableURLs/bbr_color.html
https://stackoverflow.com/a/11888449

imgaug Documentation, Release 0.3.0

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.ChangeColorTemperature((1100, 10000))

Create an augmenter that changes the color temperature of images to a random value between 1100 and 10000
Kelvin.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.

Continued on next page

13.23. imgaug.augmenters.color 659

imgaug Documentation, Release 0.3.0

Table 108 – continued from previous page
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

get_parameters(self)
See get_parameters().

class imgaug.augmenters.color.ChangeColorspace(to_colorspace,
from_colorspace=’RGB’, alpha=1.0,
seed=None, name=None, ran-
dom_state=’deprecated’, determin-
istic=’deprecated’)

Bases: imgaug.augmenters.meta.Augmenter

Augmenter to change the colorspace of images.

Note: This augmenter is not tested. Some colorspaces might work, others might not.

..note:

This augmenter tries to project the colorspace value range on
0-255. It outputs dtype=uint8 images.

Supported dtypes:

See change_colorspace_().

Parameters

• to_colorspace (str or list of str or imgaug.parameters.StochasticParameter) – The target
colorspace. Allowed strings are: RGB, BGR, GRAY, CIE, YCrCb, HSV, HLS, Lab, Luv.
These are also accessible via imgaug.augmenters.color.CSPACE_<NAME>, e.g.
imgaug.augmenters.CSPACE_YCrCb.

– If a string, it must be among the allowed colorspaces.

– If a list, it is expected to be a list of strings, each one being an allowed colorspace. A
random element from the list will be chosen per image.

– If a StochasticParameter, it is expected to return string. A new sample will be drawn per
image.

• from_colorspace (str, optional) – The source colorspace (of the input images). See
to_colorspace. Only a single string is allowed.

• alpha (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – The alpha value of the new colorspace

660 Chapter 13. API

imgaug Documentation, Release 0.3.0

when overlayed over the old one. A value close to 1.0 means that mostly the new colorspace
is visible. A value close to 0.0 means, that mostly the old image is visible.

– If an int or float, exactly that value will be used.

– If a tuple (a, b), a random value from the range a <= x <= b will be sampled per
image.

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, a value will be sampled from the parameter per image.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
Continued on next page

13.23. imgaug.augmenters.color 661

imgaug Documentation, Release 0.3.0

Table 109 – continued from previous page
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

BGR = 'BGR'

CIE = 'CIE'

COLORSPACES = {'BGR', 'CIE', 'GRAY', 'HLS', 'HSV', 'Lab', 'Luv', 'RGB', 'YCrCb'}

CV_VARS = {'BGR2CIE': <MagicMock id='140395641228088'>, 'BGR2GRAY': <MagicMock id='140395471300480'>, 'BGR2HLS': <MagicMock id='140395471354568'>, 'BGR2HSV': <MagicMock id='140395471346152'>, 'BGR2Lab': <MagicMock id='140395471367080'>, 'BGR2Luv': <MagicMock id='140395471383688'>, 'BGR2RGB': <MagicMock id='140395471287968'>, 'BGR2YCrCb': <MagicMock id='140395471325448'>, 'HLS2BGR': <MagicMock id='140395470921800'>, 'HLS2RGB': <MagicMock id='140395470901032'>, 'HSV2BGR': <MagicMock id='140395470884424'>, 'HSV2RGB': <MagicMock id='140395470871912'>, 'Lab2BGR': <MagicMock id='140395470975944'>, 'Lab2RGB': <MagicMock id='140395470955016'>, 'RGB2BGR': <MagicMock id='140395471142752'>, 'RGB2CIE': <MagicMock id='140395471208800'>, 'RGB2GRAY': <MagicMock id='140395471192192'>, 'RGB2HLS': <MagicMock id='140395471246336'>, 'RGB2HSV': <MagicMock id='140395471229728'>, 'RGB2Lab': <MagicMock id='140395471258848'>, 'RGB2Luv': <MagicMock id='140395471271360'>, 'RGB2YCrCb': <MagicMock id='140395471217216'>}

GRAY = 'GRAY'

HLS = 'HLS'

HSV = 'HSV'

Lab = 'Lab'

Luv = 'Luv'

RGB = 'RGB'

YCrCb = 'YCrCb'

get_parameters(self)
See get_parameters().

class imgaug.augmenters.color.Grayscale(alpha=1, from_colorspace=’RGB’, seed=None,
name=None, random_state=’deprecated’, deter-
ministic=’deprecated’)

Bases: imgaug.augmenters.color.ChangeColorspace

Augmenter to convert images to their grayscale versions.

662 Chapter 13. API

imgaug Documentation, Release 0.3.0

Note: Number of output channels is still 3, i.e. this augmenter just “removes” color.

TODO check dtype support

Supported dtypes:

See change_colorspace_().

Parameters

• alpha (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – The alpha value of the grayscale
image when overlayed over the old image. A value close to 1.0 means, that mostly the new
grayscale image is visible. A value close to 0.0 means, that mostly the old image is visible.

– If a number, exactly that value will always be used.

– If a tuple (a, b), a random value from the range a <= x <= b will be sampled per
image.

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, a value will be sampled from the parameter per image.

• from_colorspace (str, optional) – The source colorspace (of the input images). See
change_colorspace_().

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Grayscale(alpha=1.0)

Creates an augmenter that turns images to their grayscale versions.

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Grayscale(alpha=(0.0, 1.0))

Creates an augmenter that turns images to their grayscale versions with an alpha value in the range 0 <=
alpha <= 1. An alpha value of 0.5 would mean, that the output image is 50 percent of the input image and
50 percent of the grayscale image (i.e. 50 percent of color removed).

13.23. imgaug.augmenters.color 663

imgaug Documentation, Release 0.3.0

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.

Continued on next page

664 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 110 – continued from previous page
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

imgaug.augmenters.color.InColorspace(to_colorspace, from_colorspace=’RGB’, chil-
dren=None, seed=None, name=None, ran-
dom_state=’deprecated’, deterministic=’deprecated’)

Deprecated. Use WithColorspace instead.

Convert images to another colorspace.

class imgaug.augmenters.color.KMeansColorQuantization(n_colors=(2, 16),
from_colorspace=’RGB’,
to_colorspace=[’RGB’,
’Lab’], max_size=128,
interpolation=’linear’,
seed=None, name=None,
random_state=’deprecated’,
deterministic=’deprecated’)

Bases: imgaug.augmenters.color._AbstractColorQuantization

Quantize colors using k-Means clustering.

This “collects” the colors from the input image, groups them into k clusters using k-Means clustering and
replaces the colors in the input image using the cluster centroids.

This is slower than UniformColorQuantization, but adapts dynamically to the color range in the input
image.

Note: This augmenter expects input images to be either grayscale or to have 3 or 4 channels and use colorspace
from_colorspace. If images have 4 channels, it is assumed that the 4th channel is an alpha channel and it will
not be quantized.

Supported dtypes:

if (image size <= max_size):

minimum of (ChangeColorspace, quantize_kmeans()

)

if (image size > max_size):

minimum of (ChangeColorspace, quantize_kmeans(),
imresize_single_image()

)

Parameters

• n_colors (int or tuple of int or list of int or imgaug.parameters.StochasticParameter, op-
tional) – Target number of colors in the generated output image. This corresponds to the
number of clusters in k-Means, i.e. k. Sampled values below 2 will always be clipped to 2.

– If a number, exactly that value will always be used.

– If a tuple (a, b), then a value from the discrete interval [a..b] will be sampled per
image.

13.23. imgaug.augmenters.color 665

imgaug Documentation, Release 0.3.0

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then a value will be sampled per image from that pa-
rameter.

• to_colorspace (None or str or list of str or imgaug.parameters.StochasticParameter) – The
colorspace in which to perform the quantization. See change_colorspace_() for valid
values. This will be ignored for grayscale input images.

– If None the colorspace of input images will not be changed.

– If a string, it must be among the allowed colorspaces.

– If a list, it is expected to be a list of strings, each one being an allowed colorspace. A
random element from the list will be chosen per image.

– If a StochasticParameter, it is expected to return string. A new sample will be drawn per
image.

• from_colorspace (str, optional) – The colorspace of the input images. See to_colorspace.
Only a single string is allowed.

• max_size (int or None, optional) – Maximum image size at which to perform the augmen-
tation. If the width or height of an image exceeds this value, it will be downscaled before
running the augmentation so that the longest side matches max_size. This is done to speed
up the augmentation. The final output image has the same size as the input image. Use
None to apply no downscaling.

• interpolation (int or str, optional) – Interpolation method to use during downscaling when
max_size is exceeded. Valid methods are the same as in imresize_single_image().

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.KMeansColorQuantization()

Create an augmenter to apply k-Means color quantization to images using a random amount of colors, sampled
uniformly from the interval [2..16]. It assumes the input image colorspace to be RGB and clusters colors
randomly in RGB or Lab colorspace.

>>> aug = iaa.KMeansColorQuantization(n_colors=8)

Create an augmenter that quantizes images to (up to) eight colors.

666 Chapter 13. API

imgaug Documentation, Release 0.3.0

>>> aug = iaa.KMeansColorQuantization(n_colors=(4, 16))

Create an augmenter that quantizes images to (up to) n colors, where n is randomly and uniformly sampled
from the discrete interval [4..16].

>>> aug = iaa.KMeansColorQuantization(
>>> from_colorspace=iaa.CSPACE_BGR)

Create an augmenter that quantizes input images that are in BGR colorspace. The quantization happens in RGB
or Lab colorspace, into which the images are temporarily converted.

>>> aug = iaa.KMeansColorQuantization(
>>> to_colorspace=[iaa.CSPACE_RGB, iaa.CSPACE_HSV])

Create an augmenter that quantizes images by clustering colors randomly in either RGB or HSV colorspace. The
assumed input colorspace of images is RGB.

Attributes

n_colors Alias for property counts.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.

Continued on next page

13.23. imgaug.augmenters.color 667

imgaug Documentation, Release 0.3.0

Table 111 – continued from previous page
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

n_colors
Alias for property counts.

Added in 0.4.0.

class imgaug.augmenters.color.MultiplyAndAddToBrightness(mul=(0.7, 1.3),
add=(-30, 30),
to_colorspace=[’YCrCb’,
’HSV’, ’HLS’, ’Lab’,
’Luv’, ’YUV’],
from_colorspace=’RGB’,
random_order=True,
seed=None,
name=None, ran-
dom_state=’deprecated’,
determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.color.WithBrightnessChannels

Multiply and add to the brightness channels of input images.

This is a wrapper around WithBrightnessChannels and hence performs internally the same projection to
random colorspaces.

Added in 0.4.0.

Supported dtypes:

See WithBrightnessChannels.

Parameters

668 Chapter 13. API

imgaug Documentation, Release 0.3.0

• mul (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – See Multiply.

• add (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – See Add.

• to_colorspace (imgaug.ALL or str or list of str or imgaug.parameters.StochasticParameter,
optional) – See WithBrightnessChannels.

• from_colorspace (str, optional) – See WithBrightnessChannels.

• random_order (bool, optional) – Whether to apply the add and multiply operations in
random order (True). If False, this augmenter will always first multiply and then add.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.MultiplyAndAddToBrightness(mul=(0.5, 1.5), add=(-30, 30))

Convert each image to a colorspace with a brightness-related channel, extract that channel, multiply it by a
factor between 0.5 and 1.5, add a value between -30 and 30 and convert back to the original colorspace.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

Continued on next page

13.23. imgaug.augmenters.color 669

imgaug Documentation, Release 0.3.0

Table 112 – continued from previous page
augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) See get_children_lists().
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.color.MultiplyBrightness(mul=(0.7, 1.3),
to_colorspace=[’YCrCb’,
’HSV’, ’HLS’, ’Lab’, ’Luv’,
’YUV’], from_colorspace=’RGB’,
seed=None, name=None, ran-
dom_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.color.MultiplyAndAddToBrightness

Multiply the brightness channels of input images.

This is a wrapper around WithBrightnessChannels and hence performs internally the same projection to
random colorspaces.

670 Chapter 13. API

imgaug Documentation, Release 0.3.0

Added in 0.4.0.

Supported dtypes:

See MultiplyAndAddToBrightness.

Parameters

• mul (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – See Multiply.

• to_colorspace (imgaug.ALL or str or list of str or imgaug.parameters.StochasticParameter,
optional) – See WithBrightnessChannels.

• from_colorspace (str, optional) – See WithBrightnessChannels.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.MultiplyBrightness((0.5, 1.5))

Convert each image to a colorspace with a brightness-related channel, extract that channel, multiply it by a
factor between 0.5 and 1.5, and convert back to the original colorspace.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

Continued on next page

13.23. imgaug.augmenters.color 671

imgaug Documentation, Release 0.3.0

Table 113 – continued from previous page
augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) See get_children_lists().
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.color.MultiplyHue(mul=(-3.0, 3.0), from_colorspace=’RGB’,
seed=None, name=None, ran-
dom_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.color.MultiplyHueAndSaturation

Multiply the hue of images by random values.

The augmenter first transforms images to HSV colorspace, then multiplies the pixel values in the H channel and
afterwards converts back to RGB.

This augmenter is a shortcut for MultiplyHueAndSaturation(mul_hue=...).

Supported dtypes:

672 Chapter 13. API

imgaug Documentation, Release 0.3.0

See MultiplyHueAndSaturation.

Parameters

• mul (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Multiplier with which to multiply
all hue values. This is expected to be in the range -10.0 to +10.0 and will automatically
be projected to an angular representation using (hue/255) * (360/2) (OpenCV’s
hue representation is in the range [0, 180] instead of [0, 360]). Only this or mul
may be set, not both.

– If a number, then that multiplier will be used for all images.

– If a tuple (a, b), then a value from the continuous range [a, b] will be sampled per
image.

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then a value will be sampled from that parameter per image.

• from_colorspace (str, optional) – See change_colorspace_().

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.MultiplyHue((0.5, 1.5))

Multiply the hue channel of images using random values between 0.5 and 1.5.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

Continued on next page

13.23. imgaug.augmenters.color 673

imgaug Documentation, Release 0.3.0

Table 114 – continued from previous page
augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) See get_children_lists().
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

674 Chapter 13. API

imgaug Documentation, Release 0.3.0

class imgaug.augmenters.color.MultiplyHueAndSaturation(mul=None, mul_hue=None,
mul_saturation=None,
per_channel=False,
from_colorspace=’RGB’,
seed=None, name=None,
random_state=’deprecated’,
determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.color.WithHueAndSaturation

Multipy hue and saturation by random values.

The augmenter first transforms images to HSV colorspace, then multiplies the pixel values in the H and S
channels and afterwards converts back to RGB.

This augmenter is a wrapper around WithHueAndSaturation.

Supported dtypes:

See WithHueAndSaturation.

Parameters

• mul (None or number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Multiplier with which to multiply
all hue and saturation values of all pixels. It is expected to be in the range -10.0 to
+10.0. Note that values of 0.0 or lower will remove all saturation.

– If this is None, mul_hue and/or mul_saturation may be set to values other than None.

– If a number, then that multiplier will be used for all images.

– If a tuple (a, b), then a value from the continuous range [a, b] will be sampled per
image.

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then a value will be sampled from that parameter per image.

• mul_hue (None or number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Multiplier with which to multiply all hue
values. This is expected to be in the range -10.0 to +10.0 and will automatically be
projected to an angular representation using (hue/255) * (360/2) (OpenCV’s hue
representation is in the range [0, 180] instead of [0, 360]). Only this or mul may be
set, not both.

– If this and mul_saturation are both None, mul may be set to a non-None value.

– If a number, then that multiplier will be used for all images.

– If a tuple (a, b), then a value from the continuous range [a, b] will be sampled per
image.

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then a value will be sampled from that parameter per image.

• mul_saturation (None or number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Multiplier with which to multiply all sat-
uration values. It is expected to be in the range 0.0 to +10.0. Only this or mul may be set,
not both.

– If this and mul_hue are both None, mul may be set to a non-None value.

– If a number, then that value will be used for all images.

13.23. imgaug.augmenters.color 675

imgaug Documentation, Release 0.3.0

– If a tuple (a, b), then a value from the continuous range [a, b] will be sampled per
image.

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then a value will be sampled from that parameter per image.

• per_channel (bool or float, optional) – Whether to sample per image only one value from
mul and use it for both hue and saturation (False) or to sample independently one value
for hue and one for saturation (True). If this value is a float p, then for p percent of all
images per_channel will be treated as True, otherwise as False.

This parameter has no effect if mul_hue and/or mul_saturation are used instead of mul.

• from_colorspace (str, optional) – See change_colorspace_().

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.MultiplyHueAndSaturation((0.5, 1.5), per_channel=True)

Multiply hue and saturation by random values between 0.5 and 1.5 (independently per channel and the same
value for all pixels within that channel). The hue will be automatically projected to an angular representation.

>>> import imgaug.augmenters as iaa
>>> aug = iaa.MultiplyHueAndSaturation(mul_hue=(0.5, 1.5))

Multiply only the hue by random values between 0.5 and 1.5.

>>> import imgaug.augmenters as iaa
>>> aug = iaa.MultiplyHueAndSaturation(mul_saturation=(0.5, 1.5))

Multiply only the saturation by random values between 0.5 and 1.5.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.

Continued on next page

676 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 115 – continued from previous page
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) See get_children_lists().
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

13.23. imgaug.augmenters.color 677

imgaug Documentation, Release 0.3.0

class imgaug.augmenters.color.MultiplySaturation(mul=(0.0, 3.0),
from_colorspace=’RGB’,
seed=None, name=None, ran-
dom_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.color.MultiplyHueAndSaturation

Multiply the saturation of images by random values.

The augmenter first transforms images to HSV colorspace, then multiplies the pixel values in the H channel and
afterwards converts back to RGB.

This augmenter is a shortcut for MultiplyHueAndSaturation(mul_saturation=...).

Supported dtypes:

See MultiplyHueAndSaturation.

Parameters

• mul (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Multiplier with which to multiply
all saturation values. It is expected to be in the range 0.0 to +10.0.

– If a number, then that value will be used for all images.

– If a tuple (a, b), then a value from the continuous range [a, b] will be sampled per
image.

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then a value will be sampled from that parameter per image.

• from_colorspace (str, optional) – See change_colorspace_().

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.MultiplySaturation((0.5, 1.5))

Multiply the saturation channel of images using random values between 0.5 and 1.5.

Methods

678 Chapter 13. API

imgaug Documentation, Release 0.3.0

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) See get_children_lists().
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
Continued on next page

13.23. imgaug.augmenters.color 679

imgaug Documentation, Release 0.3.0

Table 116 – continued from previous page
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.color.Posterize(nb_bits=(1, 8), from_colorspace=’RGB’,
to_colorspace=None, max_size=None, inter-
polation=’linear’, seed=None, name=None,
random_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.color.UniformColorQuantizationToNBits

Alias for UniformColorQuantizationToNBits.

Added in 0.4.0.

Supported dtypes:

See UniformColorQuantizationToNBits.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

Continued on next page

680 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 117 – continued from previous page
get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.color.RemoveSaturation(mul=1, from_colorspace=’RGB’,
seed=None, name=None, ran-
dom_state=’deprecated’, determin-
istic=’deprecated’)

Bases: imgaug.augmenters.color.MultiplySaturation

Decrease the saturation of images by varying degrees.

This creates images looking similar to Grayscale.

This augmenter is the same as MultiplySaturation((0.0, 1.0)).

Added in 0.4.0.

Supported dtypes:

See MultiplySaturation.

Parameters

• mul (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Inverse multiplier to use for the
saturation values. High values denote stronger color removal. E.g. 1.0 will remove all
saturation, 0.0 will remove nothing. Expected value range is [0.0, 1.0].

– If a number, then that value will be used for all images.

– If a tuple (a, b), then a value from the continuous range [a, b] will be sampled per
image.

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then a value will be sampled from that parameter per image.

• from_colorspace (str, optional) – See change_colorspace_().

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

13.23. imgaug.augmenters.color 681

imgaug Documentation, Release 0.3.0

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.RemoveSaturation((0.0, 1.0))

Create an augmenter that decreases saturation by varying degrees.

>>> aug = iaa.RemoveSaturation(1.0)

Create an augmenter that removes all saturation from input images. This is similar to Grayscale.

>>> aug = iaa.RemoveSaturation(from_colorspace=iaa.CSPACE_BGR)

Create an augmenter that decreases saturation of images in BGR colorspace by varying degrees.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

Continued on next page

682 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 118 – continued from previous page
copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence

(in-place).
deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) See get_children_lists().
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.color.UniformColorQuantization(n_colors=(2, 16),
from_colorspace=’RGB’,
to_colorspace=None,
max_size=None, in-
terpolation=’linear’,
seed=None, name=None,
random_state=’deprecated’,
determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.color._AbstractColorQuantization

Quantize colors into N bins with regular distance.

For uint8 images the equation is floor(v/q)*q + q/2 with q = 256/N, where v is a pixel intensity
value and N is the target number of colors after quantization.

This augmenter is faster than KMeansColorQuantization, but the set of possible output colors is constant
(i.e. independent of the input images). It may produce unsatisfying outputs for input images that are made up of
very similar colors.

Note: This augmenter expects input images to be either grayscale or to have 3 or 4 channels and use colorspace
from_colorspace. If images have 4 channels, it is assumed that the 4th channel is an alpha channel and it will

13.23. imgaug.augmenters.color 683

imgaug Documentation, Release 0.3.0

not be quantized.

Supported dtypes:

if (image size <= max_size):

minimum of (ChangeColorspace, quantize_uniform_()

)

if (image size > max_size):

minimum of (ChangeColorspace, quantize_uniform_(),
imresize_single_image()

)

Parameters

• n_colors (int or tuple of int or list of int or imgaug.parameters.StochasticParameter, op-
tional) –

Target number of colors to use in the generated output image.

– If a number, exactly that value will always be used.

– If a tuple (a, b), then a value from the discrete interval [a..b] will be sampled per
image.

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then a value will be sampled per image from that pa-
rameter.

• to_colorspace (None or str or list of str or imgaug.parameters.StochasticParameter) – The
colorspace in which to perform the quantization. See change_colorspace_() for valid
values. This will be ignored for grayscale input images.

– If None the colorspace of input images will not be changed.

– If a string, it must be among the allowed colorspaces.

– If a list, it is expected to be a list of strings, each one being an allowed colorspace. A
random element from the list will be chosen per image.

– If a StochasticParameter, it is expected to return string. A new sample will be drawn per
image.

• from_colorspace (str, optional) – The colorspace of the input images. See to_colorspace.
Only a single string is allowed.

• max_size (None or int, optional) – Maximum image size at which to perform the augmen-
tation. If the width or height of an image exceeds this value, it will be downscaled before
running the augmentation so that the longest side matches max_size. This is done to speed
up the augmentation. The final output image has the same size as the input image. Use
None to apply no downscaling.

• interpolation (int or str, optional) – Interpolation method to use during downscaling when
max_size is exceeded. Valid methods are the same as in imresize_single_image().

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

684 Chapter 13. API

imgaug Documentation, Release 0.3.0

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.UniformColorQuantization()

Create an augmenter to apply uniform color quantization to images using a random amount of colors, sampled
uniformly from the discrete interval [2..16].

>>> aug = iaa.UniformColorQuantization(n_colors=8)

Create an augmenter that quantizes images to (up to) eight colors.

>>> aug = iaa.UniformColorQuantization(n_colors=(4, 16))

Create an augmenter that quantizes images to (up to) n colors, where n is randomly and uniformly sampled
from the discrete interval [4..16].

>>> aug = iaa.UniformColorQuantization(
>>> from_colorspace=iaa.CSPACE_BGR,
>>> to_colorspace=[iaa.CSPACE_RGB, iaa.CSPACE_HSV])

Create an augmenter that uniformly quantizes images in either RGB or HSV colorspace (randomly picked per
image). The input colorspace of all images has to be BGR.

Attributes

n_colors Alias for property counts.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.

Continued on next page

13.23. imgaug.augmenters.color 685

imgaug Documentation, Release 0.3.0

Table 119 – continued from previous page
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

n_colors
Alias for property counts.

Added in 0.4.0.

686 Chapter 13. API

imgaug Documentation, Release 0.3.0

class imgaug.augmenters.color.UniformColorQuantizationToNBits(nb_bits=(1, 8),
from_colorspace=’RGB’,
to_colorspace=None,
max_size=None,
interpola-
tion=’linear’,
seed=None,
name=None, ran-
dom_state=’deprecated’,
determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.color._AbstractColorQuantization

Quantize images by setting 8-B bits of each component to zero.

This augmenter sets the 8-B highest frequency (rightmost) bits of each array component to zero. For B bits
this is equivalent to changing each component’s intensity value v to v' = v & (2**(8-B) - 1), e.g. for
B=3 this results in v' = c & ~(2**(3-1) - 1) = c & ~3 = c & ~0000 0011 = c & 1111
1100.

This augmenter behaves for B similarly to UniformColorQuantization(2**B), but quantizes each bin
with interval (a, b) to a instead of to a + (b-a)/2.

This augmenter is comparable to PIL.ImageOps.posterize().

Note: This augmenter expects input images to be either grayscale or to have 3 or 4 channels and use colorspace
from_colorspace. If images have 4 channels, it is assumed that the 4th channel is an alpha channel and it will
not be quantized.

Added in 0.4.0.

Supported dtypes:

if (image size <= max_size):

minimum of (ChangeColorspace, quantize_uniform()

)

if (image size > max_size):

minimum of (ChangeColorspace, quantize_uniform(),
imresize_single_image()

)

Parameters

• nb_bits (int or tuple of int or list of int or imgaug.parameters.StochasticParameter, op-
tional) –

Number of bits to keep in each image’s array component.

– If a number, exactly that value will always be used.

– If a tuple (a, b), then a value from the discrete interval [a..b] will be sampled per
image.

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then a value will be sampled per image from that pa-
rameter.

13.23. imgaug.augmenters.color 687

imgaug Documentation, Release 0.3.0

• to_colorspace (None or str or list of str or imgaug.parameters.StochasticParameter) – The
colorspace in which to perform the quantization. See change_colorspace_() for valid
values. This will be ignored for grayscale input images.

– If None the colorspace of input images will not be changed.

– If a string, it must be among the allowed colorspaces.

– If a list, it is expected to be a list of strings, each one being an allowed colorspace. A
random element from the list will be chosen per image.

– If a StochasticParameter, it is expected to return string. A new sample will be drawn per
image.

• from_colorspace (str, optional) – The colorspace of the input images. See to_colorspace.
Only a single string is allowed.

• max_size (None or int, optional) – Maximum image size at which to perform the augmen-
tation. If the width or height of an image exceeds this value, it will be downscaled before
running the augmentation so that the longest side matches max_size. This is done to speed
up the augmentation. The final output image has the same size as the input image. Use
None to apply no downscaling.

• interpolation (int or str, optional) – Interpolation method to use during downscaling when
max_size is exceeded. Valid methods are the same as in imresize_single_image().

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.UniformColorQuantizationToNBits()

Create an augmenter to apply uniform color quantization to images using a random amount of bits to remove,
sampled uniformly from the discrete interval [1..8].

>>> aug = iaa.UniformColorQuantizationToNBits(nb_bits=(2, 8))

Create an augmenter that quantizes images by removing 8-B rightmost bits from each component, where B is
uniformly sampled from the discrete interval [2..8].

>>> aug = iaa.UniformColorQuantizationToNBits(
>>> from_colorspace=iaa.CSPACE_BGR,
>>> to_colorspace=[iaa.CSPACE_RGB, iaa.CSPACE_HSV])

688 Chapter 13. API

imgaug Documentation, Release 0.3.0

Create an augmenter that uniformly quantizes images in either RGB or HSV colorspace (randomly picked per
image). The input colorspace of all images has to be BGR.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
Continued on next page

13.23. imgaug.augmenters.color 689

imgaug Documentation, Release 0.3.0

Table 120 – continued from previous page
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.color.WithBrightnessChannels(children=None,
to_colorspace=[’YCrCb’,
’HSV’, ’HLS’, ’Lab’,
’Luv’, ’YUV’],
from_colorspace=’RGB’,
seed=None, name=None,
random_state=’deprecated’,
deterministic=’deprecated’)

Bases: imgaug.augmenters.meta.Augmenter

Augmenter to apply child augmenters to brightness-related image channels.

This augmenter first converts an image to a random colorspace containing a brightness-related channel (e.g. V in
HSV), then extracts that channel and applies its child augmenters to this one channel. Afterwards, it reintegrates
the augmented channel into the full image and converts back to the input colorspace.

Added in 0.4.0.

Supported dtypes:

See change_colorspaces_().

Parameters

• children (imgaug.augmenters.meta.Augmenter or list of im-
gaug.augmenters.meta.Augmenter or None, optional) – One or more augmenters to
apply to the brightness channels. They receive images with a single channel and have to
modify these.

• to_colorspace (imgaug.ALL or str or list of str or imgaug.parameters.StochasticParameter,
optional) – Colorspace in which to extract the brightness-related channels. Currently,
imgaug.augmenters.color.CSPACE_YCrCb, CSPACE_HSV, CSPACE_HLS,
CSPACE_Lab, CSPACE_Luv, CSPACE_YUV, CSPACE_CIE are supported.

– If imgaug.ALL: Will pick imagewise a random colorspace from all supported col-
orspaces.

– If str: Will always use this colorspace.

– If list or str: Will pick imagewise a random colorspace from this list.

– If StochasticParameter: A parameter that will be queried once per batch to gener-
ate all target colorspaces. Expected to return strings matching the CSPACE_* constants.

• from_colorspace (str, optional) – See change_colorspace_().

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

690 Chapter 13. API

imgaug Documentation, Release 0.3.0

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.WithBrightnessChannels(iaa.Add((-50, 50)))

Add -50 to 50 to the brightness-related channels of each image.

>>> aug = iaa.WithBrightnessChannels(
>>> iaa.Add((-50, 50)), to_colorspace=[iaa.CSPACE_Lab, iaa.CSPACE_HSV])

Add -50 to 50 to the brightness-related channels of each image, but pick those brightness-related channels only
from Lab (L) and HSV (V) colorspaces.

>>> aug = iaa.WithBrightnessChannels(
>>> iaa.Add((-50, 50)), from_colorspace=iaa.CSPACE_BGR)

Add -50 to 50 to the brightness-related channels of each image, where the images are provided in BGR col-
orspace instead of the standard RGB.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
Continued on next page

13.23. imgaug.augmenters.color 691

imgaug Documentation, Release 0.3.0

Table 121 – continued from previous page
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) See get_children_lists().
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

get_children_lists(self)
See get_children_lists().

get_parameters(self)
See get_parameters().

class imgaug.augmenters.color.WithColorspace(to_colorspace, from_colorspace=’RGB’,
children=None, seed=None, name=None,
random_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.meta.Augmenter

Apply child augmenters within a specific colorspace.

This augumenter takes a source colorspace A and a target colorspace B as well as children C. It changes images
from A to B, then applies the child augmenters C and finally changes the colorspace back from B to A. See also
ChangeColorspace() for more.

Supported dtypes:

See change_colorspaces_().

Parameters

692 Chapter 13. API

imgaug Documentation, Release 0.3.0

• to_colorspace (str) – See change_colorspace_().

• from_colorspace (str, optional) – See change_colorspace_().

• children (imgaug.augmenters.meta.Augmenter or list of im-
gaug.augmenters.meta.Augmenter or None, optional) – One or more augmenters to
apply to converted images.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.WithColorspace(
>>> to_colorspace=iaa.CSPACE_HSV,
>>> from_colorspace=iaa.CSPACE_RGB,
>>> children=iaa.WithChannels(
>>> 0,
>>> iaa.Add((0, 50))
>>>)
>>>)

Convert to HSV colorspace, add a value between 0 and 50 (uniformly sampled per image) to the Hue channel,
then convert back to the input colorspace (RGB).

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

Continued on next page

13.23. imgaug.augmenters.color 693

imgaug Documentation, Release 0.3.0

Table 122 – continued from previous page
augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) See get_children_lists().
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

get_children_lists(self)
See get_children_lists().

get_parameters(self)
See get_parameters().

class imgaug.augmenters.color.WithHueAndSaturation(children=None,
from_colorspace=’RGB’,
seed=None, name=None,
random_state=’deprecated’,
deterministic=’deprecated’)

Bases: imgaug.augmenters.meta.Augmenter

Apply child augmenters to hue and saturation channels.

694 Chapter 13. API

imgaug Documentation, Release 0.3.0

This augumenter takes an image in a source colorspace, converts it to HSV, extracts the H (hue) and S (saturation)
channels, applies the provided child augmenters to these channels and finally converts back to the original
colorspace.

The image array generated by this augmenter and provided to its children is in int16 (sic! only augmenters that
can handle int16 arrays can be children!). The hue channel is mapped to the value range [0, 255]. Before
converting back to the source colorspace, the saturation channel’s values are clipped to [0, 255]. A modulo
operation is applied to the hue channel’s values, followed by a mapping from [0, 255] to [0, 180] (and
finally the colorspace conversion).

Supported dtypes:

See change_colorspaces_().

Parameters

• from_colorspace (str, optional) – See change_colorspace_().

• children (imgaug.augmenters.meta.Augmenter or list of im-
gaug.augmenters.meta.Augmenter or None, optional) – One or more augmenters to
apply to converted images. They receive int16 images with two channels (hue, saturation)
and have to modify these.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.WithHueAndSaturation(
>>> iaa.WithChannels(0, iaa.Add((0, 50)))
>>>)

Create an augmenter that will add a random value between 0 and 50 (uniformly sampled per image) hue channel
in HSV colorspace. It automatically accounts for the hue being in angular representation, i.e. if the angle goes
beyond 360 degrees, it will start again at 0 degrees. The colorspace is finally converted back to RGB (default
setting).

>>> import imgaug.augmenters as iaa
>>> aug = iaa.WithHueAndSaturation([
>>> iaa.WithChannels(0, iaa.Add((-30, 10))),
>>> iaa.WithChannels(1, [
>>> iaa.Multiply((0.5, 1.5)),
>>> iaa.LinearContrast((0.75, 1.25))
>>>])
>>>])

13.23. imgaug.augmenters.color 695

imgaug Documentation, Release 0.3.0

Create an augmenter that adds a random value sampled uniformly from the range [-30, 10] to the hue
and multiplies the saturation by a random factor sampled uniformly from [0.5, 1.5]. It also modifies the
contrast of the saturation channel. After these steps, the HSV image is converted back to RGB.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) See get_children_lists().
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
Continued on next page

696 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 123 – continued from previous page
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

get_children_lists(self)
See get_children_lists().

get_parameters(self)
See get_parameters().

imgaug.augmenters.color.change_color_temperature(image, kelvin,
from_colorspace=’RGB’)

Change the temperature of an image to a given value in Kelvin.

Added in 0.4.0.

Supported dtypes:

See change_color_temperatures_.

Parameters

• image (ndarray) – The image which’s color temperature is supposed to be changed. Ex-
pected to be of shape (H,W,3) array.

• kelvin (number) – The temperature in Kelvin. Expected value range is in the interval
(1000, 4000).

• from_colorspace (str, optional) – The source colorspace. See
change_colorspaces_(). Defaults to RGB.

Returns Image with target color temperature.

Return type ndarray

imgaug.augmenters.color.change_color_temperatures_(images, kelvins,
from_colorspaces=’RGB’)

Change in-place the temperature of images to given values in Kelvin.

Added in 0.4.0.

Supported dtypes:

See change_colorspace_.

Parameters

• images (ndarray or list of ndarray) – The images which’s color temperature is supposed to
be changed. Either a list of (H,W,3) arrays or a single (N,H,W,3) array.

• kelvins (iterable of number) – Temperatures in Kelvin. One per image. Expected value
range is in the interval (1000, 4000).

• from_colorspaces (str or list of str, optional) – The source colorspace. See
change_colorspaces_(). Defaults to RGB.

Returns Images with target color temperatures. The input array(s) might have been changed in-
place.

13.23. imgaug.augmenters.color 697

imgaug Documentation, Release 0.3.0

Return type ndarray or list of ndarray

imgaug.augmenters.color.change_colorspace_(image, to_colorspace,
from_colorspace=’RGB’)

Change the colorspace of an image inplace.

Note: All outputs of this function are uint8. For some colorspaces this may not be optimal.

Note: Output grayscale images will still have three channels.

Supported dtypes:

• uint8: yes; fully tested

• uint16: no

• uint32: no

• uint64: no

• int8: no

• int16: no

• int32: no

• int64: no

• float16: no

• float32: no

• float64: no

• float128: no

• bool: no

Parameters

• image (ndarray) – The image to convert from one colorspace into another. Usually expected
to have shape (H,W,3).

• to_colorspace (str) – The target colorspace. See the CSPACE constants, e.g. imgaug.
augmenters.color.CSPACE_RGB.

• from_colorspace (str, optional) – The source colorspace. Analogous to to_colorspace. De-
faults to RGB.

Returns Image with target colorspace. Can be the same array instance as was originally provided
(i.e. changed inplace). Grayscale images will still have three channels.

Return type ndarray

Examples

>>> import imgaug.augmenters as iaa
>>> import numpy as np
>>> # fake RGB image

(continues on next page)

698 Chapter 13. API

imgaug Documentation, Release 0.3.0

(continued from previous page)

>>> image_rgb = np.arange(4*4*3).astype(np.uint8).reshape((4, 4, 3))
>>> image_bgr = iaa.change_colorspace_(np.copy(image_rgb), iaa.CSPACE_BGR)

imgaug.augmenters.color.change_colorspaces_(images, to_colorspaces,
from_colorspaces=’RGB’)

Change the colorspaces of a batch of images inplace.

Note: All outputs of this function are uint8. For some colorspaces this may not be optimal.

Note: Output grayscale images will still have three channels.

Supported dtypes:

See change_colorspace_().

Parameters

• images (ndarray or list of ndarray) – The images to convert from one colorspace into an-
other. Either a list of (H,W,3) arrays or a single (N,H,W,3) array.

• to_colorspaces (str or iterable of str) – The target colorspaces. Either a single string (all
images will be converted to the same colorspace) or an iterable of strings (one per image).
See the CSPACE constants, e.g. imgaug.augmenters.color.CSPACE_RGB.

• from_colorspaces (str or list of str, optional) – The source colorspace. Analogous to
to_colorspace. Defaults to RGB.

Returns Images with target colorspaces. Can contain the same array instances as were originally
provided (i.e. changed inplace). Grayscale images will still have three channels.

Return type ndarray or list of ndarray

Examples

>>> import imgaug.augmenters as iaa
>>> import numpy as np
>>> # fake RGB image
>>> image_rgb = np.arange(4*4*3).astype(np.uint8).reshape((4, 4, 3))
>>> images_rgb = [image_rgb, image_rgb, image_rgb]
>>> images_rgb_copy = [np.copy(image_rgb) for image_rgb in images_rgb]
>>> images_bgr = iaa.change_colorspaces_(images_rgb_copy, iaa.CSPACE_BGR)

Create three example RGB images and convert them to BGR colorspace.

>>> images_rgb_copy = [np.copy(image_rgb) for image_rgb in images_rgb]
>>> images_various = iaa.change_colorspaces_(
>>> images_rgb_copy, [iaa.CSPACE_BGR, iaa.CSPACE_HSV, iaa.CSPACE_GRAY])

Chnage the colorspace of the first image to BGR, the one of the second image to HSV and the one of the third
image to grayscale (note that in the latter case the image will still have shape (H,W,3), not (H,W,1)).

imgaug.augmenters.color.posterize(arr, nb_bits)
Alias for quantize_uniform_to_n_bits().

13.23. imgaug.augmenters.color 699

imgaug Documentation, Release 0.3.0

This function is an alias for quantize_uniform_to_n_bits() and was added for users familiar with the
same function in PIL.

Added in 0.4.0.

Supported dtypes:

See quantize_uniform_to_n_bits().

Parameters

• arr (ndarray) – See quantize_uniform_to_n_bits().

• nb_bits (int) – See quantize_uniform_to_n_bits().

Returns Array with quantized components.

Return type ndarray

imgaug.augmenters.color.quantize_colors_kmeans(image, n_colors, n_max_iter=10,
eps=1.0)

Deprecated. Use imgaug.augmenters.colors.quantize_kmeans instead.

Outdated name of quantize_kmeans().

Deprecated since 0.4.0.

imgaug.augmenters.color.quantize_colors_uniform(image, n_colors)
Deprecated. Use imgaug.augmenters.colors.quantize_uniform instead.

Outdated name for quantize_uniform().

Deprecated since 0.4.0.

imgaug.augmenters.color.quantize_kmeans(arr, nb_clusters, nb_max_iter=10, eps=1.0)
Quantize an array into N bins using k-means clustering.

If the input is an image, this method returns in an image with a maximum of N colors. Similar colors are grouped
to their mean. The k-means clustering happens across channels and not channelwise.

Code similar to https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_ml/ py_kmeans/py_kmeans_opencv/py_kmeans_opencv.html

Warning: This function currently changes the RNG state of both OpenCV’s internal RNG and imgaug’s
global RNG. This is necessary in order to ensure that the k-means clustering happens deterministically.

Added in 0.4.0. (Previously called quantize_colors_kmeans().)

Supported dtypes:

• uint8: yes; fully tested

• uint16: no

• uint32: no

• uint64: no

• int8: no

• int16: no

• int32: no

• int64: no

• float16: no

700 Chapter 13. API

https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_ml/

imgaug Documentation, Release 0.3.0

• float32: no

• float64: no

• float128: no

• bool: no

Parameters

• arr (ndarray) – Array to quantize. Expected to be of shape (H,W) or (H,W,C) with C
usually being 1 or 3.

• nb_clusters (int) – Number of clusters to quantize into, i.e. k in k-means clustering. This
corresponds to the maximum number of colors in an output image.

• nb_max_iter (int, optional) – Maximum number of iterations that the k-means clustering
algorithm is run.

• eps (float, optional) – Minimum change of all clusters per k-means iteration. If all clusters
change by less than this amount in an iteration, the clustering is stopped.

Returns Image with quantized colors.

Return type ndarray

Examples

>>> import imgaug.augmenters as iaa
>>> import numpy as np
>>> image = np.arange(4 * 4 * 3, dtype=np.uint8).reshape((4, 4, 3))
>>> image_quantized = iaa.quantize_kmeans(image, 6)

Generates a 4x4 image with 3 channels, containing consecutive values from 0 to 4*4*3, leading to an equal
number of colors. These colors are then quantized so that only 6 are remaining. Note that the six remaining
colors do have to appear in the input image.

imgaug.augmenters.color.quantize_uniform(arr, nb_bins, to_bin_centers=True)
Quantize an array into N equally-sized bins.

See quantize_uniform_() for details.

Added in 0.4.0. (Previously called quantize_colors_uniform().)

Supported dtypes:

See quantize_uniform_().

Parameters

• arr (ndarray) – See quantize_uniform_().

• nb_bins (int) – See quantize_uniform_().

• to_bin_centers (bool) – See quantize_uniform_().

Returns Array with quantized components.

Return type ndarray

imgaug.augmenters.color.quantize_uniform_(arr, nb_bins, to_bin_centers=True)
Quantize an array into N equally-sized bins in-place.

This can be used to quantize/posterize an image into N colors.

13.23. imgaug.augmenters.color 701

imgaug Documentation, Release 0.3.0

For uint8 arrays the equation is floor(v/q)*q + q/2 with q = 256/N, where v is a pixel intensity
value and N is the target number of bins (roughly matches number of colors) after quantization.

Added in 0.4.0.

Supported dtypes:

• uint8: yes; fully tested

• uint16: no

• uint32: no

• uint64: no

• int8: no

• int16: no

• int32: no

• int64: no

• float16: no

• float32: no

• float64: no

• float128: no

• bool: no

Parameters

• arr (ndarray) – Array to quantize, usually an image. Expected to be of shape (H,W) or
(H,W,C) with C usually being 1 or 3. This array may be changed in-place.

• nb_bins (int) – Number of equally-sized bins to quantize into. This corresponds to the
maximum number of colors in an output image.

• to_bin_centers (bool) – Whether to quantize each bin (a, b) to a + (b-a)/2 (center
of bin, True) or to a (lower boundary, False).

Returns Array with quantized components. This may be the input array with components changed
in-place.

Return type ndarray

Examples

>>> import imgaug.augmenters as iaa
>>> import numpy as np
>>> image = np.arange(4 * 4 * 3, dtype=np.uint8).reshape((4, 4, 3))
>>> image_quantized = iaa.quantize_uniform_(np.copy(image), 6)

Generates a 4x4 image with 3 channels, containing consecutive values from 0 to 4*4*3, leading to an equal
number of colors. Each component is then quantized into one of 6 bins that regularly split up the value range of
[0..255], i.e. the resolution w.r.t. to the value range is reduced.

imgaug.augmenters.color.quantize_uniform_to_n_bits(arr, nb_bits)
Reduce each component in an array to a maximum number of bits.

See quantize_uniform_to_n_bits() for details.

702 Chapter 13. API

imgaug Documentation, Release 0.3.0

Added in 0.4.0.

Supported dtypes:

See quantize_uniform_to_n_bits_().

Parameters

• arr (ndarray) – See quantize_uniform_to_n_bits().

• nb_bits (int) – See quantize_uniform_to_n_bits().

Returns Array with quantized components.

Return type ndarray

imgaug.augmenters.color.quantize_uniform_to_n_bits_(arr, nb_bits)
Reduce each component in an array to a maximum number of bits in-place.

This operation sets the 8-B highest frequency (rightmost) bits to zero. For B bits this is equivalent to changing
each component’s intensity value v to v' = v & (2**(8-B) - 1), e.g. for B=3 this results in v' = c
& ~(2**(3-1) - 1) = c & ~3 = c & ~0000 0011 = c & 1111 1100.

This is identical to quantize_uniform() with nb_bins=2**nb_bits and
to_bin_centers=False.

This function produces the same outputs as PIL.ImageOps.posterize(), but is significantly faster.

Added in 0.4.0.

Supported dtypes:

See quantize_uniform_().

Parameters

• arr (ndarray) – Array to quantize, usually an image. Expected to be of shape (H,W) or
(H,W,C) with C usually being 1 or 3. This array may be changed in-place.

• nb_bits (int) – Number of bits to keep in each array component.

Returns Array with quantized components. This may be the input array with components changed
in-place.

Return type ndarray

Examples

>>> import imgaug.augmenters as iaa
>>> import numpy as np
>>> image = np.arange(4 * 4 * 3, dtype=np.uint8).reshape((4, 4, 3))
>>> image_quantized = iaa.quantize_uniform_to_n_bits_(np.copy(image), 6)

Generates a 4x4 image with 3 channels, containing consecutive values from 0 to 4*4*3, leading to an equal
number of colors. These colors are then quantized so that each component’s 8-6=2 rightmost bits are set to
zero.

13.24 imgaug.augmenters.contrast

Augmenters that perform contrast changes.

List of augmenters:

13.24. imgaug.augmenters.contrast 703

imgaug Documentation, Release 0.3.0

• GammaContrast

• SigmoidContrast

• LogContrast

• LinearContrast

• AllChannelsHistogramEqualization

• HistogramEqualization

• AllChannelsCLAHE

• CLAHE

class imgaug.augmenters.contrast.AllChannelsCLAHE(clip_limit=(0.1, 8),
tile_grid_size_px=(3, 12),
tile_grid_size_px_min=3,
per_channel=False,
seed=None, name=None, ran-
dom_state=’deprecated’, determin-
istic=’deprecated’)

Bases: imgaug.augmenters.meta.Augmenter

Apply CLAHE to all channels of images in their original colorspaces.

CLAHE (Contrast Limited Adaptive Histogram Equalization) performs histogram equilization within image
patches, i.e. over local neighbourhoods.

In contrast to imgaug.augmenters.contrast.CLAHE, this augmenter operates directly on all channels
of the input images. It does not perform any colorspace transformations and does not focus on specific channels
(e.g. L in Lab colorspace).

Supported dtypes:

• uint8: yes; fully tested

• uint16: yes; tested

• uint32: no (1)

• uint64: no (2)

• int8: no (2)

• int16: no (2)

• int32: no (2)

• int64: no (2)

• float16: no (2)

• float32: no (2)

• float64: no (2)

• float128: no (1)

• bool: no (1)

• (1) rejected by cv2

• (2) results in error in cv2: cv2.error: OpenCV(3.4.2) (...)/clahe.cpp:351:
error: (-215:Assertion failed) src.type() == (((0) & ((1 <<

704 Chapter 13. API

imgaug Documentation, Release 0.3.0

3) - 1)) + (((1)-1) << 3)) || _src.type() == (((2) & ((1 <<
3) - 1)) + (((1)-1) << 3)) in function 'apply'

Parameters

• clip_limit (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – See imgaug.augmenters.
contrast.CLAHE.

• tile_grid_size_px (int or tuple of int or list of int or im-
gaug.parameters.StochasticParameter or tuple of tuple of int or tuple of list of int or tuple
of imgaug.parameters.StochasticParameter, optional) – See imgaug.augmenters.
contrast.CLAHE.

• tile_grid_size_px_min (int, optional) – See imgaug.augmenters.contrast.
CLAHE.

• per_channel (bool or float, optional) – Whether to use the same value for all channels
(False) or to sample a new value for each channel (True). If this value is a float p, then
for p percent of all images per_channel will be treated as True, otherwise as False.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.AllChannelsCLAHE()

Create an augmenter that applies CLAHE to all channels of input images.

>>> aug = iaa.AllChannelsCLAHE(clip_limit=(1, 10))

Same as in the previous example, but the clip_limit used by CLAHE is uniformly sampled per image from the
interval [1, 10]. Some images will therefore have stronger contrast than others (i.e. higher clip limit values).

>>> aug = iaa.AllChannelsCLAHE(clip_limit=(1, 10), per_channel=True)

Same as in the previous example, but the clip_limit is sampled per image and channel, leading to different levels
of contrast for each channel.

Methods

13.24. imgaug.augmenters.contrast 705

imgaug Documentation, Release 0.3.0

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
Continued on next page

706 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 124 – continued from previous page
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

get_parameters(self)
See get_parameters().

class imgaug.augmenters.contrast.AllChannelsHistogramEqualization(seed=None,
name=None,
ran-
dom_state=’deprecated’,
determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.meta.Augmenter

Apply Histogram Eq. to all channels of images in their original colorspaces.

In contrast to imgaug.augmenters.contrast.HistogramEqualization, this augmenter operates
directly on all channels of the input images. It does not perform any colorspace transformations and does not
focus on specific channels (e.g. L in Lab colorspace).

Supported dtypes:

• uint8: yes; fully tested

• uint16: no (1)

• uint32: no (2)

• uint64: no (1)

• int8: no (1)

• int16: no (1)

• int32: no (1)

• int64: no (1)

• float16: no (2)

• float32: no (1)

• float64: no (1)

• float128: no (2)

• bool: no (1)

• (1) causes cv2 error: cv2.error: OpenCV(3.4.5) (...)/histogram.
cpp:3345: error: (-215:Assertion failed) src.type() ==
CV_8UC1 in function 'equalizeHist'

• (2) rejected by cv2

Parameters

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

13.24. imgaug.augmenters.contrast 707

imgaug Documentation, Release 0.3.0

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.AllChannelsHistogramEqualization()

Create an augmenter that applies histogram equalization to all channels of input images in the original col-
orspaces.

>>> aug = iaa.Alpha((0.0, 1.0), iaa.AllChannelsHistogramEqualization())

Same as in the previous example, but alpha-blends the contrast-enhanced augmented images with the original
input images using random blend strengths. This leads to random strengths of the contrast adjustment.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
Continued on next page

708 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 125 – continued from previous page
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

get_parameters(self)
See get_parameters().

class imgaug.augmenters.contrast.CLAHE(clip_limit=(0.1, 8), tile_grid_size_px=(3, 12),
tile_grid_size_px_min=3, from_colorspace=’RGB’,
to_colorspace=’Lab’, seed=None, name=None,
random_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.meta.Augmenter

Apply CLAHE to L/V/L channels in HLS/HSV/Lab colorspaces.

This augmenter applies CLAHE (Contrast Limited Adaptive Histogram Equalization) to images, a form of
histogram equalization that normalizes within local image patches. The augmenter transforms input images to a
target colorspace (e.g. Lab), extracts an intensity-related channel from the converted images (e.g. L for Lab),
applies CLAHE to the channel and then converts the resulting image back to the original colorspace.

Grayscale images (images without channel axis or with only one channel axis) are automatically handled,
from_colorspace does not have to be adjusted for them. For images with four channels (e.g. RGBA), the fourth
channel is ignored in the colorspace conversion (e.g. from an RGBA image, only the RGB part is converted,
normalized, converted back and concatenated with the input A channel). Images with unusual channel numbers
(2, 5 or more than 5) are normalized channel-by-channel (same behaviour as AllChannelsCLAHE, though a
warning will be raised).

If you want to apply CLAHE to each channel of the original input image’s colorspace (without any colorspace
conversion), use imgaug.augmenters.contrast.AllChannelsCLAHE instead.

13.24. imgaug.augmenters.contrast 709

imgaug Documentation, Release 0.3.0

Supported dtypes:

• uint8: yes; fully tested

• uint16: no (1)

• uint32: no (1)

• uint64: no (1)

• int8: no (1)

• int16: no (1)

• int32: no (1)

• int64: no (1)

• float16: no (1)

• float32: no (1)

• float64: no (1)

• float128: no (1)

• bool: no (1)

• (1) This augmenter uses ChangeColorspace, which is currently limited to uint8.

Parameters

• clip_limit (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Clipping limit. Higher values result in
stronger contrast. OpenCV uses a default of 40, though values around 5 seem to already
produce decent contrast.

– If a number, then that value will be used for all images.

– If a tuple (a, b), then a value from the range [a, b] will be used per image.

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then a value will be sampled per image from that pa-
rameter.

• tile_grid_size_px (int or tuple of int or list of int or im-
gaug.parameters.StochasticParameter or tuple of tuple of int or tuple of list of int or
tuple of imgaug.parameters.StochasticParameter, optional) –

Kernel size, i.e. size of each local neighbourhood in pixels.

– If an int, then that value will be used for all images for both kernel height and width.

– If a tuple (a, b), then a value from the discrete interval [a..b] will be uniformly
sampled per image.

– If a list, then a random value will be sampled from that list per image and used for both
kernel height and width.

– If a StochasticParameter, then a value will be sampled per image from that pa-
rameter per image and used for both kernel height and width.

– If a tuple of tuple of int given as ((a, b), (c, d)), then two values will be sam-
pled independently from the discrete ranges [a..b] and [c..d] per image and used
as the kernel height and width.

710 Chapter 13. API

imgaug Documentation, Release 0.3.0

– If a tuple of lists of int, then two values will be sampled independently per image, one
from the first list and one from the second, and used as the kernel height and width.

– If a tuple of StochasticParameter, then two values will be sampled indepdently
per image, one from the first parameter and one from the second, and used as the kernel
height and width.

• tile_grid_size_px_min (int, optional) – Minimum kernel size in px, per axis. If the sam-
pling results in a value lower than this minimum, it will be clipped to this value.

• from_colorspace ({“RGB”, “BGR”, “HSV”, “HLS”, “Lab”}, optional) – Colorspace of
the input images. If any input image has only one or zero channels, this setting will be
ignored and it will be assumed that the input is grayscale. If a fourth channel is present in
an input image, it will be removed before the colorspace conversion and later re-added. See
also change_colorspace_() for details.

• to_colorspace ({“Lab”, “HLS”, “HSV”}, optional) – Colorspace in which to perform
CLAHE. For Lab, CLAHE will only be applied to the first channel (L), for HLS to the
second (L) and for HSV to the third (V). To apply CLAHE to all channels of an in-
put image (without colorspace conversion), see imgaug.augmenters.contrast.
AllChannelsCLAHE.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.CLAHE()

Create a standard CLAHE augmenter.

>>> aug = iaa.CLAHE(clip_limit=(1, 10))

Create a CLAHE augmenter with a clip limit uniformly sampled from [1..10], where 1 is rather low contrast
and 10 is rather high contrast.

>>> aug = iaa.CLAHE(tile_grid_size_px=(3, 21))

Create a CLAHE augmenter with kernel sizes of SxS, where S is uniformly sampled from [3..21]. Sampling
happens once per image.

>>> aug = iaa.CLAHE(
>>> tile_grid_size_px=iap.Discretize(iap.Normal(loc=7, scale=2)),
>>> tile_grid_size_px_min=3)

13.24. imgaug.augmenters.contrast 711

imgaug Documentation, Release 0.3.0

Create a CLAHE augmenter with kernel sizes of SxS, where S is sampled from N(7, 2), but does not go
below 3.

>>> aug = iaa.CLAHE(tile_grid_size_px=((3, 21), [3, 5, 7]))

Create a CLAHE augmenter with kernel sizes of HxW, where H is uniformly sampled from [3..21] and W is
randomly picked from the list [3, 5, 7].

>>> aug = iaa.CLAHE(
>>> from_colorspace=iaa.CSPACE_BGR,
>>> to_colorspace=iaa.CSPACE_HSV)

Create a CLAHE augmenter that converts images from BGR colorspace to HSV colorspace and then applies the
local histogram equalization to the V channel of the images (before converting back to BGR). Alternatively, Lab
(default) or HLS can be used as the target colorspace. Grayscale images (no channels / one channel) are never
converted and are instead directly normalized (i.e. from_colorspace does not have to be changed for them).

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
Continued on next page

712 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 126 – continued from previous page
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

BGR = 'BGR'

HLS = 'HLS'

HSV = 'HSV'

Lab = 'Lab'

RGB = 'RGB'

get_parameters(self)
See get_parameters().

class imgaug.augmenters.contrast.GammaContrast(gamma=(0.7, 1.7), per_channel=False,
seed=None, name=None, ran-
dom_state=’deprecated’, determin-
istic=’deprecated’)

Bases: imgaug.augmenters.contrast._ContrastFuncWrapper

Adjust image contrast by scaling pixel values to 255*((v/255)**gamma).

Values in the range gamma=(0.5, 2.0) seem to be sensible.

Supported dtypes:

See adjust_contrast_gamma().

Parameters

• gamma (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) –

Exponent for the contrast adjustment. Higher values darken the image.

– If a number, then that value will be used for all images.

– If a tuple (a, b), then a value from the range [a, b] will be used per image.

– If a list, then a random value will be sampled from that list per image.

13.24. imgaug.augmenters.contrast 713

imgaug Documentation, Release 0.3.0

– If a StochasticParameter, then a value will be sampled per image from that pa-
rameter.

• per_channel (bool or float, optional) – Whether to use the same value for all channels
(False) or to sample a new value for each channel (True). If this value is a float p, then
for p percent of all images per_channel will be treated as True, otherwise as False.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.GammaContrast((0.5, 2.0))

Modify the contrast of images according to 255*((v/255)**gamma), where v is a pixel value and gamma
is sampled uniformly from the interval [0.5, 2.0] (once per image).

>>> aug = iaa.GammaContrast((0.5, 2.0), per_channel=True)

Same as in the previous example, but gamma is sampled once per image and channel.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

Continued on next page

714 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 127 – continued from previous page
augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.contrast.HistogramEqualization(from_colorspace=’RGB’,
to_colorspace=’Lab’,
seed=None, name=None,
random_state=’deprecated’,
determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.meta.Augmenter

Apply Histogram Eq. to L/V/L channels of images in HLS/HSV/Lab colorspaces.

This augmenter is similar to imgaug.augmenters.contrast.CLAHE.

The augmenter transforms input images to a target colorspace (e.g. Lab), extracts an intensity-related channel
from the converted images (e.g. L for Lab), applies Histogram Equalization to the channel and then converts
the resulting image back to the original colorspace.

13.24. imgaug.augmenters.contrast 715

imgaug Documentation, Release 0.3.0

Grayscale images (images without channel axis or with only one channel axis) are automatically handled,
from_colorspace does not have to be adjusted for them. For images with four channels (e.g. RGBA),
the fourth channel is ignored in the colorspace conversion (e.g. from an RGBA image, only the RGB
part is converted, normalized, converted back and concatenated with the input A channel). Images with
unusual channel numbers (2, 5 or more than 5) are normalized channel-by-channel (same behaviour as
AllChannelsHistogramEqualization, though a warning will be raised).

If you want to apply HistogramEqualization to each channel of the original input image’s
colorspace (without any colorspace conversion), use imgaug.augmenters.contrast.
AllChannelsHistogramEqualization instead.

Supported dtypes:

• uint8: yes; fully tested

• uint16: no (1)

• uint32: no (1)

• uint64: no (1)

• int8: no (1)

• int16: no (1)

• int32: no (1)

• int64: no (1)

• float16: no (1)

• float32: no (1)

• float64: no (1)

• float128: no (1)

• bool: no (1)

• (1) This augmenter uses AllChannelsHistogramEqualization, which only supports
uint8.

Parameters

• from_colorspace ({“RGB”, “BGR”, “HSV”, “HLS”, “Lab”}, optional) – Colorspace of
the input images. If any input image has only one or zero channels, this setting will be
ignored and it will be assumed that the input is grayscale. If a fourth channel is present in
an input image, it will be removed before the colorspace conversion and later re-added. See
also change_colorspace_() for details.

• to_colorspace ({“Lab”, “HLS”, “HSV”}, optional) – Colorspace in which to perform His-
togram Equalization. For Lab, the equalization will only be applied to the first channel (L),
for HLS to the second (L) and for HSV to the third (V). To apply histogram equalization to all
channels of an input image (without colorspace conversion), see imgaug.augmenters.
contrast.AllChannelsHistogramEqualization.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

716 Chapter 13. API

imgaug Documentation, Release 0.3.0

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.HistogramEqualization()

Create an augmenter that converts images to HLS/HSV/Lab colorspaces, extracts intensity-related channels (i.e.
L/V/L), applies histogram equalization to these channels and converts back to the input colorspace.

>>> aug = iaa.Alpha((0.0, 1.0), iaa.HistogramEqualization())

Same as in the previous example, but alpha blends the result, leading to various strengths of contrast normaliza-
tion.

>>> aug = iaa.HistogramEqualization(
>>> from_colorspace=iaa.CSPACE_BGR,
>>> to_colorspace=iaa.CSPACE_HSV)

Same as in the first example, but the colorspace of input images has to be BGR (instead of default RGB) and the
histogram equalization is applied to the V channel in HSV colorspace.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

Continued on next page

13.24. imgaug.augmenters.contrast 717

imgaug Documentation, Release 0.3.0

Table 128 – continued from previous page
copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

BGR = 'BGR'

HLS = 'HLS'

HSV = 'HSV'

Lab = 'Lab'

RGB = 'RGB'

get_parameters(self)
See get_parameters().

class imgaug.augmenters.contrast.LinearContrast(alpha=(0.6, 1.4), per_channel=False,
seed=None, name=None, ran-
dom_state=’deprecated’, deter-
ministic=’deprecated’)

Bases: imgaug.augmenters.contrast._ContrastFuncWrapper

Adjust contrast by scaling each pixel to 127 + alpha*(v-127).

Supported dtypes:

718 Chapter 13. API

imgaug Documentation, Release 0.3.0

See adjust_contrast_linear().

Parameters

• alpha (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Multiplier to linearly pronounce
(>1.0), dampen (0.0 to 1.0) or invert (<0.0) the difference between each pixel value
and the dtype’s center value, e.g. 127 for uint8.

– If a number, then that value will be used for all images.

– If a tuple (a, b), then a value from the interval [a, b] will be used per image.

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then a value will be sampled per image from that pa-
rameter.

• per_channel (bool or float, optional) – Whether to use the same value for all channels
(False) or to sample a new value for each channel (True). If this value is a float p, then
for p percent of all images per_channel will be treated as True, otherwise as False.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.LinearContrast((0.4, 1.6))

Modify the contrast of images according to 127 + alpha*(v-127)‘, where v is a pixel value and alpha is
sampled uniformly from the interval [0.4, 1.6] (once per image).

>>> aug = iaa.LinearContrast((0.4, 1.6), per_channel=True)

Same as in the previous example, but alpha is sampled once per image and channel.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.

Continued on next page

13.24. imgaug.augmenters.contrast 719

imgaug Documentation, Release 0.3.0

Table 129 – continued from previous page
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

720 Chapter 13. API

imgaug Documentation, Release 0.3.0

class imgaug.augmenters.contrast.LogContrast(gain=(0.4, 1.6), per_channel=False,
seed=None, name=None, ran-
dom_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.contrast._ContrastFuncWrapper

Adjust image contrast by scaling pixels to 255*gain*log_2(1+v/255).

This augmenter is fairly similar to imgaug.augmenters.arithmetic.Multiply.

Supported dtypes:

See adjust_contrast_log().

Parameters

• gain (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Multiplier for the logarithm result.
Values around 1.0 lead to a contrast-adjusted images. Values above 1.0 quickly lead to
partially broken images due to exceeding the datatype’s value range.

– If a number, then that value will be used for all images.

– If a tuple (a, b), then a value from the interval [a, b] will uniformly sampled be
used per image.

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then a value will be sampled per image from that pa-
rameter.

• per_channel (bool or float, optional) – Whether to use the same value for all channels
(False) or to sample a new value for each channel (True). If this value is a float p, then
for p percent of all images per_channel will be treated as True, otherwise as False.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.LogContrast(gain=(0.6, 1.4))

Modify the contrast of images according to 255*gain*log_2(1+v/255), where v is a pixel value and
gain is sampled uniformly from the interval [0.6, 1.4] (once per image).

>>> aug = iaa.LogContrast(gain=(0.6, 1.4), per_channel=True)

13.24. imgaug.augmenters.contrast 721

imgaug Documentation, Release 0.3.0

Same as in the previous example, but gain is sampled once per image and channel.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

Continued on next page

722 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 130 – continued from previous page
reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.contrast.SigmoidContrast(gain=(5, 6), cutoff=(0.3,
0.6), per_channel=False,
seed=None, name=None, ran-
dom_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.contrast._ContrastFuncWrapper

Adjust image contrast to 255*1/(1+exp(gain*(cutoff-I_ij/255))).

Values in the range gain=(5, 20) and cutoff=(0.25, 0.75) seem to be sensible.

A combination of gain=5.5 and cutof=0.45 is fairly close to the identity function.

Supported dtypes:

See adjust_contrast_sigmoid().

Parameters

• gain (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Multiplier for the sigmoid function’s
output. Higher values lead to quicker changes from dark to light pixels.

– If a number, then that value will be used for all images.

– If a tuple (a, b), then a value from the interval [a, b] will be sampled uniformly per
image.

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then a value will be sampled per image from that pa-
rameter.

• cutoff (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Cutoff that shifts the sigmoid function in
horizontal direction. Higher values mean that the switch from dark to light pixels happens
later, i.e. the pixels will remain darker.

– If a number, then that value will be used for all images.

– If a tuple (a, b), then a value from the range [a, b] will be used per image.

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then a value will be sampled per image from that pa-
rameter.

• per_channel (bool or float, optional) – Whether to use the same value for all channels
(False) or to sample a new value for each channel (True). If this value is a float p, then
for p percent of all images per_channel will be treated as True, otherwise as False.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

13.24. imgaug.augmenters.contrast 723

imgaug Documentation, Release 0.3.0

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.SigmoidContrast(gain=(3, 10), cutoff=(0.4, 0.6))

Modify the contrast of images according to 255*1/(1+exp(gain*(cutoff-v/255))), where v is a
pixel value, gain is sampled uniformly from the interval [3, 10] (once per image) and cutoff is sampled
uniformly from the interval [0.4, 0.6] (also once per image).

>>> aug = iaa.SigmoidContrast(
>>> gain=(3, 10), cutoff=(0.4, 0.6), per_channel=True)

Same as in the previous example, but gain and cutoff are each sampled once per image and channel.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

Continued on next page

724 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 131 – continued from previous page
deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

imgaug.augmenters.contrast.adjust_contrast_gamma(arr, gamma)
Adjust image contrast by scaling pixel values to 255*((v/255)**gamma).

Supported dtypes:

• uint8: yes; fully tested (1) (2) (3)

• uint16: yes; tested (2) (3)

• uint32: yes; tested (2) (3)

• uint64: yes; tested (2) (3) (4)

• int8: limited; tested (2) (3) (5)

• int16: limited; tested (2) (3) (5)

• int32: limited; tested (2) (3) (5)

• int64: limited; tested (2) (3) (4) (5)

• float16: limited; tested (5)

• float32: limited; tested (5)

• float64: limited; tested (5)

• float128: no (6)

• bool: no (7)

13.24. imgaug.augmenters.contrast 725

imgaug Documentation, Release 0.3.0

• (1) Handled by cv2. Other dtypes are handled by skimage.

• (2) Normalization is done as I_ij/max, where max is the maximum value of the dtype, e.g.
255 for uint8. The normalization is reversed afterwards, e.g. result*255 for uint8.

• (3) Integer-like values are not rounded after applying the contrast adjustment equation (before
inverting the normalization to [0.0, 1.0] space), i.e. projection from continuous space
to discrete happens according to floor function.

• (4) Note that scikit-image doc says that integers are converted to float64 values before ap-
plying the contrast normalization method. This might lead to inaccuracies for large 64bit
integer values. Tests showed no indication of that happening though.

• (5) Must not contain negative values. Values >=0 are fully supported.

• (6) Leads to error in scikit-image.

• (7) Does not make sense for contrast adjustments.

Parameters

• arr (numpy.ndarray) – Array for which to adjust the contrast. Dtype uint8 is fastest.

• gamma (number) – Exponent for the contrast adjustment. Higher values darken the image.

Returns Array with adjusted contrast.

Return type numpy.ndarray

imgaug.augmenters.contrast.adjust_contrast_linear(arr, alpha)
Adjust contrast by scaling each pixel to 127 + alpha*(v-127).

Supported dtypes:

• uint8: yes; fully tested (1) (2)

• uint16: yes; tested (2)

• uint32: yes; tested (2)

• uint64: no (3)

• int8: yes; tested (2)

• int16: yes; tested (2)

• int32: yes; tested (2)

• int64: no (2)

• float16: yes; tested (2)

• float32: yes; tested (2)

• float64: yes; tested (2)

• float128: no (2)

• bool: no (4)

• (1) Handled by cv2. Other dtypes are handled by raw numpy.

• (2) Only tested for reasonable alphas with up to a value of around 100.

• (3) Conversion to float64 is done during augmentation, hence uint64, int64, and
float128 support cannot be guaranteed.

726 Chapter 13. API

imgaug Documentation, Release 0.3.0

• (4) Does not make sense for contrast adjustments.

Parameters

• arr (numpy.ndarray) – Array for which to adjust the contrast. Dtype uint8 is fastest.

• alpha (number) – Multiplier to linearly pronounce (>1.0), dampen (0.0 to 1.0) or invert
(<0.0) the difference between each pixel value and the dtype’s center value, e.g. 127 for
uint8.

Returns Array with adjusted contrast.

Return type numpy.ndarray

imgaug.augmenters.contrast.adjust_contrast_log(arr, gain)
Adjust image contrast by scaling pixels to 255*gain*log_2(1+v/255).

Supported dtypes:

• uint8: yes; fully tested (1) (2) (3)

• uint16: yes; tested (2) (3)

• uint32: no; tested (2) (3) (8)

• uint64: no; tested (2) (3) (4) (8)

• int8: limited; tested (2) (3) (5)

• int16: limited; tested (2) (3) (5)

• int32: no; tested (2) (3) (5) (8)

• int64: no; tested (2) (3) (4) (5) (8)

• float16: limited; tested (5)

• float32: limited; tested (5)

• float64: limited; tested (5)

• float128: no (6)

• bool: no (7)

• (1) Handled by cv2. Other dtypes are handled by skimage.

• (2) Normalization is done as I_ij/max, where max is the maximum value of the dtype, e.g.
255 for uint8. The normalization is reversed afterwards, e.g. result*255 for uint8.

• (3) Integer-like values are not rounded after applying the contrast adjustment equation (before
inverting the normalization to [0.0, 1.0] space), i.e. projection from continuous space
to discrete happens according to floor function.

• (4) Note that scikit-image doc says that integers are converted to float64 values before ap-
plying the contrast normalization method. This might lead to inaccuracies for large 64bit
integer values. Tests showed no indication of that happening though.

• (5) Must not contain negative values. Values >=0 are fully supported.

• (6) Leads to error in scikit-image.

• (7) Does not make sense for contrast adjustments.

• (8) No longer supported since numpy 1.17. Previously: ‘yes’ for uint32, uint64; ‘limited’
for int32, int64.

13.24. imgaug.augmenters.contrast 727

imgaug Documentation, Release 0.3.0

Parameters

• arr (numpy.ndarray) – Array for which to adjust the contrast. Dtype uint8 is fastest.

• gain (number) – Multiplier for the logarithm result. Values around 1.0 lead to a contrast-
adjusted images. Values above 1.0 quickly lead to partially broken images due to exceeding
the datatype’s value range.

Returns Array with adjusted contrast.

Return type numpy.ndarray

imgaug.augmenters.contrast.adjust_contrast_sigmoid(arr, gain, cutoff)
Adjust image contrast to 255*1/(1+exp(gain*(cutoff-I_ij/255))).

Supported dtypes:

• uint8: yes; fully tested (1) (2) (3)

• uint16: yes; tested (2) (3)

• uint32: yes; tested (2) (3)

• uint64: yes; tested (2) (3) (4)

• int8: limited; tested (2) (3) (5)

• int16: limited; tested (2) (3) (5)

• int32: limited; tested (2) (3) (5)

• int64: limited; tested (2) (3) (4) (5)

• float16: limited; tested (5)

• float32: limited; tested (5)

• float64: limited; tested (5)

• float128: no (6)

• bool: no (7)

• (1) Handled by cv2. Other dtypes are handled by skimage.

• (2) Normalization is done as I_ij/max, where max is the maximum value of the dtype, e.g.
255 for uint8. The normalization is reversed afterwards, e.g. result*255 for uint8.

• (3) Integer-like values are not rounded after applying the contrast adjustment equation before
inverting the normalization to [0.0, 1.0] space), i.e. projection from continuous space
to discrete happens according to floor function.

• (4) Note that scikit-image doc says that integers are converted to float64 values before ap-
plying the contrast normalization method. This might lead to inaccuracies for large 64bit
integer values. Tests showed no indication of that happening though.

• (5) Must not contain negative values. Values >=0 are fully supported.

• (6) Leads to error in scikit-image.

• (7) Does not make sense for contrast adjustments.

Parameters

• arr (numpy.ndarray) – Array for which to adjust the contrast. Dtype uint8 is fastest.

728 Chapter 13. API

imgaug Documentation, Release 0.3.0

• gain (number) – Multiplier for the sigmoid function’s output. Higher values lead to quicker
changes from dark to light pixels.

• cutoff (number) – Cutoff that shifts the sigmoid function in horizontal direction. Higher
values mean that the switch from dark to light pixels happens later, i.e. the pixels will
remain darker.

Returns Array with adjusted contrast.

Return type numpy.ndarray

13.25 imgaug.augmenters.convolutional

Augmenters that are based on applying convolution kernels to images.

List of augmenters:

• Convolve

• Sharpen

• Emboss

• EdgeDetect

• DirectedEdgeDetect

For MotionBlur, see blur.py.

class imgaug.augmenters.convolutional.Convolve(matrix=None, seed=None, name=None,
random_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.meta.Augmenter

Apply a convolution to input images.

Supported dtypes:

• uint8: yes; fully tested

• uint16: yes; tested

• uint32: no (1)

• uint64: no (2)

• int8: yes; tested (3)

• int16: yes; tested

• int32: no (2)

• int64: no (2)

• float16: yes; tested (4)

• float32: yes; tested

• float64: yes; tested

• float128: no (1)

• bool: yes; tested (4)

• (1) rejected by cv2.filter2D().

13.25. imgaug.augmenters.convolutional 729

imgaug Documentation, Release 0.3.0

• (2) causes error: cv2.error: OpenCV(3.4.2) (. . .)/filter.cpp:4487: error: (-213:The func-
tion/feature is not implemented) Unsupported combination of source format (=1), and des-
tination format (=1) in function ‘getLinearFilter’.

• (3) mapped internally to int16.

• (4) mapped internally to float32.

Parameters

• matrix (None or (H, W) ndarray or imgaug.parameters.StochasticParameter or callable,
optional) –

The weight matrix of the convolution kernel to apply.

– If None, the input images will not be changed.

– If a 2D numpy array, that array will always be used for all images and channels as the
kernel.

– If a callable, that method will be called for each image via parameter(image, C,
random_state). The function must either return a list of C matrices (i.e. one per
channel) or a 2D numpy array (will be used for all channels) or a 3D HxWxC numpy
array. If a list is returned, each entry may be None, which will result in no changes to the
respective channel.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> matrix = np.array([[0, -1, 0],
>>> [-1, 4, -1],
>>> [0, -1, 0]])
>>> aug = iaa.Convolve(matrix=matrix)

Convolves all input images with the kernel shown in the matrix variable.

>>> def gen_matrix(image, nb_channels, random_state):
>>> matrix_A = np.array([[0, -1, 0],
>>> [-1, 4, -1],
>>> [0, -1, 0]])
>>> matrix_B = np.array([[0, 1, 0],
>>> [1, -4, 1],
>>> [0, 1, 0]])

(continues on next page)

730 Chapter 13. API

imgaug Documentation, Release 0.3.0

(continued from previous page)

>>> if image.shape[0] % 2 == 0:
>>> return [matrix_A] * nb_channels
>>> else:
>>> return [matrix_B] * nb_channels
>>> aug = iaa.Convolve(matrix=gen_matrix)

Convolves images that have an even height with matrix A and images having an odd height with matrix B.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.

Continued on next page

13.25. imgaug.augmenters.convolutional 731

imgaug Documentation, Release 0.3.0

Table 132 – continued from previous page
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

get_parameters(self)
See get_parameters().

class imgaug.augmenters.convolutional.DirectedEdgeDetect(alpha=(0.0, 0.75),
direction=(0.0,
1.0), seed=None,
name=None, ran-
dom_state=’deprecated’,
determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.convolutional.Convolve

Detect edges from specified angles and alpha-blend with the input image.

This augmenter first detects edges along a certain angle. Usually, edges are detected in x- or y-direction, while
here the edge detection kernel is rotated to match a specified angle. The result of applying the kernel is a black
(non-edges) and white (edges) image. That image is alpha-blended with the input image.

Supported dtypes:

See Convolve.

Parameters

• alpha (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Blending factor of the edge image.
At 0.0, only the original image is visible, at 1.0 only the edge image is visible.

– If a number, exactly that value will always be used.

– If a tuple (a, b), a random value will be sampled from the interval [a, b] per image.

– If a list, a random value will be sampled from that list per image.

– If a StochasticParameter, a value will be sampled from that parameter per image.

• direction (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Angle (in degrees) of edges to
pronounce, where 0 represents 0 degrees and 1.0 represents 360 degrees (both clockwise,
starting at the top). Default value is (0.0, 1.0), i.e. pick a random angle per image.

– If a number, exactly that value will always be used.

– If a tuple (a, b), a random value will be sampled from the interval [a, b] will be
sampled per image.

– If a list, then a random value will be sampled from that list per image.

732 Chapter 13. API

imgaug Documentation, Release 0.3.0

– If a StochasticParameter, a value will be sampled from the parameter per image.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.DirectedEdgeDetect(alpha=1.0, direction=0)

Turn input images into edge images in which edges are detected from the top side of the image (i.e. the top sides
of horizontal edges are part of the edge image, while vertical edges are ignored).

>>> aug = iaa.DirectedEdgeDetect(alpha=1.0, direction=90/360)

Same as before, but edges are detected from the right. Horizontal edges are now ignored.

>>> aug = iaa.DirectedEdgeDetect(alpha=1.0, direction=(0.0, 1.0))

Same as before, but edges are detected from a random angle sampled uniformly from the interval [0deg,
360deg].

>>> aug = iaa.DirectedEdgeDetect(alpha=(0.0, 0.3), direction=0)

Similar to the previous examples, but here the edge image is alpha-blended with the input image. The result is
a mixture between the edge image and the input image. The blending factor is randomly sampled between 0%
and 30%.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
Continued on next page

13.25. imgaug.augmenters.convolutional 733

imgaug Documentation, Release 0.3.0

Table 133 – continued from previous page
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.convolutional.EdgeDetect(alpha=(0.0, 0.75),
seed=None, name=None, ran-
dom_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.convolutional.Convolve

Generate a black & white edge image and alpha-blend it with the input image.

Supported dtypes:

See Convolve.

734 Chapter 13. API

imgaug Documentation, Release 0.3.0

Parameters

• alpha (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Blending factor of the edge image.
At 0.0, only the original image is visible, at 1.0 only the edge image is visible.

– If a number, exactly that value will always be used.

– If a tuple (a, b), a random value will be sampled from the interval [a, b] per image.

– If a list, a random value will be sampled from that list per image.

– If a StochasticParameter, a value will be sampled from that parameter per image.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.EdgeDetect(alpha=(0.0, 1.0))

Detect edges in an image, mark them as black (non-edge) and white (edges) and alpha-blend the result with the
original input image using a random blending factor between 0% and 100%.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

Continued on next page

13.25. imgaug.augmenters.convolutional 735

imgaug Documentation, Release 0.3.0

Table 134 – continued from previous page
augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.convolutional.Emboss(alpha=(0.0, 1.0), strength=(0.25,
1.0), seed=None, name=None, ran-
dom_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.convolutional.Convolve

Emboss images and alpha-blend the result with the original input images.

The embossed version pronounces highlights and shadows, letting the image look as if it was recreated on a
metal plate (“embossed”).

Supported dtypes:

See Convolve.

Parameters

736 Chapter 13. API

imgaug Documentation, Release 0.3.0

• alpha (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Blending factor of the embossed
image. At 0.0, only the original image is visible, at 1.0 only its embossed version is
visible.

– If a number, exactly that value will always be used.

– If a tuple (a, b), a random value will be sampled from the interval [a, b] per image.

– If a list, a random value will be sampled from that list per image.

– If a StochasticParameter, a value will be sampled from that parameter per image.

• strength (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Parameter that controls the strength of
the embossing. Sane values are somewhere in the interval [0.0, 2.0] with 1.0 being
the standard embossing effect. Default value is 1.0.

– If a number, exactly that value will always be used.

– If a tuple (a, b), a random value will be sampled from the interval [a, b] per image.

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, a value will be sampled from the parameter per image.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Emboss(alpha=(0.0, 1.0), strength=(0.5, 1.5))

Emboss an image with a strength sampled uniformly from the interval [0.5, 1.5] and alpha-blend the result
with the original input image using a random blending factor between 0% and 100%.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.

Continued on next page

13.25. imgaug.augmenters.convolutional 737

imgaug Documentation, Release 0.3.0

Table 135 – continued from previous page
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

738 Chapter 13. API

imgaug Documentation, Release 0.3.0

class imgaug.augmenters.convolutional.Sharpen(alpha=(0.0, 0.2), lightness=(0.8,
1.2), seed=None, name=None, ran-
dom_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.convolutional.Convolve

Sharpen images and alpha-blend the result with the original input images.

Supported dtypes:

See Convolve.

Parameters

• alpha (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Blending factor of the sharpened
image. At 0.0, only the original image is visible, at 1.0 only its sharpened version is
visible.

– If a number, exactly that value will always be used.

– If a tuple (a, b), a random value will be sampled from the interval [a, b] per image.

– If a list, a random value will be sampled from that list per image.

– If a StochasticParameter, a value will be sampled from that parameter per image.

• lightness (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Lightness/brightness of the sharped
image. Sane values are somewhere in the interval [0.5, 2.0]. The value 0.0 results in
an edge map. Values higher than 1.0 create bright images. Default value is 1.0.

– If a number, exactly that value will always be used.

– If a tuple (a, b), a random value will be sampled from the interval [a, b] per image.

– If a list, a random value will be sampled from that list per image.

– If a StochasticParameter, a value will be sampled from that parameter per image.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Sharpen(alpha=(0.0, 1.0))

13.25. imgaug.augmenters.convolutional 739

imgaug Documentation, Release 0.3.0

Sharpens input images and blends the sharpened image with the input image using a random blending factor
between 0% and 100% (uniformly sampled).

>>> aug = iaa.Sharpen(alpha=(0.0, 1.0), lightness=(0.75, 2.0))

Sharpens input images with a variable lightness sampled uniformly from the interval [0.75, 2.0] and with
a fully random blending factor (as in the above example).

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.

Continued on next page

740 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 136 – continued from previous page
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

13.26 imgaug.augmenters.debug

Augmenters that help with debugging.

List of augmenters:

• SaveDebugImageEveryNBatches

Added in 0.4.0.

class imgaug.augmenters.debug.SaveDebugImageEveryNBatches(destination, inter-
val, seed=None,
name=None, ran-
dom_state=’deprecated’,
determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.debug._SaveDebugImage

Visualize data in batches and save corresponding plots to a folder.

Added in 0.4.0.

Supported dtypes:

See draw_debug_image().

Parameters

• destination (str or _IImageDestination) – Path to a folder. The saved images will follow
a filename pattern of batch_<batch_id>.png. The latest image will additionally be
saved to latest.png.

• interval (int) – Interval in batches. If set to N, every N th batch an image will be gener-
ated and saved, starting with the first observed batch. Note that the augmenter only counts
batches that it sees. If it is executed conditionally or re-instantiated, it may not see all
batches or the counter may be wrong in other ways.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage

13.26. imgaug.augmenters.debug 741

imgaug Documentation, Release 0.3.0

will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> import tempfile
>>> folder_path = tempfile.mkdtemp()
>>> seq = iaa.Sequential([
>>> iaa.Sequential([
>>> iaa.Fliplr(0.5),
>>> iaa.Crop(px=(0, 16))
>>>], random_order=True),
>>> iaa.SaveDebugImageEveryNBatches(folder_path, 100)
>>>])

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.

Continued on next page

742 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 137 – continued from previous page
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) Get the parameters of this augmenter.
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

get_parameters(self)
Get the parameters of this augmenter.

Returns List of parameters of arbitrary types (usually child class of
StochasticParameter, but not guaranteed to be).

Return type list

imgaug.augmenters.debug.draw_debug_image(images, heatmaps=None, segmenta-
tion_maps=None, keypoints=None,
bounding_boxes=None, polygons=None,
line_strings=None)

Generate a debug image grid of a single batch and various datatypes.

Added in 0.4.0.

Supported dtypes:

• uint8: yes; tested

• uint16: ?

• uint32: ?

• uint64: ?

• int8: ?

• int16: ?

• int32: ?

• int64: ?

13.26. imgaug.augmenters.debug 743

imgaug Documentation, Release 0.3.0

• float16: ?

• float32: ?

• float64: ?

• float128: ?

• bool: ?

Parameters

• images (ndarray or list of ndarray) – Images in the batch. Must always be provided. Batches
without images cannot be visualized.

• heatmaps (None or list of imgaug.augmentables.heatmaps.HeatmapsOnImage, optional) –
Heatmaps on the provided images.

• segmentation_maps (None or list of imgaug.augmentables.segmaps.SegmentationMapsOnImage,
optional) – Segmentation maps on the provided images.

• keypoints (None or list of imgaug.augmentables.kps.KeypointsOnImage, optional) – Key-
points on the provided images.

• bounding_boxes (None or list of imgaug.augmentables.bbs.BoundingBoxesOnImage, op-
tional) – Bounding boxes on the provided images.

• polygons (None or list of imgaug.augmentables.polys.PolygonsOnImage, optional) – Poly-
gons on the provided images.

• line_strings (None or list of imgaug.augmentables.lines.LineStringsOnImage, optional) –
Line strings on the provided images.

Returns Visualized batch as RGB image.

Return type ndarray

Examples

>>> import numpy as np
>>> import imgaug.augmenters as iaa
>>> image = np.zeros((64, 64, 3), dtype=np.uint8)
>>> debug_image = iaa.draw_debug_image(images=[image, image])

Generate a debug image for two empty images.

>>> from imgaug.augmentables.kps import KeypointsOnImage
>>> kpsoi = KeypointsOnImage.from_xy_array([(10.5, 20.5), (30.5, 30.5)],
>>> shape=image.shape)
>>> debug_image = iaa.draw_debug_image(images=[image, image],
>>> keypoints=[kpsoi, kpsoi])

Generate a debug image for two empty images, each having two keypoints drawn on them.

>>> from imgaug.augmentables.batches import UnnormalizedBatch
>>> segmap_arr = np.zeros((32, 32, 1), dtype=np.int32)
>>> kp_tuples = [(10.5, 20.5), (30.5, 30.5)]
>>> batch = UnnormalizedBatch(images=[image, image],
>>> segmentation_maps=[segmap_arr, segmap_arr],
>>> keypoints=[kp_tuples, kp_tuples])

(continues on next page)

744 Chapter 13. API

imgaug Documentation, Release 0.3.0

(continued from previous page)

>>> batch = batch.to_normalized_batch()
>>> debug_image = iaa.draw_debug_image(
>>> images=batch.images_unaug,
>>> segmentation_maps=batch.segmentation_maps_unaug,
>>> keypoints=batch.keypoints_unaug)

Generate a debug image for two empty images, each having an empty segmentation map and two keypoints
drawn on them. This example uses UnnormalizedBatch to show how to mostly evade going through
imgaug classes.

13.27 imgaug.augmenters.edges

Augmenters that deal with edge detection.

List of augmenters:

• Canny

EdgeDetect and DirectedEdgeDetect are currently still in convolutional.py.

class imgaug.augmenters.edges.Canny(alpha=(0.0, 1.0), hysteresis_thresholds=((60, 140),
(160, 240)), sobel_kernel_size=(3, 7), colorizer=None,
seed=None, name=None, random_state=’deprecated’,
deterministic=’deprecated’)

Bases: imgaug.augmenters.meta.Augmenter

Apply a canny edge detector to input images.

Supported dtypes:

• uint8: yes; fully tested

• uint16: no; not tested

• uint32: no; not tested

• uint64: no; not tested

• int8: no; not tested

• int16: no; not tested

• int32: no; not tested

• int64: no; not tested

• float16: no; not tested

• float32: no; not tested

• float64: no; not tested

• float128: no; not tested

• bool: no; not tested

Parameters

• alpha (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Blending factor to use in alpha
blending. A value close to 1.0 means that only the edge image is visible. A value close to
0.0 means that only the original image is visible. A value close to 0.5 means that the images

13.27. imgaug.augmenters.edges 745

imgaug Documentation, Release 0.3.0

are merged according to 0.5*image + 0.5*edge_image. If a sample from this parameter is
0, no action will be performed for the corresponding image.

– If an int or float, exactly that value will be used.

– If a tuple (a, b), a random value from the range a <= x <= b will be sampled per
image.

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, a value will be sampled from the parameter per image.

• hysteresis_thresholds (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter or tuple of tuple of number or tuple of list of num-
ber or tuple of imgaug.parameters.StochasticParameter, optional) – Min and max values to
use in hysteresis thresholding. (This parameter seems to have not very much effect on the
results.) Either a single parameter or a tuple of two parameters. If a single parameter is pro-
vided, the sampling happens once for all images with (N,2) samples being requested from
the parameter, where each first value denotes the hysteresis minimum and each second the
maximum. If a tuple of two parameters is provided, one sampling of (N,) values is indepen-
dently performed per parameter (first parameter: hysteresis minimum, second: hysteresis
maximum).

– If this is a single number, both min and max value will always be exactly that value.

– If this is a tuple of numbers (a, b), two random values from the range a <= x <=
b will be sampled per image.

– If this is a list, two random values will be sampled from that list per image.

– If this is a StochasticParameter, two random values will be sampled from that parameter
per image.

– If this is a tuple (min, max) with min and max both not being numbers, they will be
treated according to the rules above (i.e. may be a number, tuple, list or StochasticParam-
eter). A single value will be sampled per image and parameter.

• sobel_kernel_size (int or tuple of int or list of int or im-
gaug.parameters.StochasticParameter, optional) – Kernel size of the sobel operator
initially applied to each image. This corresponds to apertureSize in cv2.Canny().
If a sample from this parameter is <=1, no action will be performed for the corresponding
image. The maximum for this parameter is 7 (inclusive). Higher values are not accepted by
OpenCV. If an even value v is sampled, it is automatically changed to v-1.

– If this is a single integer, the kernel size always matches that value.

– If this is a tuple of integers (a, b), a random discrete value will be sampled from the
range a <= x <= b per image.

– If this is a list, a random value will be sampled from that list per image.

– If this is a StochasticParameter, a random value will be sampled from that parameter per
image.

• colorizer (None or imgaug.augmenters.edges.IBinaryImageColorizer, optional) – A strat-
egy to convert binary edge images to color images. If this is None, an instance of
RandomColorBinaryImageColorizer is created, which means that each edge im-
age is converted into an uint8 image, where edge and non-edge pixels each have a different
color that was uniformly randomly sampled from the space of all uint8 colors.

746 Chapter 13. API

imgaug Documentation, Release 0.3.0

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Canny()

Create an augmenter that generates random blends between images and their canny edge representations.

>>> aug = iaa.Canny(alpha=(0.0, 0.5))

Create a canny edge augmenter that generates edge images with a blending factor of max 50%, i.e. the original
(non-edge) image is always at least partially visible.

>>> aug = iaa.Canny(
>>> alpha=(0.0, 0.5),
>>> colorizer=iaa.RandomColorsBinaryImageColorizer(
>>> color_true=255,
>>> color_false=0
>>>)
>>>)

Same as in the previous example, but the edge image always uses the color white for edges and black for the
background.

>>> aug = iaa.Canny(alpha=(0.5, 1.0), sobel_kernel_size=[3, 7])

Create a canny edge augmenter that initially preprocesses images using a sobel filter with kernel size of either
3x3 or 13x13 and alpha-blends with result using a strength of 50% (both images equally visible) to 100%
(only edge image visible).

>>> aug = iaa.Alpha(
>>> (0.0, 1.0),
>>> iaa.Canny(alpha=1),
>>> iaa.MedianBlur(13)
>>>)

Create an augmenter that blends a canny edge image with a median-blurred version of the input image. The
median blur uses a fixed kernel size of 13x13 pixels.

13.27. imgaug.augmenters.edges 747

imgaug Documentation, Release 0.3.0

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.

Continued on next page

748 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 138 – continued from previous page
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

get_parameters(self)
See get_parameters().

class imgaug.augmenters.edges.IBinaryImageColorizer
Bases: object

Interface for classes that convert binary masks to color images.

Methods

colorize(self, image_binary, image_original, . . .) Convert a binary image to a colorized one.

colorize(self, image_binary, image_original, nth_image, random_state)
Convert a binary image to a colorized one.

Parameters

• image_binary (ndarray) – Boolean (H,W) image.

• image_original (ndarray) – Original (H,W,C) input image.

• nth_image (int) – Index of the image in the batch.

• random_state (imgaug.random.RNG) – Random state to use.

Returns Colorized form of image_binary.

Return type ndarray

class imgaug.augmenters.edges.RandomColorsBinaryImageColorizer(color_true=(0,
255),
color_false=(0,
255))

Bases: imgaug.augmenters.edges.IBinaryImageColorizer

Colorizer using two randomly sampled foreground/background colors.

Parameters

• color_true (int or tuple of int or list of int or imgaug.parameters.StochasticParameter, op-
tional) – Color of the foreground, i.e. all pixels in binary images that are True. This pa-
rameter will be queried once per image to generate (3,) samples denoting the color. (Note
that even for grayscale images three values will be sampled and converted to grayscale ac-
cording to 0.299*R + 0.587*G + 0.114*B. This is the same equation that is also
used by OpenCV.)

– If an int, exactly that value will always be used, i.e. every color will be (v, v, v) for
value v.

– If a tuple (a, b), three random values from the range a <= x <= b will be sampled
per image.

– If a list, then three random values will be sampled from that list per image.

13.27. imgaug.augmenters.edges 749

imgaug Documentation, Release 0.3.0

– If a StochasticParameter, three values will be sampled from the parameter per image.

• color_false (int or tuple of int or list of int or imgaug.parameters.StochasticParameter, op-
tional) – Analogous to color_true, but denotes the color for all pixels that are False in the
binary input image.

Methods

colorize(self, image_binary, image_original, . . .) Convert a binary image to a colorized one.

colorize(self, image_binary, image_original, nth_image, random_state)
Convert a binary image to a colorized one.

Parameters

• image_binary (ndarray) – Boolean (H,W) image.

• image_original (ndarray) – Original (H,W,C) input image.

• nth_image (int) – Index of the image in the batch.

• random_state (imgaug.random.RNG) – Random state to use.

Returns Colorized form of image_binary.

Return type ndarray

13.28 imgaug.augmenters.flip

Augmenters that apply mirroring/flipping operations to images.

List of augmenters:

• Fliplr

• Flipud

class imgaug.augmenters.flip.Fliplr(p=1, seed=None, name=None, ran-
dom_state=’deprecated’, deterministic=’deprecated’)

Bases: imgaug.augmenters.meta.Augmenter

Flip/mirror input images horizontally.

Note: The default value for the probability is 0.0. So, to flip all input images use Fliplr(1.0) and not
just Fliplr().

Supported dtypes:

See fliplr().

Parameters

• p (number or imgaug.parameters.StochasticParameter, optional) – Probability of each im-
age to get flipped.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

750 Chapter 13. API

imgaug Documentation, Release 0.3.0

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Fliplr(0.5)

Flip 50 percent of all images horizontally.

>>> aug = iaa.Fliplr(1.0)

Flip all images horizontally.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
Continued on next page

13.28. imgaug.augmenters.flip 751

imgaug Documentation, Release 0.3.0

Table 141 – continued from previous page
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

get_parameters(self)
See get_parameters().

class imgaug.augmenters.flip.Flipud(p=1, seed=None, name=None, ran-
dom_state=’deprecated’, deterministic=’deprecated’)

Bases: imgaug.augmenters.meta.Augmenter

Flip/mirror input images vertically.

Note: The default value for the probability is 0.0. So, to flip all input images use Flipud(1.0) and not
just Flipud().

Supported dtypes:

See flipud().

Parameters

• p (number or imgaug.parameters.StochasticParameter, optional) – Probability of each im-
age to get flipped.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

752 Chapter 13. API

imgaug Documentation, Release 0.3.0

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Flipud(0.5)

Flip 50 percent of all images vertically.

>>> aug = iaa.Flipud(1.0)

Flip all images vertically.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.

Continued on next page

13.28. imgaug.augmenters.flip 753

imgaug Documentation, Release 0.3.0

Table 142 – continued from previous page
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

get_parameters(self)
See get_parameters().

imgaug.augmenters.flip.HorizontalFlip(*args, **kwargs)
Alias for Fliplr.

imgaug.augmenters.flip.VerticalFlip(*args, **kwargs)
Alias for Flipud.

imgaug.augmenters.flip.fliplr(arr)
Flip an image-like array horizontally.

Supported dtypes:

• uint8: yes; fully tested

• uint16: yes; fully tested

• uint32: yes; fully tested

• uint64: yes; fully tested

• int8: yes; fully tested

• int16: yes; fully tested

• int32: yes; fully tested

• int64: yes; fully tested

• float16: yes; fully tested

• float32: yes; fully tested

• float64: yes; fully tested

754 Chapter 13. API

imgaug Documentation, Release 0.3.0

• float128: yes; fully tested

• bool: yes; fully tested

Parameters arr (ndarray) – A 2D/3D (H, W, [C]) image array.

Returns Horizontally flipped array.

Return type ndarray

Examples

>>> import numpy as np
>>> import imgaug.augmenters.flip as flip
>>> arr = np.arange(16).reshape((4, 4))
>>> arr_flipped = flip.fliplr(arr)

Create a 4x4 array and flip it horizontally.

imgaug.augmenters.flip.flipud(arr)
Flip an image-like array vertically.

Supported dtypes:

• uint8: yes; fully tested

• uint16: yes; fully tested

• uint32: yes; fully tested

• uint64: yes; fully tested

• int8: yes; fully tested

• int16: yes; fully tested

• int32: yes; fully tested

• int64: yes; fully tested

• float16: yes; fully tested

• float32: yes; fully tested

• float64: yes; fully tested

• float128: yes; fully tested

• bool: yes; fully tested

Parameters arr (ndarray) – A 2D/3D (H, W, [C]) image array.

Returns Vertically flipped array.

Return type ndarray

Examples

>>> import numpy as np
>>> import imgaug.augmenters.flip as flip
>>> arr = np.arange(16).reshape((4, 4))
>>> arr_flipped = flip.flipud(arr)

13.28. imgaug.augmenters.flip 755

imgaug Documentation, Release 0.3.0

Create a 4x4 array and flip it vertically.

13.29 imgaug.augmenters.geometric

Augmenters that apply affine or similar transformations.

List of augmenters:

• Affine

• ScaleX

• ScaleY

• TranslateX

• TranslateY

• Rotate

• ShearX

• ShearY

• AffineCv2

• PiecewiseAffine

• PerspectiveTransform

• ElasticTransformation

• Rot90

• WithPolarWarping

• Jigsaw

class imgaug.augmenters.geometric.Affine(scale=None, translate_percent=None, trans-
late_px=None, rotate=None, shear=None,
order=1, cval=0, mode=’constant’,
fit_output=False, backend=’auto’, seed=None,
name=None, random_state=’deprecated’, deter-
ministic=’deprecated’)

Bases: imgaug.augmenters.meta.Augmenter

Augmenter to apply affine transformations to images.

This is mostly a wrapper around the corresponding classes and functions in OpenCV and skimage.

Affine transformations involve:

• Translation (“move” image on the x-/y-axis)

• Rotation

• Scaling (“zoom” in/out)

• Shear (move one side of the image, turning a square into a trapezoid)

All such transformations can create “new” pixels in the image without a defined content, e.g. if the image is
translated to the left, pixels are created on the right. A method has to be defined to deal with these pixel values.
The parameters cval and mode of this class deal with this.

756 Chapter 13. API

imgaug Documentation, Release 0.3.0

Some transformations involve interpolations between several pixels of the input image to generate output pixel
values. The parameter order deals with the method of interpolation used for this.

Note: While this augmenter supports segmentation maps and heatmaps that have a different size than the
corresponding image, it is strongly recommended to use the same aspect ratios. E.g. for an image of shape
(200, 100, 3), good segmap/heatmap array shapes also follow a 2:1 ratio and ideally are (200, 100,
C), (100, 50, C) or (50, 25, C). Otherwise, transformations involving rotations or shearing will pro-
duce unaligned outputs. For performance reasons, there is no explicit validation of whether the aspect ratios are
similar.

Supported dtypes:

if (backend=”skimage”, order in [0, 1]):

• uint8: yes; tested

• uint16: yes; tested

• uint32: yes; tested (1)

• uint64: no (2)

• int8: yes; tested

• int16: yes; tested

• int32: yes; tested (1)

• int64: no (2)

• float16: yes; tested

• float32: yes; tested

• float64: yes; tested

• float128: no (2)

• bool: yes; tested

• (1) scikit-image converts internally to float64, which might affect the accuracy of large integers.
In tests this seemed to not be an issue.

• (2) results too inaccurate

if (backend=”skimage”, order in [3, 4]):

• uint8: yes; tested

• uint16: yes; tested

• uint32: yes; tested (1)

• uint64: no (2)

• int8: yes; tested

• int16: yes; tested

• int32: yes; tested (1)

• int64: no (2)

• float16: yes; tested

13.29. imgaug.augmenters.geometric 757

imgaug Documentation, Release 0.3.0

• float32: yes; tested

• float64: limited; tested (3)

• float128: no (2)

• bool: yes; tested

• (1) scikit-image converts internally to float64, which might affect the accuracy of large integers.
In tests this seemed to not be an issue.

• (2) results too inaccurate

• (3) NaN around minimum and maximum of float64 value range

if (backend=”skimage”, order=5]):

• uint8: yes; tested

• uint16: yes; tested

• uint32: yes; tested (1)

• uint64: no (2)

• int8: yes; tested

• int16: yes; tested

• int32: yes; tested (1)

• int64: no (2)

• float16: yes; tested

• float32: yes; tested

• float64: limited; not tested (3)

• float128: no (2)

• bool: yes; tested

• (1) scikit-image converts internally to float64, which might affect the accuracy of large in-
tegers. In tests this seemed to not be an issue.

• (2) results too inaccurate

• (3) NaN around minimum and maximum of float64 value range

if (backend=”cv2”, order=0):

• uint8: yes; tested

• uint16: yes; tested

• uint32: no (1)

• uint64: no (2)

• int8: yes; tested

• int16: yes; tested

• int32: yes; tested

• int64: no (2)

758 Chapter 13. API

imgaug Documentation, Release 0.3.0

• float16: yes; tested (3)

• float32: yes; tested

• float64: yes; tested

• float128: no (1)

• bool: yes; tested (3)

• (1) rejected by cv2

• (2) changed to int32 by cv2

• (3) mapped internally to float32

if (backend=”cv2”, order=1):

• uint8: yes; fully tested

• uint16: yes; tested

• uint32: no (1)

• uint64: no (2)

• int8: yes; tested (3)

• int16: yes; tested

• int32: no (2)

• int64: no (2)

• float16: yes; tested (4)

• float32: yes; tested

• float64: yes; tested

• float128: no (1)

• bool: yes; tested (4)

• (1) rejected by cv2

• (2) causes cv2 error: cv2.error: OpenCV(3.4.4) (...)imgwarp.cpp:1805:
error: (-215:Assertion failed) ifunc != 0 in function
'remap'

• (3) mapped internally to int16

• (4) mapped internally to float32

if (backend=”cv2”, order=3):

• uint8: yes; tested

• uint16: yes; tested

• uint32: no (1)

• uint64: no (2)

• int8: yes; tested (3)

• int16: yes; tested

13.29. imgaug.augmenters.geometric 759

imgaug Documentation, Release 0.3.0

• int32: no (2)

• int64: no (2)

• float16: yes; tested (4)

• float32: yes; tested

• float64: yes; tested

• float128: no (1)

• bool: yes; tested (4)

• (1) rejected by cv2

• (2) causes cv2 error: cv2.error: OpenCV(3.4.4) (...)imgwarp.cpp:1805:
error: (-215:Assertion failed) ifunc != 0 in function
'remap'

• (3) mapped internally to int16

• (4) mapped internally to float32

Parameters

• scale (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter or dict {“x”: number/tuple/list/StochasticParameter,
“y”: number/tuple/list/StochasticParameter}, optional) – Scaling factor to use, where 1.0
denotes “no change” and 0.5 is zoomed out to 50 percent of the original size.

– If a single number, then that value will be used for all images.

– If a tuple (a, b), then a value will be uniformly sampled per image from the interval
[a, b]. That value will be used identically for both x- and y-axis.

– If a list, then a random value will be sampled from that list per image (again, used for
both x- and y-axis).

– If a StochasticParameter, then from that parameter a value will be sampled per
image (again, used for both x- and y-axis).

– If a dictionary, then it is expected to have the keys x and/or y. Each of these keys can have
the same values as described above. Using a dictionary allows to set different values for
the two axis and sampling will then happen independently per axis, resulting in samples
that differ between the axes.

• translate_percent (None or number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter or dict {“x”: number/tuple/list/StochasticParameter,
“y”: number/tuple/list/StochasticParameter}, optional) – Translation as a fraction of the
image height/width (x-translation, y-translation), where 0 denotes “no change” and 0.5
denotes “half of the axis size”.

– If None then equivalent to 0.0 unless translate_px has a value other than None.

– If a single number, then that value will be used for all images.

– If a tuple (a, b), then a value will be uniformly sampled per image from the interval
[a, b]. That sampled fraction value will be used identically for both x- and y-axis.

– If a list, then a random value will be sampled from that list per image (again, used for
both x- and y-axis).

760 Chapter 13. API

imgaug Documentation, Release 0.3.0

– If a StochasticParameter, then from that parameter a value will be sampled per
image (again, used for both x- and y-axis).

– If a dictionary, then it is expected to have the keys x and/or y. Each of these keys can have
the same values as described above. Using a dictionary allows to set different values for
the two axis and sampling will then happen independently per axis, resulting in samples
that differ between the axes.

• translate_px (None or int or tuple of int or list of int or im-
gaug.parameters.StochasticParameter or dict {“x”: int/tuple/list/StochasticParameter,
“y”: int/tuple/list/StochasticParameter}, optional) –

Translation in pixels.

– If None then equivalent to 0 unless translate_percent has a value other than None.

– If a single int, then that value will be used for all images.

– If a tuple (a, b), then a value will be uniformly sampled per image from the discrete
interval [a..b]. That number will be used identically for both x- and y-axis.

– If a list, then a random value will be sampled from that list per image (again, used for
both x- and y-axis).

– If a StochasticParameter, then from that parameter a value will be sampled per
image (again, used for both x- and y-axis).

– If a dictionary, then it is expected to have the keys x and/or y. Each of these keys can have
the same values as described above. Using a dictionary allows to set different values for
the two axis and sampling will then happen independently per axis, resulting in samples
that differ between the axes.

• rotate (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Rotation in degrees (NOT radians), i.e.
expected value range is around [-360, 360]. Rotation happens around the center of the
image, not the top left corner as in some other frameworks.

– If a number, then that value will be used for all images.

– If a tuple (a, b), then a value will be uniformly sampled per image from the interval
[a, b] and used as the rotation value.

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then this parameter will be used to sample the rotation
value per image.

• shear (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter or dict {“x”: int/tuple/list/StochasticParameter,
“y”: int/tuple/list/StochasticParameter}, optional) – Shear in degrees (NOT radians), i.e.
expected value range is around [-360, 360], with reasonable values being in the range
of [-45, 45].

– If a number, then that value will be used for all images as the shear on the x-axis (no shear
on the y-axis will be done).

– If a tuple (a, b), then two value will be uniformly sampled per image from the interval
[a, b] and be used as the x- and y-shear value.

– If a list, then two random values will be sampled from that list per image, denoting x- and
y-shear.

13.29. imgaug.augmenters.geometric 761

imgaug Documentation, Release 0.3.0

– If a StochasticParameter, then this parameter will be used to sample the x- and
y-shear values per image.

– If a dictionary, then similar to translate_percent, i.e. one x key and/or one y key are
expected, denoting the shearing on the x- and y-axis respectively. The allowed datatypes
are again number, tuple (a, b), list or StochasticParameter.

• order (int or iterable of int or imgaug.ALL or imgaug.parameters.StochasticParameter, op-
tional) –

Interpolation order to use. Same meaning as in skimage:

– 0: Nearest-neighbor

– 1: Bi-linear (default)

– 2: Bi-quadratic (not recommended by skimage)

– 3: Bi-cubic

– 4: Bi-quartic

– 5: Bi-quintic

Method 0 and 1 are fast, 3 is a bit slower, 4 and 5 are very slow. If the backend is cv2, the
mapping to OpenCV’s interpolation modes is as follows:

– 0 -> cv2.INTER_NEAREST

– 1 -> cv2.INTER_LINEAR

– 2 -> cv2.INTER_CUBIC

– 3 -> cv2.INTER_CUBIC

– 4 -> cv2.INTER_CUBIC

As datatypes this parameter accepts:

– If a single int, then that order will be used for all images.

– If a list, then a random value will be sampled from that list per image.

– If imgaug.ALL, then equivalant to list [0, 1, 3, 4, 5] in case of
backend=skimage and otherwise [0, 1, 3].

– If StochasticParameter, then that parameter is queried per image to sample the
order value to use.

• cval (number or tuple of number or list of number or imgaug.ALL or im-
gaug.parameters.StochasticParameter, optional) – The constant value to use when filling
in newly created pixels. (E.g. translating by 1px to the right will create a new 1px-wide
column of pixels on the left of the image). The value is only used when mode=constant.
The expected value range is [0, 255] for uint8 images. It may be a float value.

– If this is a single number, then that value will be used (e.g. 0 results in black pixels).

– If a tuple (a, b), then three values (for three image channels) will be uniformly sampled
per image from the interval [a, b].

– If a list, then a random value will be sampled from that list per image.

– If imgaug.ALL then equivalent to tuple ‘‘(0, 255)‘.

– If a StochasticParameter, a new value will be sampled from the parameter per
image.

762 Chapter 13. API

imgaug Documentation, Release 0.3.0

• mode (str or list of str or imgaug.ALL or imgaug.parameters.StochasticParameter, optional)
– Method to use when filling in newly created pixels. Same meaning as in skimage (and
numpy.pad()):

– constant: Pads with a constant value

– edge: Pads with the edge values of array

– symmetric: Pads with the reflection of the vector mirrored along the edge of the array.

– reflect: Pads with the reflection of the vector mirrored on the first and last values of
the vector along each axis.

– wrap: Pads with the wrap of the vector along the axis. The first values are used to pad
the end and the end values are used to pad the beginning.

If cv2 is chosen as the backend the mapping is as follows:

– constant -> cv2.BORDER_CONSTANT

– edge -> cv2.BORDER_REPLICATE

– symmetric -> cv2.BORDER_REFLECT

– reflect -> cv2.BORDER_REFLECT_101

– wrap -> cv2.BORDER_WRAP

The datatype of the parameter may be:

– If a single string, then that mode will be used for all images.

– If a list of strings, then a random mode will be picked from that list per image.

– If imgaug.ALL, then a random mode from all possible modes will be picked.

– If StochasticParameter, then the mode will be sampled from that parameter per
image, i.e. it must return only the above mentioned strings.

• fit_output (bool, optional) – Whether to modify the affine transformation so that the
whole output image is always contained in the image plane (True) or accept parts of
the image being outside the image plane (False). This can be thought of as first ap-
plying the affine transformation and then applying a second transformation to “zoom in”
on the new image so that it fits the image plane, This is useful to avoid corners of the
image being outside of the image plane after applying rotations. It will however negate
translation and scaling. Note also that activating this may lead to image sizes differing
from the input image sizes. To avoid this, wrap Affine in KeepSizeByResize, e.g.
KeepSizeByResize(Affine(...)).

• backend (str, optional) – Framework to use as a backend. Valid values are auto, skimage
(scikit-image’s warp) and cv2 (OpenCV’s warp). If auto is used, the augmenter will
automatically try to use cv2 whenever possible (order must be in [0, 1, 3]). It will
silently fall back to skimage if order/dtype is not supported by cv2. cv2 is generally faster
than skimage. It also supports RGB cvals, while skimage will resort to intensity cvals (i.e.
3x the same value as RGB). If cv2 is chosen and order is 2 or 4, it will automatically fall
back to order 3.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

13.29. imgaug.augmenters.geometric 763

imgaug Documentation, Release 0.3.0

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Affine(scale=2.0)

Zoom in on all images by a factor of 2.

>>> aug = iaa.Affine(translate_px=16)

Translate all images on the x- and y-axis by 16 pixels (towards the bottom right) and fill up any new pixels with
zero (black values).

>>> aug = iaa.Affine(translate_percent=0.1)

Translate all images on the x- and y-axis by 10 percent of their width/height (towards the bottom right). The
pixel values are computed per axis based on that axis’ size. Fill up any new pixels with zero (black values).

>>> aug = iaa.Affine(rotate=35)

Rotate all images by 35 degrees. Fill up any new pixels with zero (black values).

>>> aug = iaa.Affine(shear=15)

Shear all images by 15 degrees. Fill up any new pixels with zero (black values).

>>> aug = iaa.Affine(translate_px=(-16, 16))

Translate all images on the x- and y-axis by a random value between -16 and 16 pixels (to the bottom right)
and fill up any new pixels with zero (black values). The translation value is sampled once per image and is the
same for both axis.

>>> aug = iaa.Affine(translate_px={"x": (-16, 16), "y": (-4, 4)})

Translate all images on the x-axis by a random value between -16 and 16 pixels (to the right) and on the y-axis
by a random value between -4 and 4 pixels to the bottom. The sampling happens independently per axis, so
even if both intervals were identical, the sampled axis-wise values would likely be different. This also fills up
any new pixels with zero (black values).

>>> aug = iaa.Affine(scale=2.0, order=[0, 1])

Same as in the above scale example, but uses (randomly) either nearest neighbour interpolation or linear inter-
polation. If order is not specified, order=1 would be used by default.

>>> aug = iaa.Affine(translate_px=16, cval=(0, 255))

764 Chapter 13. API

imgaug Documentation, Release 0.3.0

Same as in the translate_px example above, but newly created pixels are now filled with a random color (sampled
once per image and the same for all newly created pixels within that image).

>>> aug = iaa.Affine(translate_px=16, mode=["constant", "edge"])

Similar to the previous example, but the newly created pixels are filled with black pixels in half of all images
(mode constant with default cval being 0) and in the other half of all images using edge mode, which
repeats the color of the spatially closest pixel of the corresponding image edge.

>>> aug = iaa.Affine(shear={"y": (-45, 45)})

Shear images only on the y-axis. Set shear to shear=(-45, 45) to shear randomly on both axes, using
for each image the same sample for both the x- and y-axis. Use shear={"x": (-45, 45), "y":
(-45, 45)} to get independent samples per axis.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.

Continued on next page

13.29. imgaug.augmenters.geometric 765

imgaug Documentation, Release 0.3.0

Table 143 – continued from previous page
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

get_parameters(self)
See get_parameters().

class imgaug.augmenters.geometric.AffineCv2(scale=1.0, translate_percent=None,
translate_px=None, rotate=0.0,
shear=0.0, order=<MagicMock
id=’140395429025216’>,
cval=0, mode=<MagicMock
id=’140395429050016’>, seed=None,
name=None, random_state=’deprecated’,
deterministic=’deprecated’)

Bases: imgaug.augmenters.meta.Augmenter

Deprecated. Augmenter to apply affine transformations to images using cv2 (i.e. opencv) backend.

Warning: This augmenter is deprecated since 0.4.0. Use Affine(..., backend='cv2') instead.

Affine transformations involve:

• Translation (“move” image on the x-/y-axis)

• Rotation

• Scaling (“zoom” in/out)

• Shear (move one side of the image, turning a square into a trapezoid)

All such transformations can create “new” pixels in the image without a defined content, e.g. if the image is
translated to the left, pixels are created on the right. A method has to be defined to deal with these pixel values.
The parameters cval and mode of this class deal with this.

Some transformations involve interpolations between several pixels of the input image to generate output pixel
values. The parameter order deals with the method of interpolation used for this.

Deprecated since 0.4.0.

Supported dtypes:

766 Chapter 13. API

imgaug Documentation, Release 0.3.0

• uint8: yes; fully tested

• uint16: ?

• uint32: ?

• uint64: ?

• int8: ?

• int16: ?

• int32: ?

• int64: ?

• float16: ?

• float32: ?

• float64: ?

• float128: ?

• bool: ?

Parameters

• scale (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter or dict {“x”: number/tuple/list/StochasticParameter,
“y”: number/tuple/list/StochasticParameter}, optional) – Scaling factor to use, where 1.0
denotes “no change” and 0.5 is zoomed out to 50 percent of the original size.

– If a single number, then that value will be used for all images.

– If a tuple (a, b), then a value will be uniformly sampled per image from the interval
[a, b]. That value will be used identically for both x- and y-axis.

– If a list, then a random value will be sampled from that list per image (again, used for
both x- and y-axis).

– If a StochasticParameter, then from that parameter a value will be sampled per
image (again, used for both x- and y-axis).

– If a dictionary, then it is expected to have the keys x and/or y. Each of these keys can have
the same values as described above. Using a dictionary allows to set different values for
the two axis and sampling will then happen independently per axis, resulting in samples
that differ between the axes.

• translate_percent (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter or dict {“x”: number/tuple/list/StochasticParameter,
“y”: number/tuple/list/StochasticParameter}, optional) – Translation as a fraction of the
image height/width (x-translation, y-translation), where 0 denotes “no change” and 0.5
denotes “half of the axis size”.

– If None then equivalent to 0.0 unless translate_px has a value other than None.

– If a single number, then that value will be used for all images.

– If a tuple (a, b), then a value will be uniformly sampled per image from the interval
[a, b]. That sampled fraction value will be used identically for both x- and y-axis.

– If a list, then a random value will be sampled from that list per image (again, used for
both x- and y-axis).

13.29. imgaug.augmenters.geometric 767

imgaug Documentation, Release 0.3.0

– If a StochasticParameter, then from that parameter a value will be sampled per
image (again, used for both x- and y-axis).

– If a dictionary, then it is expected to have the keys x and/or y. Each of these keys can have
the same values as described above. Using a dictionary allows to set different values for
the two axis and sampling will then happen independently per axis, resulting in samples
that differ between the axes.

• translate_px (int or tuple of int or list of int or imgaug.parameters.StochasticParameter
or dict {“x”: int/tuple/list/StochasticParameter, “y”: int/tuple/list/StochasticParameter},
optional) –

Translation in pixels.

– If None then equivalent to 0 unless translate_percent has a value other than None.

– If a single int, then that value will be used for all images.

– If a tuple (a, b), then a value will be uniformly sampled per image from the discrete
interval [a..b]. That number will be used identically for both x- and y-axis.

– If a list, then a random value will be sampled from that list per image (again, used for
both x- and y-axis).

– If a StochasticParameter, then from that parameter a value will be sampled per
image (again, used for both x- and y-axis).

– If a dictionary, then it is expected to have the keys x and/or y. Each of these keys can have
the same values as described above. Using a dictionary allows to set different values for
the two axis and sampling will then happen independently per axis, resulting in samples
that differ between the axes.

• rotate (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Rotation in degrees (NOT radians), i.e.
expected value range is around [-360, 360]. Rotation happens around the center of the
image, not the top left corner as in some other frameworks.

– If a number, then that value will be used for all images.

– If a tuple (a, b), then a value will be uniformly sampled per image from the interval
[a, b] and used as the rotation value.

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then this parameter will be used to sample the rotation
value per image.

• shear (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Shear in degrees (NOT radians),
i.e. expected value range is around [-360, 360].

– If a number, then that value will be used for all images.

– If a tuple (a, b), then a value will be uniformly sampled per image from the interval
[a, b] and be used as the rotation value.

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then this parameter will be used to sample the shear
value per image.

• order (int or list of int or str or list of str or imaug.ALL or im-
gaug.parameters.StochasticParameter, optional) –

768 Chapter 13. API

imgaug Documentation, Release 0.3.0

Interpolation order to use. Allowed are:

– cv2.INTER_NEAREST (nearest-neighbor interpolation)

– cv2.INTER_LINEAR (bilinear interpolation, used by default)

– cv2.INTER_CUBIC (bicubic interpolation over 4x4 pixel neighborhood)

– cv2.INTER_LANCZOS4

– string nearest (same as cv2.INTER_NEAREST)

– string linear (same as cv2.INTER_LINEAR)

– string cubic (same as cv2.INTER_CUBIC)

– string lanczos4 (same as cv2.INTER_LANCZOS)

INTER_NEAREST (nearest neighbour interpolation) and INTER_NEAREST (linear inter-
polation) are the fastest.

– If a single int, then that order will be used for all images.

– If a string, then it must be one of: nearest, linear, cubic, lanczos4.

– If an iterable of int/str, then for each image a random value will be sampled from that
iterable (i.e. list of allowed order values).

– If imgaug.ALL, then equivalant to list [cv2.INTER_NEAREST, cv2.
INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_LANCZOS4].

– If StochasticParameter, then that parameter is queried per image to sample the
order value to use.

• cval (number or tuple of number or list of number or imaug.ALL or im-
gaug.parameters.StochasticParameter, optional) – The constant value to use when filling
in newly created pixels. (E.g. translating by 1px to the right will create a new 1px-wide
column of pixels on the left of the image). The value is only used when mode=constant.
The expected value range is [0, 255] for uint8 images. It may be a float value.

– If this is a single number, then that value will be used (e.g. 0 results in black pixels).

– If a tuple (a, b), then three values (for three image channels) will be uniformly sampled
per image from the interval [a, b].

– If a list, then a random value will be sampled from that list per image.

– If imgaug.ALL then equivalent to tuple ‘‘(0, 255)‘.

– If a StochasticParameter, a new value will be sampled from the parameter per
image.

• mode (int or str or list of str or list of int or imgaug.ALL or im-
gaug.parameters.StochasticParameter,) – optional Method to use when filling in newly
created pixels. Same meaning as in OpenCV’s border mode. Let abcdefgh be an image’s
content and | be an image boundary after which new pixels are filled in, then the valid
modes and their behaviour are the following:

– cv2.BORDER_REPLICATE: aaaaaa|abcdefgh|hhhhhhh

– cv2.BORDER_REFLECT: fedcba|abcdefgh|hgfedcb

– cv2.BORDER_REFLECT_101: gfedcb|abcdefgh|gfedcba

– cv2.BORDER_WRAP: cdefgh|abcdefgh|abcdefg

13.29. imgaug.augmenters.geometric 769

imgaug Documentation, Release 0.3.0

– cv2.BORDER_CONSTANT: iiiiii|abcdefgh|iiiiiii, where i is the defined
cval.

– replicate: Same as cv2.BORDER_REPLICATE.

– reflect: Same as cv2.BORDER_REFLECT.

– reflect_101: Same as cv2.BORDER_REFLECT_101.

– wrap: Same as cv2.BORDER_WRAP.

– constant: Same as cv2.BORDER_CONSTANT.

The datatype of the parameter may be:

– If a single int, then it must be one of the cv2.BORDER_* constants.

– If a single string, then it must be one of: replicate, reflect, reflect_101,
wrap, constant.

– If a list of int/str, then per image a random mode will be picked from that list.

– If imgaug.ALL, then a random mode from all possible modes will be picked.

– If StochasticParameter, then the mode will be sampled from that parameter per
image, i.e. it must return only the above mentioned strings.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.AffineCv2(scale=2.0)

Zoom in on all images by a factor of 2.

>>> aug = iaa.AffineCv2(translate_px=16)

Translate all images on the x- and y-axis by 16 pixels (towards the bottom right) and fill up any new pixels with
zero (black values).

>>> aug = iaa.AffineCv2(translate_percent=0.1)

Translate all images on the x- and y-axis by 10 percent of their width/height (towards the bottom right). The
pixel values are computed per axis based on that axis’ size. Fill up any new pixels with zero (black values).

770 Chapter 13. API

imgaug Documentation, Release 0.3.0

>>> aug = iaa.AffineCv2(rotate=35)

Rotate all images by 35 degrees. Fill up any new pixels with zero (black values).

>>> aug = iaa.AffineCv2(shear=15)

Shear all images by 15 degrees. Fill up any new pixels with zero (black values).

>>> aug = iaa.AffineCv2(translate_px=(-16, 16))

Translate all images on the x- and y-axis by a random value between -16 and 16 pixels (to the bottom right)
and fill up any new pixels with zero (black values). The translation value is sampled once per image and is the
same for both axis.

>>> aug = iaa.AffineCv2(translate_px={"x": (-16, 16), "y": (-4, 4)})

Translate all images on the x-axis by a random value between -16 and 16 pixels (to the right) and on the y-axis
by a random value between -4 and 4 pixels to the bottom. The sampling happens independently per axis, so
even if both intervals were identical, the sampled axis-wise values would likely be different. This also fills up
any new pixels with zero (black values).

>>> aug = iaa.AffineCv2(scale=2.0, order=[0, 1])

Same as in the above scale example, but uses (randomly) either nearest neighbour interpolation or linear inter-
polation. If order is not specified, order=1 would be used by default.

>>> aug = iaa.AffineCv2(translate_px=16, cval=(0, 255))

Same as in the translate_px example above, but newly created pixels are now filled with a random color (sampled
once per image and the same for all newly created pixels within that image).

>>> aug = iaa.AffineCv2(translate_px=16, mode=["constant", "replicate"])

Similar to the previous example, but the newly created pixels are filled with black pixels in half of all images
(mode constant with default cval being 0) and in the other half of all images using replicate mode,
which repeats the color of the spatially closest pixel of the corresponding image edge.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

Continued on next page

13.29. imgaug.augmenters.geometric 771

imgaug Documentation, Release 0.3.0

Table 144 – continued from previous page
augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

get_parameters(self)
See get_parameters().

class imgaug.augmenters.geometric.ElasticTransformation(alpha=(0.0, 40.0),
sigma=(4.0, 8.0),
order=3, cval=0,
mode=’constant’, poly-
gon_recoverer=’auto’,
seed=None,
name=None, ran-
dom_state=’deprecated’,
determinis-
tic=’deprecated’)

772 Chapter 13. API

imgaug Documentation, Release 0.3.0

Bases: imgaug.augmenters.meta.Augmenter

Transform images by moving pixels locally around using displacement fields.

The augmenter has the parameters alpha and sigma. alpha controls the strength of the displacement: higher
values mean that pixels are moved further. sigma controls the smoothness of the displacement: higher values
lead to smoother patterns – as if the image was below water – while low values will cause indivdual pixels to be
moved very differently from their neighbours, leading to noisy and pixelated images.

A relation of 10:1 seems to be good for alpha and sigma, e.g. alpha=10 and sigma=1 or alpha=50,
sigma=5. For 128x128 a setting of alpha=(0, 70.0), sigma=(4.0, 6.0) may be a good choice
and will lead to a water-like effect.

Code here was initially inspired by https://gist.github.com/chsasank/4d8f68caf01f041a6453e67fb30f8f5a

For a detailed explanation, see

Simard, Steinkraus and Platt
Best Practices for Convolutional Neural Networks applied to Visual
Document Analysis
in Proc. of the International Conference on Document Analysis and
Recognition, 2003

Note: For coordinate-based inputs (keypoints, bounding boxes, polygons, . . .), this augmenter still has to
perform an image-based augmentation, which will make it significantly slower for such inputs than other aug-
menters. See Performance.

Supported dtypes:

• uint8: yes; fully tested (1)

• uint16: yes; tested (1)

• uint32: yes; tested (2)

• uint64: limited; tested (3)

• int8: yes; tested (1) (4) (5)

• int16: yes; tested (4) (6)

• int32: yes; tested (4) (6)

• int64: limited; tested (3)

• float16: yes; tested (1)

• float32: yes; tested (1)

• float64: yes; tested (1)

• float128: no

• bool: yes; tested (1) (7)

• (1) Always handled by cv2.

• (2) Always handled by scipy.

• (3) Only supported for order != 0. Will fail for order=0.

• (4) Mapped internally to float64 when order=1.

• (5) Mapped internally to int16 when order>=2.

13.29. imgaug.augmenters.geometric 773

https://gist.github.com/chsasank/4d8f68caf01f041a6453e67fb30f8f5a

imgaug Documentation, Release 0.3.0

• (6) Handled by cv2 when order=0 or order=1, otherwise by scipy.

• (7) Mapped internally to float32.

Parameters

• alpha (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Strength of the distortion field.
Higher values mean that pixels are moved further with respect to the distortion field’s
direction. Set this to around 10 times the value of sigma for visible effects.

– If number, then that value will be used for all images.

– If tuple (a, b), then a random value will be uniformly sampled per image from the
interval [a, b].

– If a list, then for each image a random value will be sampled from that list.

– If StochasticParameter, then that parameter will be used to sample a value per
image.

• sigma (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Standard deviation of the gaussian
kernel used to smooth the distortion fields. Higher values (for 128x128 images around
5.0) lead to more water-like effects, while lower values (for 128x128 images around 1.0
and lower) lead to more noisy, pixelated images. Set this to around 1/10th of alpha for
visible effects.

– If number, then that value will be used for all images.

– If tuple (a, b), then a random value will be uniformly sampled per image from the
interval [a, b].

– If a list, then for each image a random value will be sampled from that list.

– If StochasticParameter, then that parameter will be used to sample a value per
image.

• order (int or list of int or imaug.ALL or imgaug.parameters.StochasticParameter,
optional) – Interpolation order to use. Same meaning as in scipy.ndimage.
map_coordinates() and may take any integer value in the range 0 to 5, where orders
close to 0 are faster.

– If a single int, then that order will be used for all images.

– If a tuple (a, b), then a random value will be uniformly sampled per image from the
interval [a, b].

– If a list, then for each image a random value will be sampled from that list.

– If imgaug.ALL, then equivalant to list [0, 1, 2, 3, 4, 5].

– If StochasticParameter, then that parameter is queried per image to sample the
order value to use.

• cval (number or tuple of number or list of number or imgaug.ALL or im-
gaug.parameters.StochasticParameter, optional) – The constant intensity value used to fill
in new pixels. This value is only used if mode is set to constant. For standard uint8
images (value range 0 to 255), this value may also should also be in the range 0 to 255. It
may be a float value, even for images with integer dtypes.

– If this is a single number, then that value will be used (e.g. 0 results in black pixels).

774 Chapter 13. API

imgaug Documentation, Release 0.3.0

– If a tuple (a, b), then a random value will be uniformly sampled per image from the
interval [a, b].

– If a list, then a random value will be picked from that list per image.

– If imgaug.ALL, a value from the discrete range [0..255] will be sampled per image.

– If a StochasticParameter, a new value will be sampled from the parameter per
image.

• mode (str or list of str or imgaug.ALL or imgaug.parameters.StochasticParameter, optional)
– Parameter that defines the handling of newly created pixels. May take the same values as
in scipy.ndimage.map_coordinates(), i.e. constant, nearest, reflect
or wrap.

– If a single string, then that mode will be used for all images.

– If a list of strings, then per image a random mode will be picked from that list.

– If imgaug.ALL, then a random mode from all possible modes will be picked.

– If StochasticParameter, then the mode will be sampled from that parameter per
image, i.e. it must return only the above mentioned strings.

• polygon_recoverer (‘auto’ or None or imgaug.augmentables.polygons._ConcavePolygonRecoverer,
optional) – The class to use to repair invalid polygons. If "auto", a new instance of
:class‘imgaug.augmentables.polygons._ConcavePolygonRecoverer‘ will be created. If
None, no polygon recoverer will be used. If an object, then that object will be used and must
provide a recover_from() method, similar to _ConcavePolygonRecoverer.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.ElasticTransformation(alpha=50.0, sigma=5.0)

Apply elastic transformations with a strength/alpha of 50.0 and smoothness of 5.0 to all images.

>>> aug = iaa.ElasticTransformation(alpha=(0.0, 70.0), sigma=5.0)

Apply elastic transformations with a strength/alpha that comes from the interval [0.0, 70.0] (randomly
picked per image) and with a smoothness of 5.0.

13.29. imgaug.augmenters.geometric 775

imgaug Documentation, Release 0.3.0

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.

Continued on next page

776 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 145 – continued from previous page
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

KEYPOINT_AUG_ALPHA_THRESH = 0.05

KEYPOINT_AUG_SIGMA_THRESH = 1.0

NB_NEIGHBOURING_KEYPOINTS = 3

NEIGHBOURING_KEYPOINTS_DISTANCE = 1.0

get_parameters(self)
See get_parameters().

class imgaug.augmenters.geometric.Jigsaw(nb_rows=(3, 10), nb_cols=(3, 10), max_steps=1,
allow_pad=True, seed=None, name=None,
random_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.meta.Augmenter

Move cells within images similar to jigsaw patterns.

Note: This augmenter will by default pad images until their height is a multiple of nb_rows. Analogous for
nb_cols.

Note: This augmenter will resize heatmaps and segmentation maps to the image size, then apply similar
padding as for the corresponding images and resize back to the original map size. That also means that images
may change in shape (due to padding), but heatmaps/segmaps will not change. For heatmaps/segmaps, this
deviates from pad augmenters that will change images and heatmaps/segmaps in corresponding ways and then
keep the heatmaps/segmaps at the new size.

Warning: This augmenter currently only supports augmentation of images, heatmaps, segmentation maps
and keypoints. Other augmentables, i.e. bounding boxes, polygons and line strings, will result in errors.

Added in 0.4.0.

Supported dtypes:

See apply_jigsaw().

Parameters

• nb_rows (int or list of int or tuple of int or imgaug.parameters.StochasticParameter, op-
tional) –

How many rows the jigsaw pattern should have.

– If a single int, then that value will be used for all images.

– If a tuple (a, b), then a random value will be uniformly sampled per image from the
discrete interval [a..b].

– If a list, then for each image a random value will be sampled from that list.

13.29. imgaug.augmenters.geometric 777

imgaug Documentation, Release 0.3.0

– If StochasticParameter, then that parameter is queried per image to sample the
value to use.

• nb_cols (int or list of int or tuple of int or imgaug.parameters.StochasticParameter, op-
tional) –

How many cols the jigsaw pattern should have.

– If a single int, then that value will be used for all images.

– If a tuple (a, b), then a random value will be uniformly sampled per image from the
discrete interval [a..b].

– If a list, then for each image a random value will be sampled from that list.

– If StochasticParameter, then that parameter is queried per image to sample the
value to use.

• max_steps (int or list of int or tuple of int or imgaug.parameters.StochasticParameter, op-
tional) –

How many steps each jigsaw cell may be moved.

– If a single int, then that value will be used for all images.

– If a tuple (a, b), then a random value will be uniformly sampled per image from the
discrete interval [a..b].

– If a list, then for each image a random value will be sampled from that list.

– If StochasticParameter, then that parameter is queried per image to sample the
value to use.

• allow_pad (bool, optional) – Whether to allow automatically padding images until they are
evenly divisible by nb_rows and nb_cols.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Jigsaw(nb_rows=10, nb_cols=10)

Create a jigsaw augmenter that splits images into 10x10 cells and shifts them around by 0 to 2 steps (default
setting).

>>> aug = iaa.Jigsaw(nb_rows=(1, 4), nb_cols=(1, 4))

778 Chapter 13. API

imgaug Documentation, Release 0.3.0

Create a jigsaw augmenter that splits each image into 1 to 4 cells along each axis.

>>> aug = iaa.Jigsaw(nb_rows=10, nb_cols=10, max_steps=(1, 5))

Create a jigsaw augmenter that moves the cells in each image by a random amount between 1 and 5 times
(decided per image). Some images will be barely changed, some will be fairly distorted.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) Get the parameters of this augmenter.
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
Continued on next page

13.29. imgaug.augmenters.geometric 779

imgaug Documentation, Release 0.3.0

Table 146 – continued from previous page
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

get_parameters(self)
Get the parameters of this augmenter.

Returns List of parameters of arbitrary types (usually child class of
StochasticParameter, but not guaranteed to be).

Return type list

class imgaug.augmenters.geometric.PerspectiveTransform(scale=(0.0, 0.06),
cval=0, mode=’constant’,
keep_size=True,
fit_output=False, poly-
gon_recoverer=’auto’,
seed=None, name=None,
random_state=’deprecated’,
determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.meta.Augmenter

Apply random four point perspective transformations to images.

Each of the four points is placed on the image using a random distance from its respective corner. The distance
is sampled from a normal distribution. As a result, most transformations don’t change the image very much,
while some “focus” on polygons far inside the image.

The results of this augmenter have some similarity with Crop.

Code partially from http://www.pyimagesearch.com/2014/08/25/4-point-opencv-getperspective-transform-example/

Supported dtypes:

if (keep_size=False):

• uint8: yes; fully tested

• uint16: yes; tested

• uint32: no (1)

• uint64: no (2)

• int8: yes; tested (3)

• int16: yes; tested

• int32: no (2)

• int64: no (2)

• float16: yes; tested (4)

780 Chapter 13. API

http://www.pyimagesearch.com/2014/08/25/4-point-opencv-getperspective-transform-example/

imgaug Documentation, Release 0.3.0

• float32: yes; tested

• float64: yes; tested

• float128: no (1)

• bool: yes; tested (4)

• (1) rejected by opencv

• (2) leads to opencv error: cv2.error: OpenCV(3.4.4) (...)imgwarp.cpp:1805:
error: (-215:Assertion failed) ifunc != 0 in function
'remap'.

• (3) mapped internally to int16.

• (4) mapped intenally to float32.

if (keep_size=True):

minimum of (imgaug.augmenters.geometric.PerspectiveTransform(keep_size=False),
imresize_many_images()

)

Parameters

• scale (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Standard deviation of the normal
distributions. These are used to sample the random distances of the subimage’s corners
from the full image’s corners. The sampled values reflect percentage values (with respect
to image height/width). Recommended values are in the range 0.0 to 0.1.

– If a single number, then that value will always be used as the scale.

– If a tuple (a, b) of numbers, then a random value will be uniformly sampled per image
from the interval (a, b).

– If a list of values, a random value will be picked from the list per image.

– If a StochasticParameter, then that parameter will be queried to draw one value
per image.

• keep_size (bool, optional) – Whether to resize image’s back to their original size after ap-
plying the perspective transform. If set to False, the resulting images may end up having
different shapes and will always be a list, never an array.

• cval (number or tuple of number or list of number or imaug.ALL or im-
gaug.parameters.StochasticParameter, optional) – The constant value used to fill up pixels
in the result image that didn’t exist in the input image (e.g. when translating to the left, some
new pixels are created at the right). Such a fill-up with a constant value only happens, when
mode is constant. The expected value range is [0, 255] for uint8 images. It may
be a float value.

– If this is a single int or float, then that value will be used (e.g. 0 results in black pixels).

– If a tuple (a, b), then a random value is uniformly sampled per image from the interval
[a, b].

– If a list, then a random value will be sampled from that list per image.

– If imgaug.ALL, then equivalent to tuple (0, 255).

13.29. imgaug.augmenters.geometric 781

imgaug Documentation, Release 0.3.0

– If a StochasticParameter, a new value will be sampled from the parameter per
image.

• mode (int or str or list of str or list of int or imgaug.ALL or im-
gaug.parameters.StochasticParameter, optional) – Parameter that defines the handling
of newly created pixels. Same meaning as in OpenCV’s border mode. Let abcdefgh be
an image’s content and | be an image boundary, then:

– cv2.BORDER_REPLICATE: aaaaaa|abcdefgh|hhhhhhh

– cv2.BORDER_CONSTANT: iiiiii|abcdefgh|iiiiiii, where i is the defined
cval.

– replicate: Same as cv2.BORDER_REPLICATE.

– constant: Same as cv2.BORDER_CONSTANT.

The datatype of the parameter may be:

– If a single int, then it must be one of cv2.BORDER_*.

– If a single string, then it must be one of: replicate, reflect, reflect_101,
wrap, constant.

– If a list of ints/strings, then per image a random mode will be picked from that list.

– If imgaug.ALL, then a random mode from all possible modes will be picked per image.

– If StochasticParameter, then the mode will be sampled from that parameter per
image, i.e. it must return only the above mentioned strings.

• fit_output (bool, optional) – If True, the image plane size and position will be adjusted to
still capture the whole image after perspective transformation. (Followed by image resizing
if keep_size is set to True.) Otherwise, parts of the transformed image may be outside of
the image plane. This setting should not be set to True when using large scale values as it
could lead to very large images.

Added in 0.4.0.

• polygon_recoverer (‘auto’ or None or imgaug.augmentables.polygons._ConcavePolygonRecoverer,
optional) – The class to use to repair invalid polygons. If "auto", a new instance of
:class‘imgaug.augmentables.polygons._ConcavePolygonRecoverer‘ will be created. If
None, no polygon recoverer will be used. If an object, then that object will be used and must
provide a recover_from() method, similar to _ConcavePolygonRecoverer.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

782 Chapter 13. API

imgaug Documentation, Release 0.3.0

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.PerspectiveTransform(scale=(0.01, 0.15))

Apply perspective transformations using a random scale between 0.01 and 0.15 per image, where the scale is
roughly a measure of how far the perspective transformation’s corner points may be distanced from the image’s
corner points. Higher scale values lead to stronger “zoom-in” effects (and thereby stronger distortions).

>>> aug = iaa.PerspectiveTransform(scale=(0.01, 0.15), keep_size=False)

Same as in the previous example, but images are not resized back to the input image size after augmentation.
This will lead to smaller output images.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().

Continued on next page

13.29. imgaug.augmenters.geometric 783

imgaug Documentation, Release 0.3.0

Table 147 – continued from previous page
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

get_parameters(self)
See get_parameters().

class imgaug.augmenters.geometric.PiecewiseAffine(scale=(0.0, 0.04), nb_rows=(2,
4), nb_cols=(2, 4), order=1,
cval=0, mode=’constant’,
absolute_scale=False,
polygon_recoverer=None,
seed=None, name=None, ran-
dom_state=’deprecated’, determin-
istic=’deprecated’)

Bases: imgaug.augmenters.meta.Augmenter

Apply affine transformations that differ between local neighbourhoods.

This augmenter places a regular grid of points on an image and randomly moves the neighbourhood of these
point around via affine transformations. This leads to local distortions.

This is mostly a wrapper around scikit-image’s PiecewiseAffine. See also Affine for a similar technique.

Note: This augmenter is very slow. See Performance. Try to use ElasticTransformation instead,
which is at least 10x faster.

Note: For coordinate-based inputs (keypoints, bounding boxes, polygons, . . .), this augmenter still has to
perform an image-based augmentation, which will make it significantly slower for such inputs than other aug-
menters. See Performance.

Supported dtypes:

• uint8: yes; fully tested

• uint16: yes; tested (1)

• uint32: yes; tested (1) (2)

• uint64: no (3)

784 Chapter 13. API

imgaug Documentation, Release 0.3.0

• int8: yes; tested (1)

• int16: yes; tested (1)

• int32: yes; tested (1) (2)

• int64: no (3)

• float16: yes; tested (1)

• float32: yes; tested (1)

• float64: yes; tested (1)

• float128: no (3)

• bool: yes; tested (1) (4)

• (1) Only tested with order set to 0.

• (2) scikit-image converts internally to float64, which might introduce inaccuracies. Tests
showed that these inaccuracies seemed to not be an issue.

• (3) Results too inaccurate.

• (4) Mapped internally to float64.

Parameters

• scale (float or tuple of float or imgaug.parameters.StochasticParameter, optional) – Each
point on the regular grid is moved around via a normal distribution. This scale fac-
tor is equivalent to the normal distribution’s sigma. Note that the jitter (how far each
point is moved in which direction) is multiplied by the height/width of the image if
absolute_scale=False (default), so this scale can be the same for different sized
images. Recommended values are in the range 0.01 to 0.05 (weak to strong augmenta-
tions).

– If a single float, then that value will always be used as the scale.

– If a tuple (a, b) of float s, then a random value will be uniformly sampled per image
from the interval [a, b].

– If a list, then a random value will be picked from that list per image.

– If a StochasticParameter, then that parameter will be queried to draw one value
per image.

• nb_rows (int or tuple of int or imgaug.parameters.StochasticParameter, optional) – Number
of rows of points that the regular grid should have. Must be at least 2. For large images,
you might want to pick a higher value than 4. You might have to then adjust scale to lower
values.

– If a single int, then that value will always be used as the number of rows.

– If a tuple (a, b), then a value from the discrete interval [a..b] will be uniformly
sampled per image.

– If a list, then a random value will be picked from that list per image.

– If a StochasticParameter, then that parameter will be queried to draw one value per image.

• nb_cols (int or tuple of int or imgaug.parameters.StochasticParameter, optional) – Number
of columns. Analogous to nb_rows.

13.29. imgaug.augmenters.geometric 785

imgaug Documentation, Release 0.3.0

• order (int or list of int or imgaug.ALL or imgaug.parameters.StochasticParameter, optional)
– See __init__().

• cval (int or float or tuple of float or imgaug.ALL or imgaug.parameters.StochasticParameter,
optional) – See __init__().

• mode (str or list of str or imgaug.ALL or imgaug.parameters.StochasticParameter, optional)
– See __init__().

• absolute_scale (bool, optional) – Take scale as an absolute value rather than a relative value.

• polygon_recoverer (‘auto’ or None or imgaug.augmentables.polygons._ConcavePolygonRecoverer,
optional) – The class to use to repair invalid polygons. If "auto", a new instance of
:class‘imgaug.augmentables.polygons._ConcavePolygonRecoverer‘ will be created. If
None, no polygon recoverer will be used. If an object, then that object will be used and must
provide a recover_from() method, similar to _ConcavePolygonRecoverer.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.PiecewiseAffine(scale=(0.01, 0.05))

Place a regular grid of points on each image and then randomly move each point around by 1 to 5 percent (with
respect to the image height/width). Pixels between these points will be moved accordingly.

>>> aug = iaa.PiecewiseAffine(scale=(0.01, 0.05), nb_rows=8, nb_cols=8)

Same as the previous example, but uses a denser grid of 8x8 points (default is 4x4). This can be useful for
large images.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

Continued on next page

786 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 148 – continued from previous page
augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

get_parameters(self)
See get_parameters().

class imgaug.augmenters.geometric.Rot90(k=1, keep_size=True, seed=None, name=None,
random_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.meta.Augmenter

13.29. imgaug.augmenters.geometric 787

imgaug Documentation, Release 0.3.0

Rotate images clockwise by multiples of 90 degrees.

This could also be achieved using Affine, but Rot90 is significantly more efficient.

Supported dtypes:

if (keep_size=False):

• uint8: yes; fully tested

• uint16: yes; tested

• uint32: yes; tested

• uint64: yes; tested

• int8: yes; tested

• int16: yes; tested

• int32: yes; tested

• int64: yes; tested

• float16: yes; tested

• float32: yes; tested

• float64: yes; tested

• float128: yes; tested

• bool: yes; tested

if (keep_size=True):

minimum of (imgaug.augmenters.geometric.Rot90(keep_size=False),
imresize_many_images()

)

Parameters

• k (int or list of int or tuple of int or imaug.ALL or imgaug.parameters.StochasticParameter,
optional) –

How often to rotate clockwise by 90 degrees.

– If a single int, then that value will be used for all images.

– If a tuple (a, b), then a random value will be uniformly sampled per image from the
discrete interval [a..b].

– If a list, then for each image a random value will be sampled from that list.

– If imgaug.ALL, then equivalant to list [0, 1, 2, 3].

– If StochasticParameter, then that parameter is queried per image to sample the
value to use.

• keep_size (bool, optional) – After rotation by an odd-valued k (e.g. 1 or 3), the resulting
image may have a different height/width than the original image. If this parameter is set to
True, then the rotated image will be resized to the input image’s size. Note that this might
also cause the augmented image to look distorted.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

788 Chapter 13. API

imgaug Documentation, Release 0.3.0

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Rot90(1)

Rotate all images by 90 degrees. Resize these images afterwards to keep the size that they had before augmen-
tation. This may cause the images to look distorted.

>>> aug = iaa.Rot90([1, 3])

Rotate all images by 90 or 270 degrees. Resize these images afterwards to keep the size that they had before
augmentation. This may cause the images to look distorted.

>>> aug = iaa.Rot90((1, 3))

Rotate all images by 90, 180 or 270 degrees. Resize these images afterwards to keep the size that they had
before augmentation. This may cause the images to look distorted.

>>> aug = iaa.Rot90((1, 3), keep_size=False)

Rotate all images by 90, 180 or 270 degrees. Does not resize to the original image size afterwards, i.e. each
image’s size may change.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

Continued on next page

13.29. imgaug.augmenters.geometric 789

imgaug Documentation, Release 0.3.0

Table 149 – continued from previous page
augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

get_parameters(self)
See get_parameters().

class imgaug.augmenters.geometric.Rotate(rotate=(-30, 30), order=1, cval=0,
mode=’constant’, fit_output=False, back-
end=’auto’, seed=None, name=None,
random_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.geometric.Affine

Apply affine rotation on the y-axis to input data.

This is a wrapper around Affine. It is the same as Affine(rotate=<value>).

Added in 0.4.0.

Supported dtypes:

790 Chapter 13. API

imgaug Documentation, Release 0.3.0

See Affine.

Parameters

• rotate (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – See Affine.

• order (int or iterable of int or imgaug.ALL or imgaug.parameters.StochasticParameter, op-
tional) – See Affine.

• cval (number or tuple of number or list of number or imgaug.ALL or im-
gaug.parameters.StochasticParameter, optional) – See Affine.

• mode (str or list of str or imgaug.ALL or imgaug.parameters.StochasticParameter, optional)
– See Affine.

• fit_output (bool, optional) – See Affine.

• backend (str, optional) – See Affine.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Rotate((-45, 45))

Create an augmenter that rotates images by a random value between -45 and 45 degress.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.

Continued on next page

13.29. imgaug.augmenters.geometric 791

imgaug Documentation, Release 0.3.0

Table 150 – continued from previous page
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.geometric.ScaleX(scale=(0.5, 1.5), order=1, cval=0,
mode=’constant’, fit_output=False, back-
end=’auto’, seed=None, name=None,
random_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.geometric.Affine

Apply affine scaling on the x-axis to input data.

This is a wrapper around Affine.

Added in 0.4.0.

792 Chapter 13. API

imgaug Documentation, Release 0.3.0

Supported dtypes:

See Affine.

Parameters

• scale (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Analogous to scale in Affine,
except that this scale value only affects the x-axis. No dictionary input is allowed.

• order (int or iterable of int or imgaug.ALL or imgaug.parameters.StochasticParameter, op-
tional) – See Affine.

• cval (number or tuple of number or list of number or imgaug.ALL or im-
gaug.parameters.StochasticParameter, optional) – See Affine.

• mode (str or list of str or imgaug.ALL or imgaug.parameters.StochasticParameter, optional)
– See Affine.

• fit_output (bool, optional) – See Affine.

• backend (str, optional) – See Affine.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.ScaleX((0.5, 1.5))

Create an augmenter that scales images along the width to sizes between 50% and 150%. This does not change
the image shape (i.e. height and width), only the pixels within the image are remapped and potentially new ones
are filled in.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.

Continued on next page

13.29. imgaug.augmenters.geometric 793

imgaug Documentation, Release 0.3.0

Table 151 – continued from previous page
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

794 Chapter 13. API

imgaug Documentation, Release 0.3.0

class imgaug.augmenters.geometric.ScaleY(scale=(0.5, 1.5), order=1, cval=0,
mode=’constant’, fit_output=False, back-
end=’auto’, seed=None, name=None,
random_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.geometric.Affine

Apply affine scaling on the y-axis to input data.

This is a wrapper around Affine.

Added in 0.4.0.

Supported dtypes:

See Affine.

Parameters

• scale (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Analogous to scale in Affine,
except that this scale value only affects the y-axis. No dictionary input is allowed.

• order (int or iterable of int or imgaug.ALL or imgaug.parameters.StochasticParameter, op-
tional) – See Affine.

• cval (number or tuple of number or list of number or imgaug.ALL or im-
gaug.parameters.StochasticParameter, optional) – See Affine.

• mode (str or list of str or imgaug.ALL or imgaug.parameters.StochasticParameter, optional)
– See Affine.

• fit_output (bool, optional) – See Affine.

• backend (str, optional) – See Affine.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.ScaleY((0.5, 1.5))

Create an augmenter that scales images along the height to sizes between 50% and 150%. This does not change
the image shape (i.e. height and width), only the pixels within the image are remapped and potentially new ones
are filled in.

13.29. imgaug.augmenters.geometric 795

imgaug Documentation, Release 0.3.0

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.

Continued on next page

796 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 152 – continued from previous page
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.geometric.ShearX(shear=(-30, 30), order=1, cval=0,
mode=’constant’, fit_output=False, back-
end=’auto’, seed=None, name=None,
random_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.geometric.Affine

Apply affine shear on the x-axis to input data.

This is a wrapper around Affine.

Added in 0.4.0.

Supported dtypes:

See Affine.

Parameters

• shear (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Analogous to shear in Affine,
except that this shear value only affects the x-axis. No dictionary input is allowed.

• order (int or iterable of int or imgaug.ALL or imgaug.parameters.StochasticParameter, op-
tional) – See Affine.

• cval (number or tuple of number or list of number or imgaug.ALL or im-
gaug.parameters.StochasticParameter, optional) – See Affine.

• mode (str or list of str or imgaug.ALL or imgaug.parameters.StochasticParameter, optional)
– See Affine.

• fit_output (bool, optional) – See Affine.

• backend (str, optional) – See Affine.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

13.29. imgaug.augmenters.geometric 797

imgaug Documentation, Release 0.3.0

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.ShearX((-20, 20))

Create an augmenter that shears images along the x-axis by random amounts between -20 and 20 degrees.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.

Continued on next page

798 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 153 – continued from previous page
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.geometric.ShearY(shear=(-30, 30), order=1, cval=0,
mode=’constant’, fit_output=False, back-
end=’auto’, seed=None, name=None,
random_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.geometric.Affine

Apply affine shear on the y-axis to input data.

This is a wrapper around Affine.

Added in 0.4.0.

Supported dtypes:

See Affine.

Parameters

• shear (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Analogous to shear in Affine,
except that this shear value only affects the y-axis. No dictionary input is allowed.

• order (int or iterable of int or imgaug.ALL or imgaug.parameters.StochasticParameter, op-
tional) – See Affine.

• cval (number or tuple of number or list of number or imgaug.ALL or im-
gaug.parameters.StochasticParameter, optional) – See Affine.

• mode (str or list of str or imgaug.ALL or imgaug.parameters.StochasticParameter, optional)
– See Affine.

• fit_output (bool, optional) – See Affine.

• backend (str, optional) – See Affine.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

13.29. imgaug.augmenters.geometric 799

imgaug Documentation, Release 0.3.0

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.ShearY((-20, 20))

Create an augmenter that shears images along the y-axis by random amounts between -20 and 20 degrees.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
Continued on next page

800 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 154 – continued from previous page
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.geometric.TranslateX(percent=None, px=None, order=1, cval=0,
mode=’constant’, fit_output=False, back-
end=’auto’, seed=None, name=None,
random_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.geometric.Affine

Apply affine translation on the x-axis to input data.

This is a wrapper around Affine.

Added in 0.4.0.

Supported dtypes:

See Affine.

Parameters

• percent (None or number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Analogous to translate_percent
in Affine, except that this translation value only affects the x-axis. No dictionary input is
allowed.

• px (None or int or tuple of int or list of int or imgaug.parameters.StochasticParameter or
dict {“x”: int/tuple/list/StochasticParameter, “y”: int/tuple/list/StochasticParameter}, op-
tional) – Analogous to translate_px in Affine, except that this translation value only
affects the x-axis. No dictionary input is allowed.

• order (int or iterable of int or imgaug.ALL or imgaug.parameters.StochasticParameter, op-
tional) – See Affine.

• cval (number or tuple of number or list of number or imgaug.ALL or im-
gaug.parameters.StochasticParameter, optional) – See Affine.

• mode (str or list of str or imgaug.ALL or imgaug.parameters.StochasticParameter, optional)
– See Affine.

• fit_output (bool, optional) – See Affine.

• backend (str, optional) – See Affine.

13.29. imgaug.augmenters.geometric 801

imgaug Documentation, Release 0.3.0

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.TranslateX(px=(-20, 20))

Create an augmenter that translates images along the x-axis by -20 to 20 pixels.

>>> aug = iaa.TranslateX(percent=(-0.1, 0.1))

Create an augmenter that translates images along the x-axis by -10% to 10% (relative to the x-axis size).

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

Continued on next page

802 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 155 – continued from previous page
copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence

(in-place).
deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.geometric.TranslateY(percent=None, px=None, order=1, cval=0,
mode=’constant’, fit_output=False, back-
end=’auto’, seed=None, name=None,
random_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.geometric.Affine

Apply affine translation on the y-axis to input data.

This is a wrapper around Affine.

Added in 0.4.0.

Supported dtypes:

See Affine.

Parameters

• percent (None or number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Analogous to translate_percent
in Affine, except that this translation value only affects the y-axis. No dictionary input is
allowed.

• px (None or int or tuple of int or list of int or imgaug.parameters.StochasticParameter or

13.29. imgaug.augmenters.geometric 803

imgaug Documentation, Release 0.3.0

dict {“x”: int/tuple/list/StochasticParameter, “y”: int/tuple/list/StochasticParameter}, op-
tional) – Analogous to translate_px in Affine, except that this translation value only
affects the y-axis. No dictionary input is allowed.

• order (int or iterable of int or imgaug.ALL or imgaug.parameters.StochasticParameter, op-
tional) – See Affine.

• cval (number or tuple of number or list of number or imgaug.ALL or im-
gaug.parameters.StochasticParameter, optional) – See Affine.

• mode (str or list of str or imgaug.ALL or imgaug.parameters.StochasticParameter, optional)
– See Affine.

• fit_output (bool, optional) – See Affine.

• backend (str, optional) – See Affine.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.TranslateY(px=(-20, 20))

Create an augmenter that translates images along the y-axis by -20 to 20 pixels.

>>> aug = iaa.TranslateY(percent=(-0.1, 0.1))

Create an augmenter that translates images along the y-axis by -10% to 10% (relative to the y-axis size).

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

Continued on next page

804 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 156 – continued from previous page
augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.geometric.WithPolarWarping(children, seed=None,
name=None, ran-
dom_state=’deprecated’, de-
terministic=’deprecated’)

Bases: imgaug.augmenters.meta.Augmenter

Augmenter that applies other augmenters in a polar-transformed space.

This augmenter first transforms an image into a polar representation, then applies its child augmenter, then

13.29. imgaug.augmenters.geometric 805

imgaug Documentation, Release 0.3.0

transforms back to cartesian space. The polar representation is still in the image’s input dtype (i.e. uint8 stays
uint8) and can be visualized. It can be thought of as an “unrolled” version of the image, where previously
circular lines appear straight. Hence, applying child augmenters in that space can lead to circular effects. E.g.
replacing rectangular pixel areas in the polar representation with black pixels will lead to curved black areas in
the cartesian result.

This augmenter can create new pixels in the image. It will fill these with black pixels. For segmentation maps it
will fill with class id 0. For heatmaps it will fill with 0.0.

This augmenter is limited to arrays with a height and/or width of 32767 or less.

Warning: When augmenting coordinates in polar representation, it is possible that these are shifted outside
of the polar image, but are inside the image plane after transforming back to cartesian representation, usually
on newly created pixels (i.e. black backgrounds). These coordinates are currently not removed. It is recom-
mended to not use very strong child transformations when also augmenting coordinate-based augmentables.

Warning: For bounding boxes, this augmenter suffers from the same problem as affine rotations applied
to bounding boxes, i.e. the resulting bounding boxes can have unintuitive (seemingly wrong) appearance.
This is due to coordinates being “rotated” that are inside the bounding box, but do not fall on the object and
actually are background. It is recommended to use this augmenter with caution when augmenting bounding
boxes.

Warning: For polygons, this augmenter should not be combined with augmenters that perform auto-
matic polygon recovery for invalid polygons, as the polygons will frequently appear broken in polar rep-
resentation and their “fixed” version will be very broken in cartesian representation. Augmenters that
perform such polygon recovery are currently PerspectiveTransform, PiecewiseAffine and
ElasticTransformation.

Added in 0.4.0.

Supported dtypes:

• uint8: yes; fully tested

• uint16: yes; tested

• uint32: no (1)

• uint64: no (2)

• int8: yes; tested

• int16: yes; tested

• int32: yes; tested

• int64: no (2)

• float16: yes; tested (3)

• float32: yes; tested

• float64: yes; tested

• float128: no (1)

• bool: yes; tested (4)

806 Chapter 13. API

imgaug Documentation, Release 0.3.0

• (1) OpenCV produces error TypeError: Expected cv::UMat for argument
'src'

• (2) OpenCV produces array of nothing but zeros.

• (3) Mapepd to float32.

• (4) Mapped to uint8.

Parameters

• children (imgaug.augmenters.meta.Augmenter or list of im-
gaug.augmenters.meta.Augmenter or None, optional) – One or more augmenters to
apply to images after they were transformed to polar representation.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.WithPolarWarping(iaa.CropAndPad(percent=(-0.1, 0.1)))

Apply cropping and padding in polar representation, then warp back to cartesian representation.

>>> aug = iaa.WithPolarWarping(
>>> iaa.Affine(
>>> translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)},
>>> rotate=(-35, 35),
>>> scale=(0.8, 1.2),
>>> shear={"x": (-15, 15), "y": (-15, 15)}
>>>)
>>>)

Apply affine transformations in polar representation.

>>> aug = iaa.WithPolarWarping(iaa.AveragePooling((2, 8)))

Apply average pooling in polar representation. This leads to circular bins.

Methods

13.29. imgaug.augmenters.geometric 807

imgaug Documentation, Release 0.3.0

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) See get_children_lists().
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
Continued on next page

808 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 157 – continued from previous page
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.
warpPolarCoords(src, dsize, center, . . .)

get_children_lists(self)
See get_children_lists().

get_parameters(self)
See get_parameters().

classmethod warpPolarCoords(src, dsize, center, maxRadius, flags)

imgaug.augmenters.geometric.apply_jigsaw(arr, destinations)
Move cells of an image similar to a jigsaw puzzle.

This function will split the image into rows x cols cells and move each cell to the target index given in
destinations.

Added in 0.4.0.

Supported dtypes:

• uint8: yes; fully tested

• uint16: yes; fully tested

• uint32: yes; fully tested

• uint64: yes; fully tested

• int8: yes; fully tested

• int16: yes; fully tested

• int32: yes; fully tested

• int64: yes; fully tested

• float16: yes; fully tested

• float32: yes; fully tested

• float64: yes; fully tested

• float128: yes; fully tested

• bool: yes; fully tested

Parameters

• arr (ndarray) – Array with at least two dimensions denoting height and width.

• destinations (ndarray) – 2-dimensional array containing for each cell the id of the destina-
tion cell. The order is expected to a flattened c-order, i.e. row by row. The height of the
image must be evenly divisible by the number of rows in this array. Analogous for the width
and columns.

Returns Modified image with cells moved according to destinations.

Return type ndarray

imgaug.augmenters.geometric.apply_jigsaw_to_coords(coords, destinations, im-
age_shape)

Move coordinates on an image similar to a jigsaw puzzle.

13.29. imgaug.augmenters.geometric 809

imgaug Documentation, Release 0.3.0

This is the same as apply_jigsaw(), but moves coordinates within the cells.

Added in 0.4.0.

Parameters

• coords (ndarray) – (N, 2) array denoting xy-coordinates.

• destinations (ndarray) – See apply_jigsaw().

• image_shape (tuple of int) – (height, width, ...) shape of the image on which
the coordinates are placed. Only height and width are required.

Returns Moved coordinates.

Return type ndarray

imgaug.augmenters.geometric.generate_jigsaw_destinations(nb_rows, nb_cols,
max_steps, seed, connec-
tivity=4)

Generate a destination pattern for apply_jigsaw().

Added in 0.4.0.

Parameters

• nb_rows (int) – Number of rows to split the image into.

• nb_cols (int) – Number of columns to split the image into.

• max_steps (int) – Maximum number of cells that each cell may be moved.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState) – Seed value or alternatively RNG to use. If None the
global RNG will be used.

• connectivity (int, optional) – Whether a diagonal move of a cell counts as one step
(connectivity=8) or two steps (connectivity=4).

Returns 2-dimensional array containing for each cell the id of the target cell.

Return type ndarray

13.30 imgaug.augmenters.imgcorruptlike

Augmenters that wrap methods from imagecorruptions package.

See ‘https://github.com/bethgelab/imagecorruptions‘_ for the package.

The package is derived from ‘https://github.com/hendrycks/robustness‘_. The corresponding paper is:

Hendrycks, Dan and Dietterich, Thomas G.
Benchmarking Neural Network Robustness to Common Corruptions and
Surface Variations

with the newer version being:

Hendrycks, Dan and Dietterich, Thomas G.
Benchmarking Neural Network Robustness to Common Corruptions and
Perturbations

List of augmenters:

810 Chapter 13. API

https://arxiv.org/abs/1807.01697
https://arxiv.org/abs/1903.12261

imgaug Documentation, Release 0.3.0

• GaussianNoise

• ShotNoise

• ImpulseNoise

• SpeckleNoise

• GaussianBlur

• GlassBlur

• DefocusBlur

• MotionBlur

• ZoomBlur

• Fog

• Frost

• Snow

• Spatter

• Contrast

• Brightness

• Saturate

• JpegCompression

• Pixelate

• ElasticTransform

Note: The functions provided here have identical outputs to the ones in imagecorruptions when called using
the corrupt() function of that package. E.g. the outputs are always uint8 and not float32 or float64.

Example usage:

>>> # Skip the doctests in this file as the imagecorruptions package is
>>> # not available in all python versions that are otherwise supported
>>> # by imgaug.
>>>
>>> import imgaug as ia
>>> import imgaug.augmenters as iaa
>>> import numpy as np
>>> image = np.zeros((64, 64, 3), dtype=np.uint8)
>>> names, funcs = iaa.imgcorruptlike.get_corruption_names("validation")
>>> for name, func in zip(names, funcs):
>>> image_aug = func(image, severity=5, seed=1)
>>> image_aug = ia.draw_text(image_aug, x=20, y=20, text=name)
>>> ia.imshow(image_aug)

Use e.g. ``iaa.imgcorruptlike.GaussianNoise(severity=2)(images=...)`` to
create and apply a specific augmenter.

Added in 0.4.0.

13.30. imgaug.augmenters.imgcorruptlike 811

imgaug Documentation, Release 0.3.0

class imgaug.augmenters.imgcorruptlike.Brightness(severity=(1, 5), seed=None,
name=None, ran-
dom_state=’deprecated’, deter-
ministic=’deprecated’)

Bases: imgaug.augmenters.imgcorruptlike._ImgcorruptAugmenterBase

Wrapper around imagecorruptions.corruptions.brightness.

Note: This augmenter only affects images. Other data is not changed.

Added in 0.4.0.

Supported dtypes:

See apply_brightness().

Parameters

• severity (int, optional) – Strength of the corruption, with valid values being 1 <=
severity <= 5.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> # doctest: +SKIP
>>> import imgaug.augmenters as iaa
>>> aug = iaa.imgcorruptlike.Brightness(severity=2)

Create an augmenter around imagecorruptions.corruptions.brightness. Apply it to images us-
ing e.g. aug(images=[image1, image2, ...]).

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.

Continued on next page

812 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 158 – continued from previous page
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

13.30. imgaug.augmenters.imgcorruptlike 813

imgaug Documentation, Release 0.3.0

class imgaug.augmenters.imgcorruptlike.Contrast(severity=(1, 5), seed=None,
name=None, ran-
dom_state=’deprecated’, deter-
ministic=’deprecated’)

Bases: imgaug.augmenters.imgcorruptlike._ImgcorruptAugmenterBase

Wrapper around imagecorruptions.corruptions.contrast.

Note: This augmenter only affects images. Other data is not changed.

Added in 0.4.0.

Supported dtypes:

See apply_contrast().

Parameters

• severity (int, optional) – Strength of the corruption, with valid values being 1 <=
severity <= 5.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> # doctest: +SKIP
>>> import imgaug.augmenters as iaa
>>> aug = iaa.imgcorruptlike.Contrast(severity=2)

Create an augmenter around imagecorruptions.corruptions.contrast. Apply it to images using
e.g. aug(images=[image1, image2, ...]).

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.

Continued on next page

814 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 159 – continued from previous page
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

13.30. imgaug.augmenters.imgcorruptlike 815

imgaug Documentation, Release 0.3.0

class imgaug.augmenters.imgcorruptlike.DefocusBlur(severity=(1, 5), seed=None,
name=None, ran-
dom_state=’deprecated’, de-
terministic=’deprecated’)

Bases: imgaug.augmenters.imgcorruptlike._ImgcorruptAugmenterBase

Wrapper around imagecorruptions.corruptions.defocus_blur.

Note: This augmenter only affects images. Other data is not changed.

Added in 0.4.0.

Supported dtypes:

See apply_defocus_blur().

Parameters

• severity (int, optional) – Strength of the corruption, with valid values being 1 <=
severity <= 5.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> # doctest: +SKIP
>>> import imgaug.augmenters as iaa
>>> aug = iaa.imgcorruptlike.DefocusBlur(severity=2)

Create an augmenter around imagecorruptions.corruptions.defocus_blur. Apply it to images
using e.g. aug(images=[image1, image2, ...]).

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.

Continued on next page

816 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 160 – continued from previous page
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

13.30. imgaug.augmenters.imgcorruptlike 817

imgaug Documentation, Release 0.3.0

class imgaug.augmenters.imgcorruptlike.ElasticTransform(severity=(1,
5), seed=None,
name=None, ran-
dom_state=’deprecated’,
determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.imgcorruptlike._ImgcorruptAugmenterBase

Wrapper around imagecorruptions.corruptions.elastic_transform.

Warning: This augmenter can currently only transform image-data. Batches containing heatmaps,
segmentation maps and coordinate-based augmentables will be rejected with an error. Use
ElasticTransformation if you have to transform such inputs.

Added in 0.4.0.

Supported dtypes:

See apply_elastic_transform().

Parameters

• severity (int, optional) – Strength of the corruption, with valid values being 1 <=
severity <= 5.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> # doctest: +SKIP
>>> import imgaug.augmenters as iaa
>>> aug = iaa.imgcorruptlike.ElasticTransform(severity=2)

Create an augmenter around imagecorruptions.corruptions.elastic_transform. Apply it to
images using e.g. aug(images=[image1, image2, ...]).

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.

Continued on next page

818 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 161 – continued from previous page
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

13.30. imgaug.augmenters.imgcorruptlike 819

imgaug Documentation, Release 0.3.0

class imgaug.augmenters.imgcorruptlike.Fog(severity=(1, 5), seed=None, name=None,
random_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.imgcorruptlike._ImgcorruptAugmenterBase

Wrapper around imagecorruptions.corruptions.fog.

Note: This augmenter only affects images. Other data is not changed.

Added in 0.4.0.

Supported dtypes:

See apply_fog().

Parameters

• severity (int, optional) – Strength of the corruption, with valid values being 1 <=
severity <= 5.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> # doctest: +SKIP
>>> import imgaug.augmenters as iaa
>>> aug = iaa.imgcorruptlike.Fog(severity=2)

Create an augmenter around imagecorruptions.corruptions.fog. Apply it to images using e.g.
aug(images=[image1, image2, ...]).

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

Continued on next page

820 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 162 – continued from previous page
augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.imgcorruptlike.Frost(severity=(1, 5), seed=None, name=None,
random_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.imgcorruptlike._ImgcorruptAugmenterBase

Wrapper around imagecorruptions.corruptions.frost.

13.30. imgaug.augmenters.imgcorruptlike 821

imgaug Documentation, Release 0.3.0

Note: This augmenter only affects images. Other data is not changed.

Added in 0.4.0.

Supported dtypes:

See apply_frost().

Parameters

• severity (int, optional) – Strength of the corruption, with valid values being 1 <=
severity <= 5.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> # doctest: +SKIP
>>> import imgaug.augmenters as iaa
>>> aug = iaa.imgcorruptlike.Frost(severity=2)

Create an augmenter around imagecorruptions.corruptions.frost. Apply it to images using e.g.
aug(images=[image1, image2, ...]).

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

Continued on next page

822 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 163 – continued from previous page
augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.imgcorruptlike.GaussianBlur(severity=(1, 5), seed=None,
name=None, ran-
dom_state=’deprecated’, de-
terministic=’deprecated’)

Bases: imgaug.augmenters.imgcorruptlike._ImgcorruptAugmenterBase

Wrapper around imagecorruptions.corruptions.gaussian_blur.

Note: This augmenter only affects images. Other data is not changed.

Added in 0.4.0.

13.30. imgaug.augmenters.imgcorruptlike 823

imgaug Documentation, Release 0.3.0

Supported dtypes:

See apply_gaussian_blur().

Parameters

• severity (int, optional) – Strength of the corruption, with valid values being 1 <=
severity <= 5.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> # doctest: +SKIP
>>> import imgaug.augmenters as iaa
>>> aug = iaa.imgcorruptlike.GaussianBlur(severity=2)

Create an augmenter around imagecorruptions.corruptions.gaussian_blur. Apply it to images
using e.g. aug(images=[image1, image2, ...]).

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

Continued on next page

824 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 164 – continued from previous page
augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.imgcorruptlike.GaussianNoise(severity=(1, 5), seed=None,
name=None, ran-
dom_state=’deprecated’,
deterministic=’deprecated’)

Bases: imgaug.augmenters.imgcorruptlike._ImgcorruptAugmenterBase

Wrapper around imagecorruptions.corruptions.gaussian_noise.

Note: This augmenter only affects images. Other data is not changed.

Added in 0.4.0.

Supported dtypes:

See apply_gaussian_noise().

Parameters

13.30. imgaug.augmenters.imgcorruptlike 825

imgaug Documentation, Release 0.3.0

• severity (int, optional) – Strength of the corruption, with valid values being 1 <=
severity <= 5.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> # doctest: +SKIP
>>> import imgaug.augmenters as iaa
>>> aug = iaa.imgcorruptlike.GaussianNoise(severity=2)

Create an augmenter around imagecorruptions.corruptions.gaussian_noise. Apply it to im-
ages using e.g. aug(images=[image1, image2, ...]).

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

Continued on next page

826 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 165 – continued from previous page
copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence

(in-place).
deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.imgcorruptlike.GlassBlur(severity=(1, 5), seed=None,
name=None, ran-
dom_state=’deprecated’, deter-
ministic=’deprecated’)

Bases: imgaug.augmenters.imgcorruptlike._ImgcorruptAugmenterBase

Wrapper around imagecorruptions.corruptions.glass_blur.

Note: This augmenter only affects images. Other data is not changed.

Added in 0.4.0.

Supported dtypes:

See apply_glass_blur().

Parameters

• severity (int, optional) – Strength of the corruption, with valid values being 1 <=
severity <= 5.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or

13.30. imgaug.augmenters.imgcorruptlike 827

imgaug Documentation, Release 0.3.0

numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> # doctest: +SKIP
>>> import imgaug.augmenters as iaa
>>> aug = iaa.imgcorruptlike.GlassBlur(severity=2)

Create an augmenter around imagecorruptions.corruptions.glass_blur. Apply it to images us-
ing e.g. aug(images=[image1, image2, ...]).

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
Continued on next page

828 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 166 – continued from previous page
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.imgcorruptlike.ImpulseNoise(severity=(1, 5), seed=None,
name=None, ran-
dom_state=’deprecated’, de-
terministic=’deprecated’)

Bases: imgaug.augmenters.imgcorruptlike._ImgcorruptAugmenterBase

Wrapper around imagecorruptions.corruptions.impulse_noise.

Note: This augmenter only affects images. Other data is not changed.

Added in 0.4.0.

Supported dtypes:

See apply_impulse_noise().

Parameters

• severity (int, optional) – Strength of the corruption, with valid values being 1 <=
severity <= 5.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or

13.30. imgaug.augmenters.imgcorruptlike 829

imgaug Documentation, Release 0.3.0

numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> # doctest: +SKIP
>>> import imgaug.augmenters as iaa
>>> aug = iaa.imgcorruptlike.ImpulseNoise(severity=2)

Create an augmenter around imagecorruptions.corruptions.impulse_noise. Apply it to images
using e.g. aug(images=[image1, image2, ...]).

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

Continued on next page

830 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 167 – continued from previous page
get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.imgcorruptlike.JpegCompression(severity=(1, 5), seed=None,
name=None, ran-
dom_state=’deprecated’,
determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.imgcorruptlike._ImgcorruptAugmenterBase

Wrapper around imagecorruptions.corruptions.jpeg_compression.

Note: This augmenter only affects images. Other data is not changed.

Added in 0.4.0.

Supported dtypes:

See apply_jpeg_compression().

Parameters

• severity (int, optional) – Strength of the corruption, with valid values being 1 <=
severity <= 5.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

13.30. imgaug.augmenters.imgcorruptlike 831

imgaug Documentation, Release 0.3.0

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> # doctest: +SKIP
>>> import imgaug.augmenters as iaa
>>> aug = iaa.imgcorruptlike.JpegCompression(severity=2)

Create an augmenter around imagecorruptions.corruptions.jpeg_compression. Apply it to
images using e.g. aug(images=[image1, image2, ...]).

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().

Continued on next page

832 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 168 – continued from previous page
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.imgcorruptlike.MotionBlur(severity=(1, 5), seed=None,
name=None, ran-
dom_state=’deprecated’, deter-
ministic=’deprecated’)

Bases: imgaug.augmenters.imgcorruptlike._ImgcorruptAugmenterBase

Wrapper around imagecorruptions.corruptions.motion_blur.

Note: This augmenter only affects images. Other data is not changed.

Added in 0.4.0.

Supported dtypes:

See apply_motion_blur().

Parameters

• severity (int, optional) – Strength of the corruption, with valid values being 1 <=
severity <= 5.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

13.30. imgaug.augmenters.imgcorruptlike 833

imgaug Documentation, Release 0.3.0

Examples

>>> # doctest: +SKIP
>>> import imgaug.augmenters as iaa
>>> aug = iaa.imgcorruptlike.MotionBlur(severity=2)

Create an augmenter around imagecorruptions.corruptions.motion_blur. Apply it to images
using e.g. aug(images=[image1, image2, ...]).

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.

Continued on next page

834 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 169 – continued from previous page
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.imgcorruptlike.Pixelate(severity=(1, 5), seed=None,
name=None, ran-
dom_state=’deprecated’, deter-
ministic=’deprecated’)

Bases: imgaug.augmenters.imgcorruptlike._ImgcorruptAugmenterBase

Wrapper around imagecorruptions.corruptions.pixelate.

Note: This augmenter only affects images. Other data is not changed.

Added in 0.4.0.

Supported dtypes:

See apply_pixelate().

Parameters

• severity (int, optional) – Strength of the corruption, with valid values being 1 <=
severity <= 5.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> # doctest: +SKIP
>>> import imgaug.augmenters as iaa
>>> aug = iaa.imgcorruptlike.Pixelate(severity=2)

13.30. imgaug.augmenters.imgcorruptlike 835

imgaug Documentation, Release 0.3.0

Create an augmenter around imagecorruptions.corruptions.pixelate. Apply it to images using
e.g. aug(images=[image1, image2, ...]).

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
Continued on next page

836 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 170 – continued from previous page
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.imgcorruptlike.Saturate(severity=(1, 5), seed=None,
name=None, ran-
dom_state=’deprecated’, deter-
ministic=’deprecated’)

Bases: imgaug.augmenters.imgcorruptlike._ImgcorruptAugmenterBase

Wrapper around imagecorruptions.corruptions.saturate.

Note: This augmenter only affects images. Other data is not changed.

Added in 0.4.0.

Supported dtypes:

See apply_saturate().

Parameters

• severity (int, optional) – Strength of the corruption, with valid values being 1 <=
severity <= 5.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> # doctest: +SKIP
>>> import imgaug.augmenters as iaa
>>> aug = iaa.imgcorruptlike.Saturate(severity=2)

Create an augmenter around imagecorruptions.corruptions.saturate. Apply it to images using
e.g. aug(images=[image1, image2, ...]).

13.30. imgaug.augmenters.imgcorruptlike 837

imgaug Documentation, Release 0.3.0

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.

Continued on next page

838 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 171 – continued from previous page
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.imgcorruptlike.ShotNoise(severity=(1, 5), seed=None,
name=None, ran-
dom_state=’deprecated’, deter-
ministic=’deprecated’)

Bases: imgaug.augmenters.imgcorruptlike._ImgcorruptAugmenterBase

Wrapper around imagecorruptions.shot_noise.

Note: This augmenter only affects images. Other data is not changed.

Added in 0.4.0.

Supported dtypes:

See apply_shot_noise().

Parameters

• severity (int, optional) – Strength of the corruption, with valid values being 1 <=
severity <= 5.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> # doctest: +SKIP
>>> import imgaug.augmenters as iaa
>>> aug = iaa.imgcorruptlike.ShotNoise(severity=2)

Create an augmenter around imagecorruptions.corruptions.shot_noise. Apply it to images us-
ing e.g. aug(images=[image1, image2, ...]).

Methods

13.30. imgaug.augmenters.imgcorruptlike 839

imgaug Documentation, Release 0.3.0

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
Continued on next page

840 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 172 – continued from previous page
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.imgcorruptlike.Snow(severity=(1, 5), seed=None, name=None,
random_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.imgcorruptlike._ImgcorruptAugmenterBase

Wrapper around imagecorruptions.corruptions.snow.

Note: This augmenter only affects images. Other data is not changed.

Added in 0.4.0.

Supported dtypes:

See apply_snow().

Parameters

• severity (int, optional) – Strength of the corruption, with valid values being 1 <=
severity <= 5.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> # doctest: +SKIP
>>> import imgaug.augmenters as iaa
>>> aug = iaa.imgcorruptlike.Snow(severity=2)

Create an augmenter around imagecorruptions.corruptions.snow. Apply it to images using e.g.
aug(images=[image1, image2, ...]).

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.

Continued on next page

13.30. imgaug.augmenters.imgcorruptlike 841

imgaug Documentation, Release 0.3.0

Table 173 – continued from previous page
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

842 Chapter 13. API

imgaug Documentation, Release 0.3.0

class imgaug.augmenters.imgcorruptlike.Spatter(severity=(1, 5), seed=None,
name=None, ran-
dom_state=’deprecated’, determin-
istic=’deprecated’)

Bases: imgaug.augmenters.imgcorruptlike._ImgcorruptAugmenterBase

Wrapper around imagecorruptions.corruptions.spatter.

Note: This augmenter only affects images. Other data is not changed.

Added in 0.4.0.

Supported dtypes:

See apply_spatter().

Parameters

• severity (int, optional) – Strength of the corruption, with valid values being 1 <=
severity <= 5.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> # doctest: +SKIP
>>> import imgaug.augmenters as iaa
>>> aug = iaa.imgcorruptlike.Spatter(severity=2)

Create an augmenter around imagecorruptions.corruptions.spatter. Apply it to images using
e.g. aug(images=[image1, image2, ...]).

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.

Continued on next page

13.30. imgaug.augmenters.imgcorruptlike 843

imgaug Documentation, Release 0.3.0

Table 174 – continued from previous page
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

844 Chapter 13. API

imgaug Documentation, Release 0.3.0

class imgaug.augmenters.imgcorruptlike.SpeckleNoise(severity=(1, 5), seed=None,
name=None, ran-
dom_state=’deprecated’, de-
terministic=’deprecated’)

Bases: imgaug.augmenters.imgcorruptlike._ImgcorruptAugmenterBase

Wrapper around imagecorruptions.corruptions.speckle_noise.

Note: This augmenter only affects images. Other data is not changed.

Added in 0.4.0.

Supported dtypes:

See apply_speckle_noise().

Parameters

• severity (int, optional) – Strength of the corruption, with valid values being 1 <=
severity <= 5.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> # doctest: +SKIP
>>> import imgaug.augmenters as iaa
>>> aug = iaa.imgcorruptlike.SpeckleNoise(severity=2)

Create an augmenter around imagecorruptions.corruptions.speckle_noise. Apply it to images
using e.g. aug(images=[image1, image2, ...]).

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.

Continued on next page

13.30. imgaug.augmenters.imgcorruptlike 845

imgaug Documentation, Release 0.3.0

Table 175 – continued from previous page
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

846 Chapter 13. API

imgaug Documentation, Release 0.3.0

class imgaug.augmenters.imgcorruptlike.ZoomBlur(severity=(1, 5), seed=None,
name=None, ran-
dom_state=’deprecated’, deter-
ministic=’deprecated’)

Bases: imgaug.augmenters.imgcorruptlike._ImgcorruptAugmenterBase

Wrapper around imagecorruptions.corruptions.zoom_blur.

Note: This augmenter only affects images. Other data is not changed.

Added in 0.4.0.

Supported dtypes:

See apply_zoom_blur().

Parameters

• severity (int, optional) – Strength of the corruption, with valid values being 1 <=
severity <= 5.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> # doctest: +SKIP
>>> import imgaug.augmenters as iaa
>>> aug = iaa.imgcorruptlike.ZoomBlur(severity=2)

Create an augmenter around imagecorruptions.corruptions.zoom_blur. Apply it to images using
e.g. aug(images=[image1, image2, ...]).

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.

Continued on next page

13.30. imgaug.augmenters.imgcorruptlike 847

imgaug Documentation, Release 0.3.0

Table 176 – continued from previous page
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

imgaug.augmenters.imgcorruptlike.apply_brightness(x, severity=1, seed=None)
Apply brightness from imagecorruptions.

Added in 0.4.0.

848 Chapter 13. API

imgaug Documentation, Release 0.3.0

Supported dtypes:

See _call_imgcorrupt_func().

Parameters

• x (ndarray) – Image array. Expected to have shape (H,W), (H,W,1) or (H,W,3) with
dtype uint8 and a minimum height/width of 32.

• severity (int, optional) – Strength of the corruption, with valid values being 1 <=
severity <= 5.

• seed (None or int, optional) – Seed for the random number generation to use.

Returns Corrupted image.

Return type ndarray

imgaug.augmenters.imgcorruptlike.apply_contrast(x, severity=1, seed=None)
Apply contrast from imagecorruptions.

Added in 0.4.0.

Supported dtypes:

See _call_imgcorrupt_func().

Parameters

• x (ndarray) – Image array. Expected to have shape (H,W), (H,W,1) or (H,W,3) with
dtype uint8 and a minimum height/width of 32.

• severity (int, optional) – Strength of the corruption, with valid values being 1 <=
severity <= 5.

• seed (None or int, optional) – Seed for the random number generation to use.

Returns Corrupted image.

Return type ndarray

imgaug.augmenters.imgcorruptlike.apply_defocus_blur(x, severity=1, seed=None)
Apply defocus_blur from imagecorruptions.

Added in 0.4.0.

Supported dtypes:

See _call_imgcorrupt_func().

Parameters

• x (ndarray) – Image array. Expected to have shape (H,W), (H,W,1) or (H,W,3) with
dtype uint8 and a minimum height/width of 32.

• severity (int, optional) – Strength of the corruption, with valid values being 1 <=
severity <= 5.

• seed (None or int, optional) – Seed for the random number generation to use.

Returns Corrupted image.

Return type ndarray

imgaug.augmenters.imgcorruptlike.apply_elastic_transform(image, severity=1,
seed=None)

Apply elastic_transform from imagecorruptions.

Added in 0.4.0.

13.30. imgaug.augmenters.imgcorruptlike 849

imgaug Documentation, Release 0.3.0

Supported dtypes:

See _call_imgcorrupt_func().

Parameters

• image (ndarray) – Image array. Expected to have shape (H,W), (H,W,1) or (H,W,3)
with dtype uint8 and a minimum height/width of 32.

• severity (int, optional) – Strength of the corruption, with valid values being 1 <=
severity <= 5.

• seed (None or int, optional) – Seed for the random number generation to use.

Returns Corrupted image.

Return type ndarray

imgaug.augmenters.imgcorruptlike.apply_fog(x, severity=1, seed=None)
Apply fog from imagecorruptions.

Added in 0.4.0.

Supported dtypes:

See _call_imgcorrupt_func().

Parameters

• x (ndarray) – Image array. Expected to have shape (H,W), (H,W,1) or (H,W,3) with
dtype uint8 and a minimum height/width of 32.

• severity (int, optional) – Strength of the corruption, with valid values being 1 <=
severity <= 5.

• seed (None or int, optional) – Seed for the random number generation to use.

Returns Corrupted image.

Return type ndarray

imgaug.augmenters.imgcorruptlike.apply_frost(x, severity=1, seed=None)
Apply frost from imagecorruptions.

Added in 0.4.0.

Supported dtypes:

See _call_imgcorrupt_func().

Parameters

• x (ndarray) – Image array. Expected to have shape (H,W), (H,W,1) or (H,W,3) with
dtype uint8 and a minimum height/width of 32.

• severity (int, optional) – Strength of the corruption, with valid values being 1 <=
severity <= 5.

• seed (None or int, optional) – Seed for the random number generation to use.

Returns Corrupted image.

Return type ndarray

imgaug.augmenters.imgcorruptlike.apply_gaussian_blur(x, severity=1, seed=None)
Apply gaussian_blur from imagecorruptions.

Added in 0.4.0.

850 Chapter 13. API

imgaug Documentation, Release 0.3.0

Supported dtypes:

See _call_imgcorrupt_func().

Parameters

• x (ndarray) – Image array. Expected to have shape (H,W), (H,W,1) or (H,W,3) with
dtype uint8 and a minimum height/width of 32.

• severity (int, optional) – Strength of the corruption, with valid values being 1 <=
severity <= 5.

• seed (None or int, optional) – Seed for the random number generation to use.

Returns Corrupted image.

Return type ndarray

imgaug.augmenters.imgcorruptlike.apply_gaussian_noise(x, severity=1, seed=None)
Apply gaussian_noise from imagecorruptions.

Added in 0.4.0.

Supported dtypes:

See _call_imgcorrupt_func().

Parameters

• x (ndarray) – Image array. Expected to have shape (H,W), (H,W,1) or (H,W,3) with
dtype uint8 and a minimum height/width of 32.

• severity (int, optional) – Strength of the corruption, with valid values being 1 <=
severity <= 5.

• seed (None or int, optional) – Seed for the random number generation to use.

Returns Corrupted image.

Return type ndarray

imgaug.augmenters.imgcorruptlike.apply_glass_blur(x, severity=1, seed=None)
Apply glass_blur from imagecorruptions.

Added in 0.4.0.

Supported dtypes:

See _call_imgcorrupt_func().

Parameters

• x (ndarray) – Image array. Expected to have shape (H,W), (H,W,1) or (H,W,3) with
dtype uint8 and a minimum height/width of 32.

• severity (int, optional) – Strength of the corruption, with valid values being 1 <=
severity <= 5.

• seed (None or int, optional) – Seed for the random number generation to use.

Returns Corrupted image.

Return type ndarray

imgaug.augmenters.imgcorruptlike.apply_impulse_noise(x, severity=1, seed=None)
Apply impulse_noise from imagecorruptions.

Added in 0.4.0.

13.30. imgaug.augmenters.imgcorruptlike 851

imgaug Documentation, Release 0.3.0

Supported dtypes:

See _call_imgcorrupt_func().

Parameters

• x (ndarray) – Image array. Expected to have shape (H,W), (H,W,1) or (H,W,3) with
dtype uint8 and a minimum height/width of 32.

• severity (int, optional) – Strength of the corruption, with valid values being 1 <=
severity <= 5.

• seed (None or int, optional) – Seed for the random number generation to use.

Returns Corrupted image.

Return type ndarray

imgaug.augmenters.imgcorruptlike.apply_jpeg_compression(x, severity=1, seed=None)
Apply jpeg_compression from imagecorruptions.

Added in 0.4.0.

Supported dtypes:

See _call_imgcorrupt_func().

Parameters

• x (ndarray) – Image array. Expected to have shape (H,W), (H,W,1) or (H,W,3) with
dtype uint8 and a minimum height/width of 32.

• severity (int, optional) – Strength of the corruption, with valid values being 1 <=
severity <= 5.

• seed (None or int, optional) – Seed for the random number generation to use.

Returns Corrupted image.

Return type ndarray

imgaug.augmenters.imgcorruptlike.apply_motion_blur(x, severity=1, seed=None)
Apply motion_blur from imagecorruptions.

Added in 0.4.0.

Supported dtypes:

See _call_imgcorrupt_func().

Parameters

• x (ndarray) – Image array. Expected to have shape (H,W), (H,W,1) or (H,W,3) with
dtype uint8 and a minimum height/width of 32.

• severity (int, optional) – Strength of the corruption, with valid values being 1 <=
severity <= 5.

• seed (None or int, optional) – Seed for the random number generation to use.

Returns Corrupted image.

Return type ndarray

imgaug.augmenters.imgcorruptlike.apply_pixelate(x, severity=1, seed=None)
Apply pixelate from imagecorruptions.

Added in 0.4.0.

852 Chapter 13. API

imgaug Documentation, Release 0.3.0

Supported dtypes:

See _call_imgcorrupt_func().

Parameters

• x (ndarray) – Image array. Expected to have shape (H,W), (H,W,1) or (H,W,3) with
dtype uint8 and a minimum height/width of 32.

• severity (int, optional) – Strength of the corruption, with valid values being 1 <=
severity <= 5.

• seed (None or int, optional) – Seed for the random number generation to use.

Returns Corrupted image.

Return type ndarray

imgaug.augmenters.imgcorruptlike.apply_saturate(x, severity=1, seed=None)
Apply saturate from imagecorruptions.

Added in 0.4.0.

Supported dtypes:

See _call_imgcorrupt_func().

Parameters

• x (ndarray) – Image array. Expected to have shape (H,W), (H,W,1) or (H,W,3) with
dtype uint8 and a minimum height/width of 32.

• severity (int, optional) – Strength of the corruption, with valid values being 1 <=
severity <= 5.

• seed (None or int, optional) – Seed for the random number generation to use.

Returns Corrupted image.

Return type ndarray

imgaug.augmenters.imgcorruptlike.apply_shot_noise(x, severity=1, seed=None)
Apply shot_noise from imagecorruptions.

Added in 0.4.0.

Supported dtypes:

See _call_imgcorrupt_func().

Parameters

• x (ndarray) – Image array. Expected to have shape (H,W), (H,W,1) or (H,W,3) with
dtype uint8 and a minimum height/width of 32.

• severity (int, optional) – Strength of the corruption, with valid values being 1 <=
severity <= 5.

• seed (None or int, optional) – Seed for the random number generation to use.

Returns Corrupted image.

Return type ndarray

imgaug.augmenters.imgcorruptlike.apply_snow(x, severity=1, seed=None)
Apply snow from imagecorruptions.

Added in 0.4.0.

13.30. imgaug.augmenters.imgcorruptlike 853

imgaug Documentation, Release 0.3.0

Supported dtypes:

See _call_imgcorrupt_func().

Parameters

• x (ndarray) – Image array. Expected to have shape (H,W), (H,W,1) or (H,W,3) with
dtype uint8 and a minimum height/width of 32.

• severity (int, optional) – Strength of the corruption, with valid values being 1 <=
severity <= 5.

• seed (None or int, optional) – Seed for the random number generation to use.

Returns Corrupted image.

Return type ndarray

imgaug.augmenters.imgcorruptlike.apply_spatter(x, severity=1, seed=None)
Apply spatter from imagecorruptions.

Added in 0.4.0.

Supported dtypes:

See _call_imgcorrupt_func().

Parameters

• x (ndarray) – Image array. Expected to have shape (H,W), (H,W,1) or (H,W,3) with
dtype uint8 and a minimum height/width of 32.

• severity (int, optional) – Strength of the corruption, with valid values being 1 <=
severity <= 5.

• seed (None or int, optional) – Seed for the random number generation to use.

Returns Corrupted image.

Return type ndarray

imgaug.augmenters.imgcorruptlike.apply_speckle_noise(x, severity=1, seed=None)
Apply speckle_noise from imagecorruptions.

Added in 0.4.0.

Supported dtypes:

See _call_imgcorrupt_func().

Parameters

• x (ndarray) – Image array. Expected to have shape (H,W), (H,W,1) or (H,W,3) with
dtype uint8 and a minimum height/width of 32.

• severity (int, optional) – Strength of the corruption, with valid values being 1 <=
severity <= 5.

• seed (None or int, optional) – Seed for the random number generation to use.

Returns Corrupted image.

Return type ndarray

imgaug.augmenters.imgcorruptlike.apply_zoom_blur(x, severity=1, seed=None)
Apply zoom_blur from imagecorruptions.

Added in 0.4.0.

854 Chapter 13. API

imgaug Documentation, Release 0.3.0

Supported dtypes:

See _call_imgcorrupt_func().

Parameters

• x (ndarray) – Image array. Expected to have shape (H,W), (H,W,1) or (H,W,3) with
dtype uint8 and a minimum height/width of 32.

• severity (int, optional) – Strength of the corruption, with valid values being 1 <=
severity <= 5.

• seed (None or int, optional) – Seed for the random number generation to use.

Returns Corrupted image.

Return type ndarray

imgaug.augmenters.imgcorruptlike.get_corruption_names(subset=’common’)
Get a named subset of image corruption functions.

Note: This function returns the augmentation names (as strings) and the corresponding augmentation functions,
while get_corruption_names() in imagecorruptions only returns the augmentation names.

Added in 0.4.0.

Parameters subset ({‘common’, ‘validation’, ‘all’}, optional.) – Name of the subset of image cor-
ruption functions.

Returns

• list of str – Names of the corruption methods, e.g. “gaussian_noise”.

• list of callable – Function corresponding to the name. Is one of the apply_*() functions
in this module. Apply e.g. via func(image, severity=2, seed=123).

13.31 imgaug.augmenters.meta

Augmenters that don’t apply augmentations themselves, but are needed for meta usage.

List of augmenters:

• Augmenter (base class for all augmenters)

• Sequential

• SomeOf

• OneOf

• Sometimes

• WithChannels

• Identity

• Noop

• Lambda

• AssertLambda

• AssertShape

13.31. imgaug.augmenters.meta 855

imgaug Documentation, Release 0.3.0

• ChannelShuffle

Note: WithColorspace is in color.py.

class imgaug.augmenters.meta.AssertLambda(func_images=None, func_heatmaps=None,
func_segmentation_maps=None,
func_keypoints=None,
func_bounding_boxes=None,
func_polygons=None, func_line_strings=None,
seed=None, name=None, ran-
dom_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.meta.Lambda

Assert conditions based on lambda-function to be the case for input data.

This augmenter applies a lambda function to each image or other input. The lambda function must return True
or False. If False is returned, an assertion error is produced.

This is useful to ensure that generic assumption about the input data are actually the case and error out early
otherwise.

Supported dtypes:

• uint8: yes; fully tested

• uint16: yes; tested

• uint32: yes; tested

• uint64: yes; tested

• int8: yes; tested

• int16: yes; tested

• int32: yes; tested

• int64: yes; tested

• float16: yes; tested

• float32: yes; tested

• float64: yes; tested

• float128: yes; tested

• bool: yes; tested

Parameters

• func_images (None or callable, optional) – The function to call for each batch of images.
It must follow the form:

function(images, random_state, parents, hooks)

and return either True (valid input) or False (invalid input). It essentially re-uses the
interface of _augment_images().

• func_heatmaps (None or callable, optional) – The function to call for each batch of
heatmaps. It must follow the form:

function(heatmaps, random_state, parents, hooks)

856 Chapter 13. API

imgaug Documentation, Release 0.3.0

and return either True (valid input) or False (invalid input). It essentially re-uses the
interface of _augment_heatmaps().

• func_segmentation_maps (None or callable, optional) – The function to call for each batch
of segmentation maps. It must follow the form:

function(segmaps, random_state, parents, hooks)

and return either True (valid input) or False (invalid input). It essentially re-uses the
interface of _augment_segmentation_maps().

• func_keypoints (None or callable, optional) – The function to call for each batch of key-
points. It must follow the form:

function(keypoints_on_images, random_state, parents, hooks)

and return either True (valid input) or False (invalid input). It essentially re-uses the
interface of _augment_keypoints().

• func_bounding_boxes (None or callable, optional) – The function to call for each batch of
bounding boxes. It must follow the form:

function(bounding_boxes_on_images, random_state, parents, hooks)

and return either True (valid input) or False (invalid input). It essentially re-uses the
interface of _augment_bounding_boxes().

Added in 0.4.0.

• func_polygons (None or callable, optional) – The function to call for each batch of poly-
gons. It must follow the form:

function(polygons_on_images, random_state, parents, hooks)

and return either True (valid input) or False (invalid input). It essentially re-uses the
interface of _augment_polygons().

• func_line_strings (None or callable, optional) – The function to call for each batch of line
strings. It must follow the form:

function(line_strings_on_images, random_state, parents, hooks)

and return either True (valid input) or False (invalid input). It essentially re-uses the
interface of _augment_line_strings().

Added in 0.4.0.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

13.31. imgaug.augmenters.meta 857

imgaug Documentation, Release 0.3.0

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
Continued on next page

858 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 177 – continued from previous page
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.meta.AssertShape(shape, check_images=True,
check_heatmaps=True,
check_segmentation_maps=True,
check_keypoints=True,
check_bounding_boxes=True,
check_polygons=True, check_line_strings=True,
seed=None, name=None, ran-
dom_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.meta.Lambda

Assert that inputs have a specified shape.

Supported dtypes:

• uint8: yes; fully tested

• uint16: yes; tested

• uint32: yes; tested

• uint64: yes; tested

• int8: yes; tested

• int16: yes; tested

• int32: yes; tested

• int64: yes; tested

• float16: yes; tested

• float32: yes; tested

• float64: yes; tested

• float128: yes; tested

• bool: yes; tested

Parameters

• shape (tuple) – The expected shape, given as a tuple. The number of entries in the tuple
must match the number of dimensions, i.e. it must contain four entries for (N, H, W,
C). If only a single entity is augmented, e.g. via augment_image(), then N is 1 in
the input to this augmenter. Images that don’t have a channel axis will automatically have
one assigned, i.e. C is at least 1. For each component of the tuple one of the following
datatypes may be used:

– If a component is None, any value for that dimensions is accepted.

13.31. imgaug.augmenters.meta 859

imgaug Documentation, Release 0.3.0

– If a component is int, exactly that value (and no other one) will be accepted for that
dimension.

– If a component is a tuple of two int s with values a and b, only a value within the
interval [a, b) will be accepted for that dimension.

– If an entry is a list of int s, only a value from that list will be accepted for that
dimension.

• check_images (bool, optional) – Whether to validate input images via the given shape.

• check_heatmaps (bool, optional) – Whether to validate input heatmaps via the given shape.
The number of heatmaps will be verified as N. For each HeatmapsOnImage instance its
array’s height and width will be verified as H and W, but not the channel count.

• check_segmentation_maps (bool, optional) – Whether to validate input segmentation maps
via the given shape. The number of segmentation maps will be verified as N. For each
SegmentationMapOnImage instance its array’s height and width will be verified as H
and W, but not the channel count.

• check_keypoints (bool, optional) – Whether to validate input keypoints via the given shape.
This will check (a) the number of keypoints and (b) for each KeypointsOnImage in-
stance the .shape attribute, i.e. the shape of the corresponding image.

• check_bounding_boxes (bool, optional) – Whether to validate input bounding boxes via
the given shape. This will check (a) the number of bounding boxes and (b) for each
BoundingBoxesOnImage instance the .shape attribute, i.e. the shape of the corre-
sponding image.

Added in 0.4.0.

• check_polygons (bool, optional) – Whether to validate input polygons via the given shape.
This will check (a) the number of polygons and (b) for each PolygonsOnImage instance
the .shape attribute, i.e. the shape of the corresponding image.

• check_line_strings (bool, optional) – Whether to validate input line strings via the
given shape. This will check (a) the number of line strings and (b) for each
LineStringsOnImage instance the .shape attribute, i.e. the shape of the correspond-
ing image.

Added in 0.4.0.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

860 Chapter 13. API

imgaug Documentation, Release 0.3.0

Examples

>>> import imgaug.augmenters as iaa
>>> seq = iaa.Sequential([
>>> iaa.AssertShape((None, 32, 32, 3)),
>>> iaa.Fliplr(0.5)
>>>])

Verify first for each image batch if it contains a variable number of 32x32 images with 3 channels each. Only
if that check succeeds, the horizontal flip will be executed. Otherwise an assertion error will be raised.

>>> seq = iaa.Sequential([
>>> iaa.AssertShape((None, (32, 64), 32, [1, 3])),
>>> iaa.Fliplr(0.5)
>>>])

Similar to the above example, but now the height may be in the interval [32, 64) and the number of channels
may be either 1 or 3.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

Continued on next page

13.31. imgaug.augmenters.meta 861

imgaug Documentation, Release 0.3.0

Table 178 – continued from previous page
find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.meta.Augmenter(seed=None, name=None, ran-
dom_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: object

Base class for Augmenter objects. All augmenters derive from this class.

Parameters

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Seed to use for this augmenter’s random
number generator (RNG) or alternatively an RNG itself. Setting this parameter allows to
control/influence the random number sampling of this specific augmenter without affecting
other augmenters. Usually, there is no need to set this parameter.

– If None: The global RNG is used (shared by all augmenters).

– If int: The value will be used as a seed for a new RNG instance.

– If RNG: The RNG instance will be used without changes.

– If Generator: A new RNG instance will be created, containing that generator.

– If BitGenerator: Will be wrapped in a Generator. Then similar behaviour to
Generator parameters.

– If SeedSequence: Will be wrapped in a new bit generator and Generator. Then
similar behaviour to Generator parameters.

– If RandomState: Similar behaviour to Generator. Outdated in numpy 1.17+.

If a new bit generator has to be created, it will be an instance of numpy.random.SFC64.

Added in 0.4.0.

862 Chapter 13. API

imgaug Documentation, Release 0.3.0

• name (None or str, optional) – Name given to the Augmenter instance. This name is used
when converting the instance to a string, e.g. for print statements. It is also used for
find, remove or similar operations on augmenters with children. If None, UnnamedX
will be used as the name, where X is the Augmenter’s class name.

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) Get the parameters of this augmenter.

Continued on next page

13.31. imgaug.augmenters.meta 863

imgaug Documentation, Release 0.3.0

Table 179 – continued from previous page
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

augment(self, return_batch=False, hooks=None, **kwargs)
Augment a batch.

This method is a wrapper around UnnormalizedBatch and augment_batch(). Hence, it supports
the same datatypes as UnnormalizedBatch.

If return_batch was set to False (the default), the method will return a tuple of augmentables. It will
return the same types of augmentables (but in augmented form) as input into the method. This behaviour
is partly specific to the python version:

• In python 3.6+ (if return_batch=False):

– Any number of augmentables may be provided as input.

– None of the provided named arguments has to be image or images (but of coarse you may provide
them).

– The return order matches the order of the named arguments, e.g. x_aug, y_aug, z_aug =
augment(X=x, Y=y, Z=z).

• In python <3.6 (if return_batch=False):

– One or two augmentables may be used as input, not more than that.

– One of the input arguments has to be image or images.

– The augmented images are always returned first, independent of the input argument order, e.g.
a_aug, b_aug = augment(b=b, images=a). This also means that the output of the
function can only be one of the following three cases: a batch, list/array of images, tuple of
images and something (like images + segmentation maps).

If return_batch was set to True, an instance of UnnormalizedBatch will be returned. The output is
the same for all python version and any number or combination of augmentables may be provided.

So, to keep code downward compatible for python <3.6, use one of the following three options:

• Use batch = augment(images=X, ..., return_batch=True).

• Call images = augment(images=X).

• Call images, other = augment(images=X, <something_else>=Y).

864 Chapter 13. API

imgaug Documentation, Release 0.3.0

All augmentables must be provided as named arguments. E.g. augment(<array>) will crash, but
augment(images=<array>) will work.

Parameters

• image (None or (H,W,C) ndarray or (H,W) ndarray, optional) – The image to augment.
Only this or images can be set, not both. If return_batch is False and the python version
is below 3.6, either this or images must be provided.

• images (None or (N,H,W,C) ndarray or (N,H,W) ndarray or iterable of (H,W,C) ndarray
or iterable of (H,W) ndarray, optional) – The images to augment. Only this or image can
be set, not both. If return_batch is False and the python version is below 3.6, either this
or image must be provided.

• heatmaps (None or (N,H,W,C) ndarray or imgaug.augmentables.heatmaps.HeatmapsOnImage
or iterable of (H,W,C) ndarray or iterable of im-
gaug.augmentables.heatmaps.HeatmapsOnImage, optional) – The heatmaps to augment.
If anything else than HeatmapsOnImage, then the number of heatmaps must match the
number of images provided via parameter images. The number is contained either in N or
the first iterable’s size.

• segmentation_maps (None or (N,H,W) ndarray or im-
gaug.augmentables.segmaps.SegmentationMapsOnImage or iterable of (H,W) ndarray or
iterable of imgaug.augmentables.segmaps.SegmentationMapsOnImage, optional) – The
segmentation maps to augment. If anything else than SegmentationMapsOnImage,
then the number of segmaps must match the number of images provided via parameter
images. The number is contained either in N or the first iterable’s size.

• keypoints (None or list of (N,K,2) ndarray or tuple of number or im-
gaug.augmentables.kps.Keypoint or iterable of (K,2) ndarray or iterable of tuple
of number or iterable of imgaug.augmentables.kps.Keypoint or iterable of im-
gaug.augmentables.kps.KeypointOnImage or iterable of iterable of tuple of number
or iterable of iterable of imgaug.augmentables.kps.Keypoint, optional) – The keypoints
to augment. If a tuple (or iterable(s) of tuple), then iterpreted as (x,y) coordinates and
must hence contain two numbers. A single tuple represents a single coordinate on one
image, an iterable of tuples the coordinates on one image and an iterable of iterable of
tuples the coordinates on several images. Analogous if Keypoint instances are used
instead of tuples. If an ndarray, then N denotes the number of images and K the number of
keypoints on each image. If anything else than KeypointsOnImage is provided, then
the number of keypoint groups must match the number of images provided via parameter
images. The number is contained e.g. in N or in case of “iterable of iterable of tuples” in
the first iterable’s size.

• bounding_boxes (None or (N,B,4) ndarray or tuple of
number or imgaug.augmentables.bbs.BoundingBox or im-
gaug.augmentables.bbs.BoundingBoxesOnImage or iterable of (B,4) ndarray or iterable
of tuple of number or iterable of imgaug.augmentables.bbs.BoundingBox or iterable
of imgaug.augmentables.bbs.BoundingBoxesOnImage or iterable of iterable of tuple of
number or iterable of iterable imgaug.augmentables.bbs.BoundingBox, optional) – The
bounding boxes to augment. This is analogous to the keypoints parameter. However, each
tuple – and also the last index in case of arrays – has size 4, denoting the bounding box
coordinates x1, y1, x2 and y2.

• polygons (None or (N,#polys,#points,2) ndarray or imgaug.augmentables.polys.Polygon
or imgaug.augmentables.polys.PolygonsOnImage or iterable of (#polys,#points,2) ndar-
ray or iterable of tuple of number or iterable of imgaug.augmentables.kps.Keypoint
or iterable of imgaug.augmentables.polys.Polygon or iterable of im-
gaug.augmentables.polys.PolygonsOnImage or iterable of iterable of (#points,2)

13.31. imgaug.augmenters.meta 865

imgaug Documentation, Release 0.3.0

ndarray or iterable of iterable of tuple of number or iterable of iter-
able of imgaug.augmentables.kps.Keypoint or iterable of iterable of im-
gaug.augmentables.polys.Polygon or iterable of iterable of iterable of tuple of number or
iterable of iterable of iterable of tuple of imgaug.augmentables.kps.Keypoint, optional)
– The polygons to augment. This is similar to the keypoints parameter. However, each
polygon may be made up of several ‘‘(x,y) ‘‘coordinates (three or more are required for
valid polygons). The following datatypes will be interpreted as a single polygon on a
single image:

– imgaug.augmentables.polys.Polygon

– iterable of tuple of number

– iterable of imgaug.augmentables.kps.Keypoint

The following datatypes will be interpreted as multiple polygons on a single image:

– imgaug.augmentables.polys.PolygonsOnImage

– iterable of imgaug.augmentables.polys.Polygon

– iterable of iterable of tuple of number

– iterable of iterable of imgaug.augmentables.kps.Keypoint

– iterable of iterable of imgaug.augmentables.polys.Polygon

The following datatypes will be interpreted as multiple polygons on multiple images:

– (N,#polys,#points,2) ndarray

– iterable of (#polys,#points,2) ndarray

– iterable of iterable of (#points,2) ndarray

– iterable of iterable of iterable of tuple of number

– iterable of iterable of iterable of tuple of imgaug.
augmentables.kps.Keypoint

• line_strings (None or (N,#lines,#points,2) ndarray or im-
gaug.augmentables.lines.LineString or imgaug.augmentables.lines.LineStringOnImage
or iterable of (#polys,#points,2) ndarray or iterable of tuple of number or iterable of
imgaug.augmentables.kps.Keypoint or iterable of imgaug.augmentables.lines.LineString
or iterable of imgaug.augmentables.lines.LineStringOnImage or iterable of iter-
able of (#points,2) ndarray or iterable of iterable of tuple of number or iterable
of iterable of imgaug.augmentables.kps.Keypoint or iterable of iterable of im-
gaug.augmentables.lines.LineString or iterable of iterable of iterable of tuple of
number or iterable of iterable of iterable of tuple of imgaug.augmentables.kps.Keypoint,
optional) – The line strings to augment. See polygons, which behaves similarly.

• return_batch (bool, optional) – Whether to return an instance of
UnnormalizedBatch. If the python version is below 3.6 and more than two
augmentables were provided (e.g. images, keypoints and polygons), then this must be set
to True. Otherwise an error will be raised.

• hooks (None or imgaug.imgaug.HooksImages, optional) – Hooks object to dynamically
interfere with the augmentation process.

Returns If return_batch was set to True, a instance of UnnormalizedBatch will be re-
turned. If return_batch was set to False, a tuple of augmentables will be returned, e.g.
(augmented images, augmented keypoints). The datatypes match the input
datatypes of the corresponding named arguments. In python <3.6, augmented images are

866 Chapter 13. API

imgaug Documentation, Release 0.3.0

always the first entry in the returned tuple. In python 3.6+ the order matches the order of the
named arguments.

Return type tuple or imgaug.augmentables.batches.UnnormalizedBatch

Examples

>>> import numpy as np
>>> import imgaug as ia
>>> import imgaug.augmenters as iaa
>>> aug = iaa.Affine(rotate=(-25, 25))
>>> image = np.zeros((64, 64, 3), dtype=np.uint8)
>>> keypoints = [(10, 20), (30, 32)] # (x,y) coordinates
>>> images_aug, keypoints_aug = aug.augment(
>>> image=image, keypoints=keypoints)

Create a single image and a set of two keypoints on it, then augment both by applying a random ro-
tation between -25 deg and +25 deg. The sampled rotation value is automatically aligned between
image and keypoints. Note that in python <3.6, augmented images will always be returned first, inde-
pendent of the order of the named input arguments. So keypoints_aug, images_aug = aug.
augment(keypoints=keypoints, image=image) would not be correct (but in python 3.6+ it
would be).

>>> import numpy as np
>>> import imgaug as ia
>>> import imgaug.augmenters as iaa
>>> from imgaug.augmentables.bbs import BoundingBox
>>> aug = iaa.Affine(rotate=(-25, 25))
>>> images = [np.zeros((64, 64, 3), dtype=np.uint8),
>>> np.zeros((32, 32, 3), dtype=np.uint8)]
>>> keypoints = [[(10, 20), (30, 32)], # KPs on first image
>>> [(22, 10), (12, 14)]] # KPs on second image
>>> bbs = [
>>> [BoundingBox(x1=5, y1=5, x2=50, y2=45)],
>>> [BoundingBox(x1=4, y1=6, x2=10, y2=15),
>>> BoundingBox(x1=8, y1=9, x2=16, y2=30)]
>>>] # one BB on first image, two BBs on second image
>>> batch_aug = aug.augment(
>>> images=images, keypoints=keypoints, bounding_boxes=bbs,
>>> return_batch=True)

Create two images of size 64x64 and 32x32, two sets of keypoints (each containing two keypoints)
and two sets of bounding boxes (the first containing one bounding box, the second two bounding boxes).
These augmentables are then augmented by applying random rotations between -25 deg and +25 deg
to them. The rotation values are sampled by image and aligned between all augmentables on the same
image. The method finally returns an instance of UnnormalizedBatch from which the augmented data
can be retrieved via batch_aug.images_aug, batch_aug.keypoints_aug, and batch_aug.
bounding_boxes_aug. In python 3.6+, return_batch can be kept at False and the augmented data
can be retrieved as images_aug, keypoints_aug, bbs_aug = augment(...).

augment_batch(self, batch, hooks=None)
Deprecated. Use augment_batch_() instead. augment_batch() was renamed to augment_batch_()
as it changes all *_unaug attributes of batches in-place. Note that augment_batch_() has now a parents
parameter. Calls of the style augment_batch(batch, hooks) must be changed to augment_batch(batch,
hooks=hooks).

Augment a single batch.

13.31. imgaug.augmenters.meta 867

imgaug Documentation, Release 0.3.0

Deprecated since 0.4.0.

augment_batch_(self, batch, parents=None, hooks=None)
Augment a single batch in-place.

Added in 0.4.0.

Parameters

• batch (imgaug.augmentables.batches.Batch or imgaug.augmentables.batches.UnnormalizedBatch
or imgaug.augmentables.batch._BatchInAugmentation) – A single batch to augment.

If imgaug.augmentables.batches.UnnormalizedBatch or imgaug.
augmentables.batches.Batch, then the *_aug attributes may be modi-
fied in-place, while the *_unaug attributes will not be modified. If imgaug.
augmentables.batches._BatchInAugmentation, then all attributes may be
modified in-place.

• parents (None or list of imgaug.augmenters.Augmenter, optional) – Parent augmenters
that have previously been called before the call to this function. Usually you can leave this
parameter as None. It is set automatically for child augmenters.

• hooks (None or imgaug.HooksImages, optional) – HooksImages object to dynamically
interfere with the augmentation process.

Returns Augmented batch.

Return type imgaug.augmentables.batches.Batch or imgaug.augmentables.batches.UnnormalizedBatch

augment_batches(self, batches, hooks=None, background=False)
Augment multiple batches.

In contrast to other augment_* method, this one yields batches instead of returning a full list. This is
more suited for most training loops.

This method also also supports augmentation on multiple cpu cores, activated via the background flag. If
the background flag is activated, an instance of Pool will be spawned using all available logical CPU
cores and an output_buffer_size of C*10, where C is the number of logical CPU cores. I.e. a
maximum of C*10 batches will be somewhere in the augmentation pipeline (or waiting to be retrieved by
downstream functions) before this method temporarily stops the loading of new batches from batches.

Parameters

• batches (imgaug.augmentables.batches.Batch or im-
gaug.augmentables.batches.UnnormalizedBatch or iterable
of imgaug.augmentables.batches.Batch or iterable of im-
gaug.augmentables.batches.UnnormalizedBatch) – A single batch or a list of batches to
augment.

• hooks (None or imgaug.HooksImages, optional) – HooksImages object to dynamically
interfere with the augmentation process.

• background (bool, optional) – Whether to augment the batches in background processes.
If True, hooks can currently not be used as that would require pickling functions. Note
that multicore augmentation distributes the batches onto different CPU cores. It does not
split the data within batches. It is therefore not sensible to use background=True
to augment a single batch. Only use it for multiple batches. Note also that multicore
augmentation needs some time to start. It is therefore not recommended to use it for very
few batches.

868 Chapter 13. API

imgaug Documentation, Release 0.3.0

Yields imgaug.augmentables.batches.Batch or imgaug.augmentables.batches.UnnormalizedBatch
or iterable of imgaug.augmentables.batches.Batch or iterable of im-
gaug.augmentables.batches.UnnormalizedBatch – Augmented batches.

augment_bounding_boxes(self, bounding_boxes_on_images, parents=None, hooks=None)
Augment a batch of bounding boxes.

This is the corresponding function to Augmenter.augment_images(), just for bounding boxes.
Usually you will want to call Augmenter.augment_images() with a list of images, e.g.
augment_images([A, B, C]) and then augment_bounding_boxes() with the correspond-
ing list of bounding boxes on these images, e.g. augment_bounding_boxes([Abb, Bbb,
Cbb]), where Abb are the bounding boxes on image A.

Make sure to first convert the augmenter(s) to deterministic states before augmenting images and their
corresponding bounding boxes, e.g. by

>>> import imgaug.augmenters as iaa
>>> from imgaug.augmentables.bbs import BoundingBox
>>> from imgaug.augmentables.bbs import BoundingBoxesOnImage
>>> A = B = C = np.ones((10, 10), dtype=np.uint8)
>>> Abb = Bbb = Cbb = BoundingBoxesOnImage([
>>> BoundingBox(1, 1, 9, 9)], (10, 10))
>>> seq = iaa.Fliplr(0.5)
>>> seq_det = seq.to_deterministic()
>>> imgs_aug = seq_det.augment_images([A, B, C])
>>> bbs_aug = seq_det.augment_bounding_boxes([Abb, Bbb, Cbb])

Otherwise, different random values will be sampled for the image and bounding box augmentations, result-
ing in different augmentations (e.g. images might be rotated by 30deg and bounding boxes by -10deg).
Also make sure to call Augmenter.to_deterministic() again for each new batch, otherwise you
would augment all batches in the same way.

Note that there is also Augmenter.augment(), which automatically handles the random state align-
ment.

Parameters

• bounding_boxes_on_images (imgaug.augmentables.bbs.BoundingBoxesOnImage or list
of imgaug.augmentables.bbs.BoundingBoxesOnImage) – The bounding boxes to augment.
Either a single instance of BoundingBoxesOnImage or a list of such instances, with
each one of them containing the bounding boxes of a single image.

• parents (None or list of imgaug.augmenters.meta.Augmenter, optional) – Parent aug-
menters that have previously been called before the call to this function. Usually you
can leave this parameter as None. It is set automatically for child augmenters.

• hooks (None or imgaug.imgaug.HooksKeypoints, optional) – HooksKeypoints object
to dynamically interfere with the augmentation process.

Returns Augmented bounding boxes.

Return type imgaug.augmentables.bbs.BoundingBoxesOnImage or list of im-
gaug.augmentables.bbs.BoundingBoxesOnImage

augment_heatmaps(self, heatmaps, parents=None, hooks=None)
Augment a batch of heatmaps.

Parameters

• heatmaps (imgaug.augmentables.heatmaps.HeatmapsOnImage or list of im-
gaug.augmentables.heatmaps.HeatmapsOnImage) – Heatmap(s) to augment. Either

13.31. imgaug.augmenters.meta 869

imgaug Documentation, Release 0.3.0

a single heatmap or a list of heatmaps.

• parents (None or list of imgaug.augmenters.meta.Augmenter, optional) – Parent aug-
menters that have previously been called before the call to this function. Usually you
can leave this parameter as None. It is set automatically for child augmenters.

• hooks (None or imaug.imgaug.HooksHeatmaps, optional) – HooksHeatmaps object to
dynamically interfere with the augmentation process.

Returns Corresponding augmented heatmap(s).

Return type imgaug.augmentables.heatmaps.HeatmapsOnImage or list of im-
gaug.augmentables.heatmaps.HeatmapsOnImage

augment_image(self, image, hooks=None)
Augment a single image.

Parameters

• image ((H,W,C) ndarray or (H,W) ndarray) – The image to augment. Channel-axis is
optional, but expected to be the last axis if present. In most cases, this array should be of
dtype uint8, which is supported by all augmenters. Support for other dtypes varies by
augmenter – see the respective augmenter-specific documentation for more details.

• hooks (None or imgaug.HooksImages, optional) – HooksImages object to dynamically
interfere with the augmentation process.

Returns The corresponding augmented image.

Return type ndarray

augment_images(self, images, parents=None, hooks=None)
Augment a batch of images.

Parameters

• images ((N,H,W,C) ndarray or (N,H,W) ndarray or list of (H,W,C) ndarray or list of (H,W)
ndarray) – Images to augment. The input can be a list of numpy arrays or a single array.
Each array is expected to have shape (H, W, C) or (H, W), where H is the height, W
is the width and C are the channels. The number of channels may differ between images.
If a list is provided, the height, width and channels may differ between images within
the provided batch. In most cases, the image array(s) should be of dtype uint8, which
is supported by all augmenters. Support for other dtypes varies by augmenter – see the
respective augmenter-specific documentation for more details.

• parents (None or list of imgaug.augmenters.Augmenter, optional) – Parent augmenters
that have previously been called before the call to this function. Usually you can leave this
parameter as None. It is set automatically for child augmenters.

• hooks (None or imgaug.imgaug.HooksImages, optional) – HooksImages object to dy-
namically interfere with the augmentation process.

Returns Corresponding augmented images. If the input was an ndarray, the output is also an
ndarray, unless the used augmentations have led to different output image sizes (as can
happen in e.g. cropping).

Return type ndarray or list

870 Chapter 13. API

imgaug Documentation, Release 0.3.0

Examples

>>> import imgaug.augmenters as iaa
>>> import numpy as np
>>> aug = iaa.GaussianBlur((0.0, 3.0))
>>> # create empty example images
>>> images = np.zeros((2, 64, 64, 3), dtype=np.uint8)
>>> images_aug = aug.augment_images(images)

Create 2 empty (i.e. black) example numpy images and apply gaussian blurring to them.

augment_keypoints(self, keypoints_on_images, parents=None, hooks=None)
Augment a batch of keypoints/landmarks.

This is the corresponding function to Augmenter.augment_images(), just for keypoints/landmarks
(i.e. points on images). Usually you will want to call Augmenter.augment_images() with a list of
images, e.g. augment_images([A, B, C]) and then augment_keypoints() with the corre-
sponding list of keypoints on these images, e.g. augment_keypoints([Ak, Bk, Ck]), where Ak
are the keypoints on image A.

Make sure to first convert the augmenter(s) to deterministic states before augmenting images and their
corresponding keypoints, e.g. by

>>> import imgaug.augmenters as iaa
>>> from imgaug.augmentables.kps import Keypoint
>>> from imgaug.augmentables.kps import KeypointsOnImage
>>> A = B = C = np.zeros((10, 10), dtype=np.uint8)
>>> Ak = Bk = Ck = KeypointsOnImage([Keypoint(2, 2)], (10, 10))
>>> seq = iaa.Fliplr(0.5)
>>> seq_det = seq.to_deterministic()
>>> imgs_aug = seq_det.augment_images([A, B, C])
>>> kps_aug = seq_det.augment_keypoints([Ak, Bk, Ck])

Otherwise, different random values will be sampled for the image and keypoint augmentations, resulting
in different augmentations (e.g. images might be rotated by 30deg and keypoints by -10deg). Also
make sure to call Augmenter.to_deterministic() again for each new batch, otherwise you would
augment all batches in the same way.

Note that there is also Augmenter.augment(), which automatically handles the random state align-
ment.

Parameters

• keypoints_on_images (imgaug.augmentables.kps.KeypointsOnImage or list of im-
gaug.augmentables.kps.KeypointsOnImage) – The keypoints/landmarks to augment. Ei-
ther a single instance of KeypointsOnImage or a list of such instances. Each instance
must contain the keypoints of a single image.

• parents (None or list of imgaug.augmenters.meta.Augmenter, optional) – Parent aug-
menters that have previously been called before the call to this function. Usually you
can leave this parameter as None. It is set automatically for child augmenters.

• hooks (None or imgaug.imgaug.HooksKeypoints, optional) – HooksKeypoints object
to dynamically interfere with the augmentation process.

Returns Augmented keypoints.

Return type imgaug.augmentables.kps.KeypointsOnImage or list of im-
gaug.augmentables.kps.KeypointsOnImage

13.31. imgaug.augmenters.meta 871

imgaug Documentation, Release 0.3.0

augment_line_strings(self, line_strings_on_images, parents=None, hooks=None)
Augment a batch of line strings.

This is the corresponding function to Augmenter.augment_images`(), just for line strings.
Usually you will want to call Augmenter.augment_images() with a list of images, e.g.
augment_images([A, B, C]) and then augment_line_strings() with the correspond-
ing list of line strings on these images, e.g. augment_line_strings([A_line, B_line,
C_line]), where A_line are the line strings on image A.

Make sure to first convert the augmenter(s) to deterministic states before augmenting images and their
corresponding line strings, e.g. by

>>> import imgaug.augmenters as iaa
>>> from imgaug.augmentables.lines import LineString
>>> from imgaug.augmentables.lines import LineStringsOnImage
>>> A = B = C = np.ones((10, 10), dtype=np.uint8)
>>> A_line = B_line = C_line = LineStringsOnImage(
>>> [LineString([(0, 0), (1, 0), (1, 1), (0, 1)])],
>>> shape=(10, 10))
>>> seq = iaa.Fliplr(0.5)
>>> seq_det = seq.to_deterministic()
>>> imgs_aug = seq_det.augment_images([A, B, C])
>>> lines_aug = seq_det.augment_line_strings([A_line, B_line, C_line])

Otherwise, different random values will be sampled for the image and line string augmentations, resulting
in different augmentations (e.g. images might be rotated by 30deg and line strings by -10deg). Also
make sure to call to_deterministic() again for each new batch, otherwise you would augment all
batches in the same way.

Note that there is also Augmenter.augment(), which automatically handles the random state align-
ment.

Parameters

• line_strings_on_images (imgaug.augmentables.lines.LineStringsOnImage or list of im-
gaug.augmentables.lines.LineStringsOnImage) – The line strings to augment. Either a
single instance of LineStringsOnImage or a list of such instances, with each one of
them containing the line strings of a single image.

• parents (None or list of imgaug.augmenters.meta.Augmenter, optional) – Parent aug-
menters that have previously been called before the call to this function. Usually you
can leave this parameter as None. It is set automatically for child augmenters.

• hooks (None or imgaug.imgaug.HooksKeypoints, optional) – HooksKeypoints object
to dynamically interfere with the augmentation process.

Returns Augmented line strings.

Return type imgaug.augmentables.lines.LineStringsOnImage or list of im-
gaug.augmentables.lines.LineStringsOnImage

augment_polygons(self, polygons_on_images, parents=None, hooks=None)
Augment a batch of polygons.

This is the corresponding function to Augmenter.augment_images(), just for polygons. Usu-
ally you will want to call Augmenter.augment_images`() with a list of images, e.g.
augment_images([A, B, C]) and then augment_polygons() with the corresponding list of
polygons on these images, e.g. augment_polygons([A_poly, B_poly, C_poly]), where
A_poly are the polygons on image A.

872 Chapter 13. API

imgaug Documentation, Release 0.3.0

Make sure to first convert the augmenter(s) to deterministic states before augmenting images and their
corresponding polygons, e.g. by

>>> import imgaug.augmenters as iaa
>>> from imgaug.augmentables.polys import Polygon, PolygonsOnImage
>>> A = B = C = np.ones((10, 10), dtype=np.uint8)
>>> Apoly = Bpoly = Cpoly = PolygonsOnImage(
>>> [Polygon([(0, 0), (1, 0), (1, 1), (0, 1)])],
>>> shape=(10, 10))
>>> seq = iaa.Fliplr(0.5)
>>> seq_det = seq.to_deterministic()
>>> imgs_aug = seq_det.augment_images([A, B, C])
>>> polys_aug = seq_det.augment_polygons([Apoly, Bpoly, Cpoly])

Otherwise, different random values will be sampled for the image and polygon augmentations, resulting in
different augmentations (e.g. images might be rotated by 30deg and polygons by -10deg). Also make
sure to call to_deterministic() again for each new batch, otherwise you would augment all batches
in the same way.

Note that there is also Augmenter.augment(), which automatically handles the random state align-
ment.

Parameters

• polygons_on_images (imgaug.augmentables.polys.PolygonsOnImage or list of im-
gaug.augmentables.polys.PolygonsOnImage) – The polygons to augment. Either a sin-
gle instance of PolygonsOnImage or a list of such instances, with each one of them
containing the polygons of a single image.

• parents (None or list of imgaug.augmenters.meta.Augmenter, optional) – Parent aug-
menters that have previously been called before the call to this function. Usually you
can leave this parameter as None. It is set automatically for child augmenters.

• hooks (None or imgaug.imgaug.HooksKeypoints, optional) – HooksKeypoints object
to dynamically interfere with the augmentation process.

Returns Augmented polygons.

Return type imgaug.augmentables.polys.PolygonsOnImage or list of im-
gaug.augmentables.polys.PolygonsOnImage

augment_segmentation_maps(self, segmaps, parents=None, hooks=None)
Augment a batch of segmentation maps.

Parameters

• segmaps (imgaug.augmentables.segmaps.SegmentationMapsOnImage or list of im-
gaug.augmentables.segmaps.SegmentationMapsOnImage) – Segmentation map(s) to aug-
ment. Either a single segmentation map or a list of segmentation maps.

• parents (None or list of imgaug.augmenters.meta.Augmenter, optional) – Parent aug-
menters that have previously been called before the call to this function. Usually you
can leave this parameter as None. It is set automatically for child augmenters.

• hooks (None or imgaug.HooksHeatmaps, optional) – HooksHeatmaps object to dy-
namically interfere with the augmentation process.

Returns Corresponding augmented segmentation map(s).

Return type imgaug.augmentables.segmaps.SegmentationMapsOnImage or list of im-
gaug.augmentables.segmaps.SegmentationMapsOnImage

13.31. imgaug.augmenters.meta 873

imgaug Documentation, Release 0.3.0

copy(self)
Create a shallow copy of this Augmenter instance.

Returns Shallow copy of this Augmenter instance.

Return type imgaug.augmenters.meta.Augmenter

copy_random_state(self, source, recursive=True, matching=’position’, matching_tolerant=True,
copy_determinism=False)

Copy the RNGs from a source augmenter sequence.

Parameters

• source (imgaug.augmenters.meta.Augmenter) – See copy_random_state_().

• recursive (bool, optional) – See copy_random_state_().

• matching ({‘position’, ‘name’}, optional) – See copy_random_state_().

• matching_tolerant (bool, optional) – See copy_random_state_().

• copy_determinism (bool, optional) – See copy_random_state_().

Returns Copy of the augmenter itself (with copied RNGs).

Return type imgaug.augmenters.meta.Augmenter

copy_random_state_(self, source, recursive=True, matching=’position’, matching_tolerant=True,
copy_determinism=False)

Copy the RNGs from a source augmenter sequence (in-place).

Note: The source augmenters are not allowed to use the global RNG. Call
localize_random_state_() once on the source to localize all random states.

Parameters

• source (imgaug.augmenters.meta.Augmenter) – The source augmenter(s) from where to
copy the RNG(s). The source may have children (e.g. the source can be a Sequential).

• recursive (bool, optional) – Whether to copy the RNGs of the source augmenter and all
of its children (True) or just the source augmenter (False).

• matching ({‘position’, ‘name’}, optional) – Defines the matching mode to use during
recursive copy. This is used to associate source augmenters with target augmenters. If
position then the target and source sequences of augmenters are turned into flattened
lists and are associated based on their list indices. If name then the target and source
augmenters are matched based on their names (i.e. augmenter.name).

• matching_tolerant (bool, optional) – Whether to use tolerant matching between source
and target augmenters. If set to False: Name matching will raise an exception for any
target augmenter which’s name does not appear among the source augmenters. Position
matching will raise an exception if source and target augmenter have an unequal number
of children.

• copy_determinism (bool, optional) – Whether to copy the deterministic attributes
from source to target augmenters too.

Returns The augmenter itself.

Return type imgaug.augmenters.meta.Augmenter

874 Chapter 13. API

imgaug Documentation, Release 0.3.0

deepcopy(self)
Create a deep copy of this Augmenter instance.

Returns Deep copy of this Augmenter instance.

Return type imgaug.augmenters.meta.Augmenter

draw_grid(self, images, rows, cols)
Augment images and draw the results as a single grid-like image.

This method applies this augmenter to the provided images and returns a grid image of the results. Each
cell in the grid contains a single augmented version of an input image.

If multiple input images are provided, the row count is multiplied by the number of images and each image
gets its own row. E.g. for images = [A, B], rows=2, cols=3:

A A A
B B B
A A A
B B B

for images = [A], rows=2, cols=3:

A A A
A A A

Parameters

• images ((N,H,W,3) ndarray or (H,W,3) ndarray or (H,W) ndarray or list of (H,W,3) ndar-
ray or list of (H,W) ndarray) – List of images to augment and draw in the grid. If a list,
then each element is expected to have shape (H, W) or (H, W, 3). If a single array,
then it is expected to have shape (N, H, W, 3) or (H, W, 3) or (H, W).

• rows (int) – Number of rows in the grid. If N input images are given, this value will
automatically be multiplied by N to create rows for each image.

• cols (int) – Number of columns in the grid.

Returns The generated grid image with augmented versions of the input images. Here, Hg and
Wg reference the output size of the grid, and not the sizes of the input images.

Return type (Hg, Wg, 3) ndarray

find_augmenters(self, func, parents=None, flat=True)
Find augmenters that match a condition.

This function will compare this augmenter and all of its children with a condition. The condition is a
lambda function.

Parameters

• func (callable) – A function that receives a Augmenter instance and a list of parent
Augmenter instances and must return True, if that augmenter is valid match or False
otherwise.

• parents (None or list of imgaug.augmenters.meta.Augmenter, optional) – List of parent
augmenters. Intended for nested calls and can usually be left as None.

• flat (bool, optional) – Whether to return the result as a flat list (True) or a nested list
(False). In the latter case, the nesting matches each augmenters position among the
children.

13.31. imgaug.augmenters.meta 875

imgaug Documentation, Release 0.3.0

Returns Nested list if flat was set to False. Flat list if flat was set to True.

Return type list of imgaug.augmenters.meta.Augmenter

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Sequential([
>>> iaa.Fliplr(0.5, name="fliplr"),
>>> iaa.Flipud(0.5, name="flipud")
>>>])
>>> print(aug.find_augmenters(lambda a, parents: a.name == "fliplr"))

Return the first child augmenter (Fliplr instance).

find_augmenters_by_name(self, name, regex=False, flat=True)
Find augmenter(s) by name.

Parameters

• name (str) – Name of the augmenter(s) to search for.

• regex (bool, optional) – Whether name parameter is a regular expression.

• flat (bool, optional) – See find_augmenters().

Returns augmenters – Nested list if flat was set to False. Flat list if flat was set to True.

Return type list of imgaug.augmenters.meta.Augmenter

find_augmenters_by_names(self, names, regex=False, flat=True)
Find augmenter(s) by names.

Parameters

• names (list of str) – Names of the augmenter(s) to search for.

• regex (bool, optional) – Whether names is a list of regular expressions. If it is, an aug-
menter is considered a match if at least one of these expressions is a match.

• flat (boolean, optional) – See find_augmenters().

Returns augmenters – Nested list if flat was set to False. Flat list if flat was set to True.

Return type list of imgaug.augmenters.meta.Augmenter

get_all_children(self, flat=False)
Get all children of this augmenter as a list.

If the augmenter has no children, the returned list is empty.

Parameters flat (bool) – If set to True, the returned list will be flat.

Returns The children as a nested or flat list.

Return type list of imgaug.augmenters.meta.Augmenter

get_children_lists(self)
Get a list of lists of children of this augmenter.

For most augmenters, the result will be a single empty list. For augmenters with children it will often be
a list with one sublist containing all children. In some cases the augmenter will contain multiple distinct
lists of children, e.g. an if-list and an else-list. This will lead to a result consisting of a single list with
multiple sublists, each representing the respective sublist of children.

876 Chapter 13. API

imgaug Documentation, Release 0.3.0

E.g. for an if/else-augmenter that executes the children A1, A2 if a condition is met and otherwise executes
the children B1, B2, B3 the result will be [[A1, A2], [B1, B2, B3]].

IMPORTANT: While the topmost list may be newly created, each of the sublist must be ed-
itable inplace resulting in a changed children list of the augmenter. E.g. if an Augmenter
IfElse(condition, [A1, A2], [B1, B2, B3]) returns [[A1, A2], [B1, B2, B3]]
for a call to get_children_lists() and A2 is removed inplace from [A1, A2], then the
children lists of IfElse(...) must also change to [A1], [B1, B2, B3]. This is used in
remove_augmenters_().

Returns One or more lists of child augmenter. Can also be a single empty list.

Return type list of list of imgaug.augmenters.meta.Augmenter

get_parameters(self)
Get the parameters of this augmenter.

Returns List of parameters of arbitrary types (usually child class of
StochasticParameter, but not guaranteed to be).

Return type list

localize_random_state(self, recursive=True)
Assign augmenter-specific RNGs to this augmenter and its children.

See Augmenter.localize_random_state_() for more details.

Parameters recursive (bool, optional) – See localize_random_state_().

Returns Copy of the augmenter and its children, with localized RNGs.

Return type imgaug.augmenters.meta.Augmenter

localize_random_state_(self, recursive=True)
Assign augmenter-specific RNGs to this augmenter and its children.

This method iterates over this augmenter and all of its children and replaces any pointer to the global RNG
with a new local (i.e. augmenter-specific) RNG.

A random number generator (RNG) is used for the sampling of random values. The global random number
generator exists exactly once throughout the library and is shared by many augmenters. A local RNG
(usually) exists within exactly one augmenter and is only used by that augmenter.

Usually there is no need to change global into local RNGs. The only noteworthy exceptions are

• Whenever you want to use determinism (so that the global RNG is not accidentally reverted).

• Whenever you want to copy RNGs from one augmenter to another. (Copying the global RNG would
usually not be useful. Copying the global RNG from augmenter A to B, then executing A and then
B would result in B’s (global) RNG’s state having already changed because of A’s sampling. So the
samples of A and B would differ.)

The case of determinism is handled automatically by to_deterministic(). Only when you copy
RNGs (via copy_random_state()), you need to call this function first.

Parameters recursive (bool, optional) – Whether to localize the RNGs of the augmenter’s chil-
dren too.

Returns Returns itself (with localized RNGs).

Return type imgaug.augmenters.meta.Augmenter

pool(self, processes=None, maxtasksperchild=None, seed=None)
Create a pool used for multicore augmentation.

13.31. imgaug.augmenters.meta 877

imgaug Documentation, Release 0.3.0

Parameters

• processes (None or int, optional) – Same as in __init__(). The number of background
workers. If None, the number of the machine’s CPU cores will be used (this counts
hyperthreads as CPU cores). If this is set to a negative value p, then P - abs(p) will
be used, where P is the number of CPU cores. E.g. -1 would use all cores except one
(this is useful to e.g. reserve one core to feed batches to the GPU).

• maxtasksperchild (None or int, optional) – Same as for __init__(). The number of
tasks done per worker process before the process is killed and restarted. If None, worker
processes will not be automatically restarted.

• seed (None or int, optional) – Same as for __init__(). The seed to use for child
processes. If None, a random seed will be used.

Returns Pool for multicore augmentation.

Return type imgaug.multicore.Pool

Examples

>>> import numpy as np
>>> import imgaug as ia
>>> import imgaug.augmenters as iaa
>>> from imgaug.augmentables.batches import Batch
>>>
>>> aug = iaa.Add(1)
>>> images = np.zeros((16, 128, 128, 3), dtype=np.uint8)
>>> batches = [Batch(images=np.copy(images)) for _ in range(100)]
>>> with aug.pool(processes=-1, seed=2) as pool:
>>> batches_aug = pool.map_batches(batches, chunksize=8)
>>> print(np.sum(batches_aug[0].images_aug[0]))
49152

Create 100 batches of empty images. Each batch contains 16 images of size 128x128. The batches are
then augmented on all CPU cores except one (processes=-1). After augmentation, the sum of pixel
values from the first augmented image is printed.

>>> import numpy as np
>>> import imgaug as ia
>>> import imgaug.augmenters as iaa
>>> from imgaug.augmentables.batches import Batch
>>>
>>> aug = iaa.Add(1)
>>> images = np.zeros((16, 128, 128, 3), dtype=np.uint8)
>>> def generate_batches():
>>> for _ in range(100):
>>> yield Batch(images=np.copy(images))
>>>
>>> with aug.pool(processes=-1, seed=2) as pool:
>>> batches_aug = pool.imap_batches(generate_batches(), chunksize=8)
>>> batch_aug = next(batches_aug)
>>> print(np.sum(batch_aug.images_aug[0]))
49152

Same as above. This time, a generator is used to generate batches of images. Again, the first augmented
image’s sum of pixels is printed.

878 Chapter 13. API

imgaug Documentation, Release 0.3.0

remove_augmenters(self, func, copy=True, identity_if_topmost=True, noop_if_topmost=None)
Remove this augmenter or children that match a condition.

Parameters

• func (callable) – Condition to match per augmenter. The function must expect the aug-
menter itself and a list of parent augmenters and returns True if that augmenter is sup-
posed to be removed, or False otherwise. E.g. lambda a, parents: a.name
== "fliplr" and len(parents) == 1 removes an augmenter with name
fliplr if it is the direct child of the augmenter upon which remove_augmenters()
was initially called.

• copy (bool, optional) – Whether to copy this augmenter and all if its children before re-
moving. If False, removal is performed in-place.

• identity_if_topmost (bool, optional) – If True and the condition (lambda function) leads
to the removal of the topmost augmenter (the one this function is called on initially), then
that topmost augmenter will be replaced by an instance of Noop (i.e. an augmenter that
doesn’t change its inputs). If False, None will be returned in these cases. This can only
be False if copy is set to True.

• noop_if_topmost (bool, optional) – Deprecated since 0.4.0.

Returns This augmenter after the removal was performed. None is returned if the condition
was matched for the topmost augmenter, copy was set to True and noop_if_topmost was set
to False.

Return type imgaug.augmenters.meta.Augmenter or None

Examples

>>> import imgaug.augmenters as iaa
>>> seq = iaa.Sequential([
>>> iaa.Fliplr(0.5, name="fliplr"),
>>> iaa.Flipud(0.5, name="flipud"),
>>>])
>>> seq = seq.remove_augmenters(lambda a, parents: a.name == "fliplr")

This removes the augmenter Fliplr from the Sequential object’s children.

remove_augmenters_(self, func, parents=None)
Remove in-place children of this augmenter that match a condition.

This is functionally identical to remove_augmenters() with copy=False, except that it does not
affect the topmost augmenter (the one on which this function is initially called on).

Added in 0.4.0.

Parameters

• func (callable) – See remove_augmenters().

• parents (None or list of imgaug.augmenters.meta.Augmenter, optional) – List of parent
Augmenter instances that lead to this augmenter. If None, an empty list will be used.
This parameter can usually be left empty and will be set automatically for children.

13.31. imgaug.augmenters.meta 879

imgaug Documentation, Release 0.3.0

Examples

>>> import imgaug.augmenters as iaa
>>> seq = iaa.Sequential([
>>> iaa.Fliplr(0.5, name="fliplr"),
>>> iaa.Flipud(0.5, name="flipud"),
>>>])
>>> seq.remove_augmenters_(lambda a, parents: a.name == "fliplr")

This removes the augmenter Fliplr from the Sequential object’s children.

remove_augmenters_inplace(self, func, parents=None)
Deprecated. Use remove_augmenters_ instead.

Old name for remove_augmenters_().

Deprecated since 0.4.0.

reseed(self, random_state=None, deterministic_too=False)
Deprecated. Use imgaug.augmenters.meta.Augmenter.seed_ instead.

Old name of seed_().

Deprecated since 0.4.0.

seed_(self, entropy=None, deterministic_too=False)
Seed this augmenter and all of its children.

This method assigns a new random number generator to the augmenter and all of its children (if it has
any). The new random number generator is derived from the provided seed or RNG – or from the global
random number generator if None was provided. Note that as child RNGs are derived, they do not all use
the same seed.

If this augmenter or any child augmenter had a random number generator that pointed to the global
random state, it will automatically be replaced with a local random state. This is similar to what
localize_random_state() does.

This method is useful when augmentations are run in the background (i.e. on multiple cores). It should
be called before sending this Augmenter instance to a background worker or once within each worker
with different seeds (i.e., if N workers are used, the function should be called N times). Otherwise, all
background workers will use the same seeds and therefore apply the same augmentations. Note that
Augmenter.augment_batches() and Augmenter.pool() already do this automatically.

Added in 0.4.0.

Parameters

• entropy (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – A seed or random number generator that
is used to derive new random number generators for this augmenter and its children. If an
int is provided, it will be interpreted as a seed. If None is provided, the global random
number generator will be used.

• deterministic_too (bool, optional) – Whether to also change the seed of an augmenter A,
if A is deterministic. This is the case both when this augmenter object is A or one of its
children is A.

880 Chapter 13. API

imgaug Documentation, Release 0.3.0

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Sequential([
>>> iaa.Crop(px=(0, 10)),
>>> iaa.Crop(px=(0, 10))
>>>])
>>> aug.seed_(1)

Seed an augmentation sequence containing two crop operations. Even though the same seed was used, the
two operations will still sample different pixel amounts to crop as the child-specific seed is merely derived
from the provided seed.

show_grid(self, images, rows, cols)
Augment images and plot the results as a single grid-like image.

This calls draw_grid() and simply shows the results. See that method for details.

Parameters

• images ((N,H,W,3) ndarray or (H,W,3) ndarray or (H,W) ndarray or list of (H,W,3) ndar-
ray or list of (H,W) ndarray) – List of images to augment and draw in the grid. If a list,
then each element is expected to have shape (H, W) or (H, W, 3). If a single array,
then it is expected to have shape (N, H, W, 3) or (H, W, 3) or (H, W).

• rows (int) – Number of rows in the grid. If N input images are given, this value will
automatically be multiplied by N to create rows for each image.

• cols (int) – Number of columns in the grid.

to_deterministic(self, n=None)
Convert this augmenter from a stochastic to a deterministic one.

A stochastic augmenter samples pseudo-random values for each parameter, image and batch. A deter-
ministic augmenter also samples new values for each parameter and image, but not batch. Instead, for
consecutive batches it will sample the same values (provided the number of images and their sizes don’t
change). From a technical perspective this means that a deterministic augmenter starts each batch’s aug-
mentation with a random number generator in the same state (i.e. same seed), instead of advancing that
state from batch to batch.

Using determinism is useful to (a) get the same augmentations for two or more image batches (e.g. for
stereo cameras), (b) to augment images and corresponding data on them (e.g. segmentation maps or
bounding boxes) in the same way.

Parameters n (None or int, optional) – Number of deterministic augmenters to return. If None
then only one Augmenter instance will be returned. If 1 or higher, a list containing n
Augmenter instances will be returned.

Returns A single Augmenter object if n was None, otherwise a list of Augmenter objects (even
if n was 1).

Return type imgaug.augmenters.meta.Augmenter or list of im-
gaug.augmenters.meta.Augmenter

class imgaug.augmenters.meta.ChannelShuffle(p=1.0, channels=None, seed=None,
name=None, random_state=’deprecated’,
deterministic=’deprecated’)

Bases: imgaug.augmenters.meta.Augmenter

Randomize the order of channels in input images.

Supported dtypes:

13.31. imgaug.augmenters.meta 881

imgaug Documentation, Release 0.3.0

• uint8: yes; fully tested

• uint16: yes; tested

• uint32: yes; tested

• uint64: yes; tested

• int8: yes; tested

• int16: yes; tested

• int32: yes; tested

• int64: yes; tested

• float16: yes; tested

• float32: yes; tested

• float64: yes; tested

• float128: yes; tested

• bool: yes; tested

Parameters

• p (float or imgaug.parameters.StochasticParameter, optional) – Probability of shuf-
fling channels in any given image. May be a fixed probability as a float, or a
StochasticParameter that returns 0 s and 1 s.

• channels (None or imgaug.ALL or list of int, optional) – Which channels are allowed to
be shuffled with each other. If this is None or imgaug.ALL, then all channels may be
shuffled. If it is a list of int s, then only the channels with indices in that list may be
shuffled. (Values start at 0. All channel indices in the list must exist in each image.)

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.ChannelShuffle(0.35)

Shuffle all channels of 35% of all images.

>>> aug = iaa.ChannelShuffle(0.35, channels=[0, 1])

882 Chapter 13. API

imgaug Documentation, Release 0.3.0

Shuffle only channels 0 and 1 of 35% of all images. As the new channel orders 0, 1 and 1, 0 are both valid
outcomes of the shuffling, it means that for 0.35 * 0.5 = 0.175 or 17.5% of all images the order of
channels 0 and 1 is inverted.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
Continued on next page

13.31. imgaug.augmenters.meta 883

imgaug Documentation, Release 0.3.0

Table 180 – continued from previous page
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

get_parameters(self)
See get_parameters().

class imgaug.augmenters.meta.ClipCBAsToImagePlanes(seed=None, name=None, ran-
dom_state=’deprecated’, deter-
ministic=’deprecated’)

Bases: imgaug.augmenters.meta.Augmenter

Clip coordinate-based augmentables to areas within the image plane.

This augmenter inspects all coordinate-based augmentables (e.g. bounding boxes, line strings) within a given
batch and from each of them parts that are outside of the image plane. Parts within the image plane will be
retained. This may e.g. shrink down bounding boxes. For keypoints, it removes any single points outside of the
image plane. Any augmentable that is completely outside of the image plane will be removed.

Added in 0.4.0.

Supported dtypes:

• uint8: yes; fully tested

• uint16: yes; fully tested

• uint32: yes; fully tested

• uint64: yes; fully tested

• int8: yes; fully tested

• int16: yes; fully tested

• int32: yes; fully tested

• int64: yes; fully tested

• float16: yes; fully tested

• float32: yes; fully tested

• float64: yes; fully tested

• float128: yes; fully tested

• bool: yes; fully tested

Parameters

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

884 Chapter 13. API

imgaug Documentation, Release 0.3.0

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Sequential([
>>> iaa.Affine(translate_px={"x": (-100, 100)}),
>>> iaa.ClipCBAsToImagePlanes()
>>>])

Translate input data on the x-axis by -100 to 100 pixels, then cut all coordinate-based augmentables (e.g.
bounding boxes) down to areas that are within the image planes of their corresponding images.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.

Continued on next page

13.31. imgaug.augmenters.meta 885

imgaug Documentation, Release 0.3.0

Table 181 – continued from previous page
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

get_parameters(self)
See get_parameters().

class imgaug.augmenters.meta.Identity(seed=None, name=None, ran-
dom_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.meta.Augmenter

Augmenter that does not change the input data.

This augmenter is useful e.g. during validation/testing as it allows to re-use the training code without actually
performing any augmentation.

Added in 0.4.0.

Supported dtypes:

• uint8: yes; fully tested

• uint16: yes; tested

• uint32: yes; tested

• uint64: yes; tested

• int8: yes; tested

• int16: yes; tested

• int32: yes; tested

• int64: yes; tested

• float16: yes; tested

886 Chapter 13. API

imgaug Documentation, Release 0.3.0

• float32: yes; tested

• float64: yes; tested

• float128: yes; tested

• bool: yes; tested

Parameters

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Identity()

Create an augmenter that does not change inputs.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

Continued on next page

13.31. imgaug.augmenters.meta 887

imgaug Documentation, Release 0.3.0

Table 182 – continued from previous page
copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

get_parameters(self)
See get_parameters().

class imgaug.augmenters.meta.Lambda(func_images=None, func_heatmaps=None,
func_segmentation_maps=None, func_keypoints=None,
func_bounding_boxes=’keypoints’,
func_polygons=’keypoints’,
func_line_strings=’keypoints’, seed=None,
name=None, random_state=’deprecated’, determin-
istic=’deprecated’)

Bases: imgaug.augmenters.meta.Augmenter

Augmenter that calls a lambda function for each input batch.

This is useful to add missing functions to a list of augmenters.

Supported dtypes:

• uint8: yes; fully tested

• uint16: yes; tested

888 Chapter 13. API

imgaug Documentation, Release 0.3.0

• uint32: yes; tested

• uint64: yes; tested

• int8: yes; tested

• int16: yes; tested

• int32: yes; tested

• int64: yes; tested

• float16: yes; tested

• float32: yes; tested

• float64: yes; tested

• float128: yes; tested

• bool: yes; tested

Parameters

• func_images (None or callable, optional) – The function to call for each batch of images.
It must follow the form:

function(images, random_state, parents, hooks)

and return the changed images (may be transformed in-place). This is essentially the inter-
face of _augment_images(). If this is None instead of a function, the images will not
be altered.

• func_heatmaps (None or callable, optional) – The function to call for each batch of
heatmaps. It must follow the form:

function(heatmaps, random_state, parents, hooks)

and return the changed heatmaps (may be transformed in-place). This is essentially the
interface of _augment_heatmaps(). If this is None instead of a function, the heatmaps
will not be altered.

• func_segmentation_maps (None or callable, optional) – The function to call for each batch
of segmentation maps. It must follow the form:

function(segmaps, random_state, parents, hooks)

and return the changed segmaps (may be transformed in-place). This is essentially the
interface of _augment_segmentation_maps(). If this is None instead of a function,
the segmentatio maps will not be altered.

• func_keypoints (None or callable, optional) – The function to call for each batch of key-
points. It must follow the form:

function(keypoints_on_images, random_state, parents, hooks)

and return the changed keypoints (may be transformed in-place). This is essentially the in-
terface of _augment_keypoints(). If this is None instead of a function, the keypoints
will not be altered.

• func_bounding_boxes (“keypoints” or None or callable, optional) – The function to call
for each batch of bounding boxes. It must follow the form:

13.31. imgaug.augmenters.meta 889

imgaug Documentation, Release 0.3.0

function(bounding_boxes_on_images, random_state, parents, hooks)

and return the changed bounding boxes (may be transformed in-place). This is essentially
the interface of _augment_bounding_boxes(). If this is None instead of a function,
the bounding boxes will not be altered. If this is the string "keypoints" instead of a
function, the bounding boxes will automatically be augmented by transforming their corner
vertices to keypoints and calling func_keypoints.

Added in 0.4.0.

• func_polygons (“keypoints” or None or callable, optional) – The function to call for each
batch of polygons. It must follow the form:

function(polygons_on_images, random_state, parents, hooks)

and return the changed polygons (may be transformed in-place). This is essentially the inter-
face of _augment_polygons(). If this is None instead of a function, the polygons will
not be altered. If this is the string "keypoints" instead of a function, the polygons will
automatically be augmented by transforming their corner vertices to keypoints and calling
func_keypoints.

• func_line_strings (“keypoints” or None or callable, optional) – The function to call for
each batch of line strings. It must follow the form:

function(line_strings_on_images, random_state, parents, hooks)

and return the changed line strings (may be transformed in-place). This is essentially the
interface of _augment_line_strings(). If this is None instead of a function, the line
strings will not be altered. If this is the string "keypoints" instead of a function, the line
strings will automatically be augmented by transforming their corner vertices to keypoints
and calling func_keypoints.

Added in 0.4.0.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>>
>>> def func_images(images, random_state, parents, hooks):
>>> images[:, ::2, :, :] = 0
>>> return images

(continues on next page)

890 Chapter 13. API

imgaug Documentation, Release 0.3.0

(continued from previous page)

>>>
>>> aug = iaa.Lambda(
>>> func_images=func_images
>>>)

Replace every second row in input images with black pixels. Leave other data (e.g. heatmaps, keypoints)
unchanged.

>>> def func_images(images, random_state, parents, hooks):
>>> images[:, ::2, :, :] = 0
>>> return images
>>>
>>> def func_heatmaps(heatmaps, random_state, parents, hooks):
>>> for heatmaps_i in heatmaps:
>>> heatmaps.arr_0to1[::2, :, :] = 0
>>> return heatmaps
>>>
>>> def func_keypoints(keypoints_on_images, random_state, parents, hooks):
>>> return keypoints_on_images
>>>
>>> aug = iaa.Lambda(
>>> func_images=func_images,
>>> func_heatmaps=func_heatmaps,
>>> func_keypoints=func_keypoints
>>>)

Replace every second row in images with black pixels, set every second row in heatmaps to zero and leave other
data (e.g. keypoints) unchanged.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
Continued on next page

13.31. imgaug.augmenters.meta 891

imgaug Documentation, Release 0.3.0

Table 183 – continued from previous page
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

get_parameters(self)
See get_parameters().

class imgaug.augmenters.meta.Noop(seed=None, name=None, random_state=’deprecated’, de-
terministic=’deprecated’)

Bases: imgaug.augmenters.meta.Identity

Alias for augmenter Identity .

It is recommended to now use Identity . Noop might be deprecated in the future.

Supported dtypes:

See Identity .

Parameters

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

892 Chapter 13. API

imgaug Documentation, Release 0.3.0

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Noop()

Create an augmenter that does not change inputs.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

Continued on next page

13.31. imgaug.augmenters.meta 893

imgaug Documentation, Release 0.3.0

Table 184 – continued from previous page
get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.meta.OneOf(children, seed=None, name=None, ran-
dom_state=’deprecated’, deterministic=’deprecated’)

Bases: imgaug.augmenters.meta.SomeOf

Augmenter that always executes exactly one of its children.

Supported dtypes:

See imgaug.augmenters.meta.SomeOf.

Parameters

• children (imgaug.augmenters.meta.Augmenter or list of im-
gaug.augmenters.meta.Augmenter) – The choices of augmenters to apply.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

894 Chapter 13. API

imgaug Documentation, Release 0.3.0

>>> import imgaug.augmenters as iaa
>>> images = [np.ones((10, 10), dtype=np.uint8)] # dummy example images
>>> seq = iaa.OneOf([
>>> iaa.Fliplr(1.0),
>>> iaa.Flipud(1.0)
>>>])
>>> images_aug = seq.augment_images(images)

Flip each image either horizontally or vertically.

>>> images = [np.ones((10, 10), dtype=np.uint8)] # dummy example images
>>> seq = iaa.OneOf([
>>> iaa.Fliplr(1.0),
>>> iaa.Sequential([
>>> iaa.GaussianBlur(1.0),
>>> iaa.Dropout(0.05),
>>> iaa.AdditiveGaussianNoise(0.1*255)
>>>]),
>>> iaa.Noop()
>>>])
>>> images_aug = seq.augment_images(images)

Either flip each image horizontally, or add blur+dropout+noise or do nothing.

Methods

__call__(self, *args, **kwargs) Alias for augment().
add(self, augmenter) Add an augmenter to the list of child augmenters.
append(self, object, /) Append object to the end of the list.
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

clear(self, /) Remove all items from list.
copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

Continued on next page

13.31. imgaug.augmenters.meta 895

imgaug Documentation, Release 0.3.0

Table 185 – continued from previous page
copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence

(in-place).
count(self, value, /) Return number of occurrences of value.
deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
extend(self, iterable, /) Extend list by appending elements from the iterable.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) See get_children_lists().
get_parameters(self) See get_parameters().
index(self, value[, start, stop]) Return first index of value.
insert(self, index, object, /) Insert object before index.
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
pop(self[, index]) Remove and return item at index (default last).
remove(self, value, /) Remove first occurrence of value.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
reverse(self, /) Reverse IN PLACE.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
sort(self, /, *[, key, reverse]) Stable sort IN PLACE.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.meta.RemoveCBAsByOutOfImageFraction(fraction, seed=None,
name=None, ran-
dom_state=’deprecated’,
determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.meta.Augmenter

Remove coordinate-based augmentables exceeding an out of image fraction.

This augmenter inspects all coordinate-based augmentables (e.g. bounding boxes, line strings) within a given
batch and removes any such augmentable which’s out of image fraction is exactly a given value or greater than
that. The out of image fraction denotes the fraction of the augmentable’s area that is outside of the image, e.g.
for a bounding box that has half of its area outside of the image it would be 0.5.

Added in 0.4.0.

896 Chapter 13. API

imgaug Documentation, Release 0.3.0

Supported dtypes:

• uint8: yes; fully tested

• uint16: yes; fully tested

• uint32: yes; fully tested

• uint64: yes; fully tested

• int8: yes; fully tested

• int16: yes; fully tested

• int32: yes; fully tested

• int64: yes; fully tested

• float16: yes; fully tested

• float32: yes; fully tested

• float64: yes; fully tested

• float128: yes; fully tested

• bool: yes; fully tested

Parameters

• fraction (number) – Remove any augmentable for which fraction_{actual} >=
fraction, where fraction_{actual} denotes the estimated out of image fraction.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Sequential([
>>> iaa.Affine(translate_px={"x": (-100, 100)}),
>>> iaa.RemoveCBAsByOutOfImageFraction(0.5)
>>>])

Translate all inputs by -100 to 100 pixels on the x-axis, then remove any coordinate-based augmentable (e.g.
bounding boxes) which has at least 50% of its area outside of the image plane.

13.31. imgaug.augmenters.meta 897

imgaug Documentation, Release 0.3.0

>>> import imgaug as ia
>>> import imgaug.augmenters as iaa
>>> image = ia.quokka_square((100, 100))
>>> bb = ia.BoundingBox(x1=50-25, y1=0, x2=50+25, y2=100)
>>> bbsoi = ia.BoundingBoxesOnImage([bb], shape=image.shape)
>>> aug_without = iaa.Affine(translate_px={"x": 51})
>>> aug_with = iaa.Sequential([
>>> iaa.Affine(translate_px={"x": 51}),
>>> iaa.RemoveCBAsByOutOfImageFraction(0.5)
>>>])
>>>
>>> image_without, bbsoi_without = aug_without(
>>> image=image, bounding_boxes=bbsoi)
>>> image_with, bbsoi_with = aug_with(
>>> image=image, bounding_boxes=bbsoi)
>>>
>>> assert len(bbsoi_without.bounding_boxes) == 1
>>> assert len(bbsoi_with.bounding_boxes) == 0

Create a bounding box on an example image, then translate the image so that 50% of the bounding box’s area
is outside of the image and compare the effects and using RemoveCBAsByOutOfImageFraction with not
using it.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
Continued on next page

898 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 186 – continued from previous page
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

get_parameters(self)
See get_parameters().

class imgaug.augmenters.meta.Sequential(children=None, random_order=False, seed=None,
name=None, random_state=’deprecated’, deter-
ministic=’deprecated’)

Bases: imgaug.augmenters.meta.Augmenter, list

List augmenter containing child augmenters to apply to inputs.

This augmenter is simply a list of other augmenters. To augment an image or any other data, it iterates over
its children and applies each one of them independently to the data. (This also means that the second applied
augmenter will already receive augmented input data and augment it further.)

This augmenter offers the option to apply its children in random order using the random_order parameter. This
should often be activated as it greatly increases the space of possible augmentations.

Note: You are not forced to use Sequential in order to use other augmenters. Each augmenter can be used
on its own, e.g the following defines an augmenter for horizontal flips and then augments a single image:

>>> import numpy as np
>>> import imgaug.augmenters as iaa
>>> image = np.zeros((32, 32, 3), dtype=np.uint8)
>>> aug = iaa.Fliplr(0.5)
>>> image_aug = aug.augment_image(image)

Supported dtypes:

13.31. imgaug.augmenters.meta 899

imgaug Documentation, Release 0.3.0

• uint8: yes; fully tested

• uint16: yes; tested

• uint32: yes; tested

• uint64: yes; tested

• int8: yes; tested

• int16: yes; tested

• int32: yes; tested

• int64: yes; tested

• float16: yes; tested

• float32: yes; tested

• float64: yes; tested

• float128: yes; tested

• bool: yes; tested

Parameters

• children (imgaug.augmenters.meta.Augmenter or list of im-
gaug.augmenters.meta.Augmenter or None, optional) – The augmenters to apply to
images.

• random_order (bool, optional) – Whether to apply the child augmenters in random order.
If True, the order will be randomly sampled once per batch.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import numpy as np
>>> import imgaug.augmenters as iaa
>>> imgs = [np.random.rand(10, 10)]
>>> seq = iaa.Sequential([
>>> iaa.Fliplr(0.5),
>>> iaa.Flipud(0.5)
>>>])
>>> imgs_aug = seq.augment_images(imgs)

900 Chapter 13. API

imgaug Documentation, Release 0.3.0

Create a Sequential that always first applies a horizontal flip augmenter and then a vertical flip augmenter.
Each of these two augmenters has a 50% probability of actually flipping the image.

>>> seq = iaa.Sequential([
>>> iaa.Fliplr(0.5),
>>> iaa.Flipud(0.5)
>>>], random_order=True)
>>> imgs_aug = seq.augment_images(imgs)

Create a Sequential that sometimes first applies a horizontal flip augmenter (followed by a vertical flip
augmenter) and sometimes first a vertical flip augmenter (followed by a horizontal flip augmenter). Again, each
of them has a 50% probability of actually flipping the image.

Methods

__call__(self, *args, **kwargs) Alias for augment().
add(self, augmenter) Add an augmenter to the list of child augmenters.
append(self, object, /) Append object to the end of the list.
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

clear(self, /) Remove all items from list.
copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

count(self, value, /) Return number of occurrences of value.
deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
extend(self, iterable, /) Extend list by appending elements from the iterable.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

Continued on next page

13.31. imgaug.augmenters.meta 901

imgaug Documentation, Release 0.3.0

Table 187 – continued from previous page
find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) See get_children_lists().
get_parameters(self) See get_parameters().
index(self, value[, start, stop]) Return first index of value.
insert(self, index, object, /) Insert object before index.
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
pop(self[, index]) Remove and return item at index (default last).
remove(self, value, /) Remove first occurrence of value.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
reverse(self, /) Reverse IN PLACE.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
sort(self, /, *[, key, reverse]) Stable sort IN PLACE.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

add(self, augmenter)
Add an augmenter to the list of child augmenters.

Parameters imgaug.augmenters.meta.Augmenter – The augmenter to add.

get_children_lists(self)
See get_children_lists().

get_parameters(self)
See get_parameters().

class imgaug.augmenters.meta.SomeOf(n=None, children=None, random_order=False,
seed=None, name=None, random_state=’deprecated’,
deterministic=’deprecated’)

Bases: imgaug.augmenters.meta.Augmenter, list

List augmenter that applies only some of its children to inputs.

This augmenter is similar to Sequential, but may apply only a fixed or random subset of its child augmenters
to inputs. E.g. the augmenter could be initialized with a list of 20 child augmenters and then apply 5 randomly
chosen child augmenters to images.

The subset of augmenters to apply (and their order) is sampled once per image. If random_order is True, the
order will be sampled once per batch (similar to Sequential).

This augmenter currently does not support replacing (i.e. picking the same child multiple times) due to imple-
mentation difficulties in connection with deterministic augmenters.

902 Chapter 13. API

imgaug Documentation, Release 0.3.0

Supported dtypes:

• uint8: yes; fully tested

• uint16: yes; tested

• uint32: yes; tested

• uint64: yes; tested

• int8: yes; tested

• int16: yes; tested

• int32: yes; tested

• int64: yes; tested

• float16: yes; tested

• float32: yes; tested

• float64: yes; tested

• float128: yes; tested

• bool: yes; tested

Parameters

• n (int or tuple of int or list of int or imgaug.parameters.StochasticParameter or None, op-
tional) –

Count of augmenters to apply.

– If int, then exactly n of the child augmenters are applied to every image.

– If tuple of two int s (a, b), then a random value will be uniformly sampled per image
from the discrete interval [a..b] and denote the number of child augmenters to pick
and apply. b may be set to None, which is then equivalent to (a..C) with C denoting
the number of children that the augmenter has.

– If StochasticParameter, then N numbers will be sampled for N images. The pa-
rameter is expected to be discrete.

– If None, then the total number of available children will be used (i.e. all children will be
applied).

• children (imgaug.augmenters.meta.Augmenter or list of im-
gaug.augmenters.meta.Augmenter or None, optional) – The augmenters to apply to
images. If this is a list of augmenters, it will be converted to a Sequential.

• random_order (boolean, optional) – Whether to apply the child augmenters in random
order. If True, the order will be randomly sampled once per batch.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

13.31. imgaug.augmenters.meta 903

imgaug Documentation, Release 0.3.0

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> imgs = [np.random.rand(10, 10)]
>>> seq = iaa.SomeOf(1, [
>>> iaa.Fliplr(1.0),
>>> iaa.Flipud(1.0)
>>>])
>>> imgs_aug = seq.augment_images(imgs)

Apply either Fliplr or Flipud to images.

>>> seq = iaa.SomeOf((1, 3), [
>>> iaa.Fliplr(1.0),
>>> iaa.Flipud(1.0),
>>> iaa.GaussianBlur(1.0)
>>>])
>>> imgs_aug = seq.augment_images(imgs)

Apply one to three of the listed augmenters (Fliplr, Flipud, GaussianBlur) to images. They are always
applied in the provided order, i.e. first Fliplr, second Flipud, third GaussianBlur.

>>> seq = iaa.SomeOf((1, None), [
>>> iaa.Fliplr(1.0),
>>> iaa.Flipud(1.0),
>>> iaa.GaussianBlur(1.0)
>>>], random_order=True)
>>> imgs_aug = seq.augment_images(imgs)

Apply one to all of the listed augmenters (Fliplr, Flipud, GaussianBlur) to images. They are applied
in random order, i.e. sometimes GaussianBlur first, followed by Fliplr, sometimes Fliplr followed by
Flipud followed by Blur etc. The order is sampled once per batch.

Methods

__call__(self, *args, **kwargs) Alias for augment().
add(self, augmenter) Add an augmenter to the list of child augmenters.
append(self, object, /) Append object to the end of the list.
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.

Continued on next page

904 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 188 – continued from previous page
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

clear(self, /) Remove all items from list.
copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

count(self, value, /) Return number of occurrences of value.
deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
extend(self, iterable, /) Extend list by appending elements from the iterable.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) See get_children_lists().
get_parameters(self) See get_parameters().
index(self, value[, start, stop]) Return first index of value.
insert(self, index, object, /) Insert object before index.
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
pop(self[, index]) Remove and return item at index (default last).
remove(self, value, /) Remove first occurrence of value.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
reverse(self, /) Reverse IN PLACE.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
sort(self, /, *[, key, reverse]) Stable sort IN PLACE.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

13.31. imgaug.augmenters.meta 905

imgaug Documentation, Release 0.3.0

add(self, augmenter)
Add an augmenter to the list of child augmenters.

Parameters augmenter (imgaug.augmenters.meta.Augmenter) – The augmenter to add.

get_children_lists(self)
See get_children_lists().

get_parameters(self)
See get_parameters().

class imgaug.augmenters.meta.Sometimes(p=0.5, then_list=None, else_list=None, seed=None,
name=None, random_state=’deprecated’, determin-
istic=’deprecated’)

Bases: imgaug.augmenters.meta.Augmenter

Apply child augmenter(s) with a probability of p.

Let C be one or more child augmenters given to Sometimes. Let p be the fraction of images (or other data)
to augment. Let I be the input images (or other data). Let N be the number of input images (or other entities).
Then (on average) p*N images of I will be augmented using C.

Supported dtypes:

• uint8: yes; fully tested

• uint16: yes; tested

• uint32: yes; tested

• uint64: yes; tested

• int8: yes; tested

• int16: yes; tested

• int32: yes; tested

• int64: yes; tested

• float16: yes; tested

• float32: yes; tested

• float64: yes; tested

• float128: yes; tested

• bool: yes; tested

Parameters

• p (float or imgaug.parameters.StochasticParameter, optional) – Sets the probability with
which the given augmenters will be applied to input images/data. E.g. a value of 0.5 will
result in 50% of all input images (or other augmentables) being augmented.

• then_list (None or imgaug.augmenters.meta.Augmenter or list of im-
gaug.augmenters.meta.Augmenter, optional) – Augmenter(s) to apply to p% percent
of all images. If this is a list of augmenters, it will be converted to a Sequential.

• else_list (None or imgaug.augmenters.meta.Augmenter or list of im-
gaug.augmenters.meta.Augmenter, optional) – Augmenter(s) to apply to (1-p) percent
of all images. These augmenters will be applied only when the ones in then_list are not
applied (either-or-relationship). If this is a list of augmenters, it will be converted to a
Sequential.

906 Chapter 13. API

imgaug Documentation, Release 0.3.0

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Sometimes(0.5, iaa.GaussianBlur(0.3))

Apply GaussianBlur to 50% of all input images.

>>> aug = iaa.Sometimes(0.5, iaa.GaussianBlur(0.3), iaa.Fliplr(1.0))

Apply GaussianBlur to 50% of all input images. Apply Fliplr to the other 50% of all input images.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

Continued on next page

13.31. imgaug.augmenters.meta 907

imgaug Documentation, Release 0.3.0

Table 189 – continued from previous page
copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence

(in-place).
deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) See get_children_lists().
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

get_children_lists(self)
See get_children_lists().

get_parameters(self)
See get_parameters().

class imgaug.augmenters.meta.WithChannels(channels=None, children=None, seed=None,
name=None, random_state=’deprecated’, de-
terministic=’deprecated’)

Bases: imgaug.augmenters.meta.Augmenter

Apply child augmenters to specific channels.

Let C be one or more child augmenters given to this augmenter. Let H be a list of channels. Let I be the input
images. Then this augmenter will pick the channels H from each image in I (resulting in new images) and apply
C to them. The result of the augmentation will be merged back into the original images.

Supported dtypes:

• uint8: yes; fully tested

• uint16: yes; tested

• uint32: yes; tested

• uint64: yes; tested

908 Chapter 13. API

imgaug Documentation, Release 0.3.0

• int8: yes; tested

• int16: yes; tested

• int32: yes; tested

• int64: yes; tested

• float16: yes; tested

• float32: yes; tested

• float64: yes; tested

• float128: yes; tested

• bool: yes; tested

Parameters

• channels (None or int or list of int, optional) – Sets the channels to be extracted from each
image. If None, all channels will be used. Note that this is not stochastic - the extracted
channels are always the same ones.

• children (imgaug.augmenters.meta.Augmenter or list of im-
gaug.augmenters.meta.Augmenter or None, optional) – One or more augmenters to
apply to images, after the channels are extracted.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.WithChannels([0], iaa.Add(10))

Assuming input images are RGB, then this augmenter will add 10 only to the first channel, i.e. it will make
images appear more red.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.

Continued on next page

13.31. imgaug.augmenters.meta 909

imgaug Documentation, Release 0.3.0

Table 190 – continued from previous page
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) See get_children_lists().
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

get_children_lists(self)
See get_children_lists().

910 Chapter 13. API

imgaug Documentation, Release 0.3.0

get_parameters(self)
See get_parameters().

imgaug.augmenters.meta.clip_augmented_image(image, min_value, max_value)
Deprecated. Use imgaug.dtypes.clip_ instead.

Clip image.

imgaug.augmenters.meta.clip_augmented_image_(image, min_value, max_value)
Deprecated. Use imgaug.dtypes.clip_ instead.

Clip image in-place.

imgaug.augmenters.meta.clip_augmented_images(images, min_value, max_value)
Deprecated. Use imgaug.dtypes.clip_ instead.

Clip images.

imgaug.augmenters.meta.clip_augmented_images_(images, min_value, max_value)
Deprecated. Use imgaug.dtypes.clip_ instead.

Clip images in-place.

imgaug.augmenters.meta.copy_arrays(arrays)
Copy the arrays of a single input array or list of input arrays.

imgaug.augmenters.meta.estimate_max_number_of_channels(images)
Compute the maximum number of image channels among a list of images.

imgaug.augmenters.meta.handle_children_list(lst, augmenter_name, lst_name, de-
fault=’sequential’)

Normalize an augmenter list provided by a user.

imgaug.augmenters.meta.invert_reduce_to_nonempty(objs, ids, objs_reduced)
Inverse of reduce_to_nonempty().

imgaug.augmenters.meta.reduce_to_nonempty(objs)
Remove from a list all objects that don’t follow obj.empty==True.

imgaug.augmenters.meta.shuffle_channels(image, random_state, channels=None)
Randomize the order of (color) channels in an image.

Supported dtypes:

• uint8: yes; fully tested

• uint16: yes; indirectly tested (1)

• uint32: yes; indirectly tested (1)

• uint64: yes; indirectly tested (1)

• int8: yes; indirectly tested (1)

• int16: yes; indirectly tested (1)

• int32: yes; indirectly tested (1)

• int64: yes; indirectly tested (1)

• float16: yes; indirectly tested (1)

• float32: yes; indirectly tested (1)

• float64: yes; indirectly tested (1)

• float128: yes; indirectly tested (1)

13.31. imgaug.augmenters.meta 911

imgaug Documentation, Release 0.3.0

• bool: yes; indirectly tested (1)

• (1) Indirectly tested via ChannelShuffle.

Parameters

• image ((H,W,[C]) ndarray) – Image of any dtype for which to shuffle the channels.

• random_state (imgaug.random.RNG) – The random state to use for this shuffling operation.

• channels (None or imgaug.ALL or list of int, optional) – Which channels are allowed to
be shuffled with each other. If this is None or imgaug.ALL, then all channels may be
shuffled. If it is a list of int s, then only the channels with indices in that list may be
shuffled. (Values start at 0. All channel indices in the list must exist in the image.)

Returns The input image with shuffled channels.

Return type ndarray

13.32 imgaug.augmenters.pillike

Augmenters that have identical outputs to well-known PIL functions.

The like in pillike indicates that the augmenters in this module have identical outputs and mostly identical inputs
to corresponding PIL functions, but do not have to wrap these functions internally. They may use internally different
(e.g. faster) techniques to produce these outputs.

Some of the augmenters in this module may also exist in other modules under similar name. These other augmenters
may currently have the same outputs as the corresponding PIL functions, but that is not guaranteed for the future. Use
the augmenters in this module if identical outputs to PIL are required.

List of augmenters:

• Solarize

• Posterize

• Equalize

• Autocontrast

• EnhanceColor

• EnhanceContrast

• EnhanceBrightness

• EnhanceSharpness

• FilterBlur

• FilterSmooth

• FilterSmoothMore

• FilterEdgeEnhance

• FilterEdgeEnhanceMore

• FilterFindEdges

• FilterContour

• FilterEmboss

912 Chapter 13. API

imgaug Documentation, Release 0.3.0

• FilterSharpen

• FilterDetail

• Affine

Standard usage of these augmenters follows roughly the schema:

import numpy as np
import imgaug.augmenters as iaa

aug = iaa.pillike.Affine(translate_px={"x": (-5, 5)})
image = np.full((32, 32, 3), 255, dtype=np.uint8)

images_aug = aug(images=[image, image, image])

Added in 0.4.0.

class imgaug.augmenters.pillike.Affine(scale=1.0, translate_percent=None, trans-
late_px=None, rotate=0.0, shear=0.0, fill-
color=0, center=(0.5, 0.5), seed=None,
name=None, random_state=’deprecated’, de-
terministic=’deprecated’)

Bases: imgaug.augmenters.geometric.Affine

Apply PIL-like affine transformations to images.

This augmenter has identical outputs to PIL.Image.transform with parameter method=PIL.Image.
AFFINE.

Warning: This augmenter can currently only transform image-data. Batches containing heatmaps, seg-
mentation maps and coordinate-based augmentables will be rejected with an error. Use Affine if you have
to transform such inputs.

Note: This augmenter uses the image center as the transformation center. This has to be explicitly enforced in
PIL using corresponding translation matrices. Without such translation, PIL uses the image top left corner as
the transformation center. To mirror that behaviour, use center=(0.0, 0.0).

Added in 0.4.0.

Supported dtypes:

See warp_affine().

Parameters

• scale (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter or dict {“x”: number/tuple/list/StochasticParameter,
“y”: number/tuple/list/StochasticParameter}, optional) – See Affine.

• translate_percent (None or number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter or dict {“x”: number/tuple/list/StochasticParameter,
“y”: number/tuple/list/StochasticParameter}, optional) – See Affine.

• translate_px (None or int or tuple of int or list of int or im-
gaug.parameters.StochasticParameter or dict {“x”: int/tuple/list/StochasticParameter,
“y”: int/tuple/list/StochasticParameter}, optional) – See Affine.

13.32. imgaug.augmenters.pillike 913

imgaug Documentation, Release 0.3.0

• rotate (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – See Affine.

• shear (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter or dict {“x”: int/tuple/list/StochasticParameter,
“y”: int/tuple/list/StochasticParameter}, optional) – See Affine.

• fillcolor (number or tuple of number or list of number or imgaug.ALL or im-
gaug.parameters.StochasticParameter, optional) – See parameter cval in Affine.

• center ({‘uniform’, ‘normal’, ‘center’, ‘left-top’, ‘left-center’, ‘left-bottom’, ‘center-top’,
‘center-center’, ‘center-bottom’, ‘right-top’, ‘right-center’, ‘right-bottom’} or tuple of float
or StochasticParameter or tuple of StochasticParameter, optional) – The center point of
the affine transformation, given as relative xy-coordinates. Set this to (0.0, 0.0) or
left-top to use the top left image corner as the transformation center. Set this to (0.
5, 0.5) or center-center to use the image center as the transformation center. See
also paramerer position in PadToFixedSize for details about valid datatypes of this
parameter.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.pillike.Affine(scale={"x": (0.8, 1.2), "y": (0.5, 1.5)})

Create an augmenter that applies affine scaling (zoom in/out) to images. Along the x-axis they are scaled to
80-120% of their size, along the y-axis to 50-150% (both values randomly and uniformly chosen per image).

>>> aug = iaa.pillike.Affine(translate_px={"x": 0, "y": [-10, 10]},
>>> fillcolor=128)

Create an augmenter that translates images along the y-axis by either -10px or 10px. Newly created pixels
are always filled with the value 128 (along all channels).

>>> aug = iaa.pillike.Affine(rotate=(-20, 20), fillcolor=(0, 256))

Rotate an image by -20 to 20 degress and fill up all newly created pixels with a random RGB color.

See the similar augmenter Affine for more examples.

914 Chapter 13. API

imgaug Documentation, Release 0.3.0

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.

Continued on next page

13.32. imgaug.augmenters.pillike 915

imgaug Documentation, Release 0.3.0

Table 191 – continued from previous page
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

get_parameters(self)
See get_parameters().

class imgaug.augmenters.pillike.Autocontrast(cutoff=(0, 20), per_channel=False,
seed=None, name=None, ran-
dom_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.contrast._ContrastFuncWrapper

Adjust contrast by cutting off p% of lowest/highest histogram values.

This augmenter has identical outputs to PIL.ImageOps.autocontrast.

See autocontrast() for more details.

Added in 0.4.0.

Supported dtypes:

See autocontrast().

Parameters

• cutoff (int or tuple of int or list of int or imgaug.parameters.StochasticParameter, optional)
– Percentage of values to cut off from the low and high end of each image’s histogram,
before stretching it to [0, 255].

– If int: The value will be used for all images.

– If tuple (a, b): A value will be uniformly sampled from the discrete interval [a..
b] per image.

– If list: A random value will be sampled from the list per image.

– If StochasticParameter: A value will be sampled from that parameter per image.

• per_channel (bool or float, optional) – Whether to use the same value for all channels
(False) or to sample a new value for each channel (True). If this value is a float p, then
for p percent of all images per_channel will be treated as True, otherwise as False.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

916 Chapter 13. API

imgaug Documentation, Release 0.3.0

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.pillike.Autocontrast()

Modify the contrast of images by cutting off the 0 to 20% lowest and highest values from the histogram, then
stretching it to full length.

>>> aug = iaa.pillike.Autocontrast((10, 20), per_channel=True)

Modify the contrast of images by cutting off the 10 to 20% lowest and highest values from the histogram, then
stretching it to full length. The cutoff value is sampled per channel instead of per image.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().

Continued on next page

13.32. imgaug.augmenters.pillike 917

imgaug Documentation, Release 0.3.0

Table 192 – continued from previous page
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.pillike.EnhanceBrightness(factor=(0.5, 1.5), seed=None,
name=None, ran-
dom_state=’deprecated’, deter-
ministic=’deprecated’)

Bases: imgaug.augmenters.pillike._EnhanceBase

Change the brightness of images.

This augmenter has identical outputs to PIL.ImageEnhance.Brightness.

Added in 0.4.0.

Supported dtypes:

See enhance_brightness().

Parameters

• factor (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Brightness of the image. Values
below 1.0 decrease the brightness, leading to a black image around 0.0. Values above
1.0 increase the brightness. Sane values are roughly in [0.5, 1.5].

– If number: The value will be used for all images.

– If tuple (a, b): A value will be uniformly sampled per image from the interval [a,
b).

– If list: A random value will be picked from the list per image.

– If StochasticParameter: Per batch of size N, the parameter will be queried once to
return (N,) samples.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage

918 Chapter 13. API

imgaug Documentation, Release 0.3.0

will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.pillike.EnhanceBrightness()

Create an augmenter that worsens the brightness of an image by a random factor.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.

Continued on next page

13.32. imgaug.augmenters.pillike 919

imgaug Documentation, Release 0.3.0

Table 193 – continued from previous page
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.pillike.EnhanceColor(factor=(0.0, 3.0), seed=None, name=None,
random_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.pillike._EnhanceBase

Convert images to grayscale.

This augmenter has identical outputs to PIL.ImageEnhance.Color.

Added in 0.4.0.

Supported dtypes:

See enhance_color().

Parameters

• factor (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Colorfulness of the output image.
Values close to 0.0 lead to grayscale images, values above 1.0 increase the strength of
colors. Sane values are roughly in [0.0, 3.0].

– If number: The value will be used for all images.

– If tuple (a, b): A value will be uniformly sampled per image from the interval [a,
b).

– If list: A random value will be picked from the list per image.

– If StochasticParameter: Per batch of size N, the parameter will be queried once to
return (N,) samples.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage

920 Chapter 13. API

imgaug Documentation, Release 0.3.0

will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.pillike.EnhanceColor()

Create an augmenter to remove a random fraction of color from input images.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.

Continued on next page

13.32. imgaug.augmenters.pillike 921

imgaug Documentation, Release 0.3.0

Table 194 – continued from previous page
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.pillike.EnhanceContrast(factor=(0.5, 1.5), seed=None,
name=None, ran-
dom_state=’deprecated’, deter-
ministic=’deprecated’)

Bases: imgaug.augmenters.pillike._EnhanceBase

Change the contrast of images.

This augmenter has identical outputs to PIL.ImageEnhance.Contrast.

Added in 0.4.0.

Supported dtypes:

See enhance_contrast().

Parameters

• factor (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Strength of contrast in the image.
Values below 1.0 decrease the contrast, leading to a gray image around 0.0. Values above
1.0 increase the contrast. Sane values are roughly in [0.5, 1.5].

– If number: The value will be used for all images.

– If tuple (a, b): A value will be uniformly sampled per image from the interval [a,
b).

– If list: A random value will be picked from the list per image.

– If StochasticParameter: Per batch of size N, the parameter will be queried once to
return (N,) samples.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or

922 Chapter 13. API

imgaug Documentation, Release 0.3.0

numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.pillike.EnhanceContrast()

Create an augmenter that worsens the contrast of an image by a random factor.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
Continued on next page

13.32. imgaug.augmenters.pillike 923

imgaug Documentation, Release 0.3.0

Table 195 – continued from previous page
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.pillike.EnhanceSharpness(factor=(0.0, 2.0), seed=None,
name=None, ran-
dom_state=’deprecated’, deter-
ministic=’deprecated’)

Bases: imgaug.augmenters.pillike._EnhanceBase

Change the sharpness of images.

This augmenter has identical outputs to PIL.ImageEnhance.Sharpness.

Added in 0.4.0.

Supported dtypes:

See enhance_sharpness().

Parameters

• factor (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Sharpness of the image. Values
below 1.0 decrease the sharpness, values above 1.0 increase it. Sane values are roughly
in [0.0, 2.0].

– If number: The value will be used for all images.

– If tuple (a, b): A value will be uniformly sampled per image from the interval [a,
b).

– If list: A random value will be picked from the list per image.

– If StochasticParameter: Per batch of size N, the parameter will be queried once to
return (N,) samples.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

924 Chapter 13. API

imgaug Documentation, Release 0.3.0

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.pillike.EnhanceSharpness()

Create an augmenter that randomly decreases or increases the sharpness of an image.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

Continued on next page

13.32. imgaug.augmenters.pillike 925

imgaug Documentation, Release 0.3.0

Table 196 – continued from previous page
get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.pillike.Equalize(seed=None, name=None, ran-
dom_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.meta.Augmenter

Equalize the image histogram.

This augmenter has identical outputs to PIL.ImageOps.equalize.

Added in 0.4.0.

Supported dtypes:

See equalize_().

Parameters

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

926 Chapter 13. API

imgaug Documentation, Release 0.3.0

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.pillike.Equalize()

Equalize the histograms of all input images.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.

Continued on next page

13.32. imgaug.augmenters.pillike 927

imgaug Documentation, Release 0.3.0

Table 197 – continued from previous page
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

get_parameters(self)
See get_parameters().

class imgaug.augmenters.pillike.FilterBlur(seed=None, name=None, ran-
dom_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.pillike._FilterBase

Apply a blur filter kernel to images.

This augmenter has identical outputs to calling PIL.Image.filter with kernel PIL.ImageFilter.
BLUR.

Added in 0.4.0.

Supported dtypes:

See filter_blur().

Parameters

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.pillike.FilterBlur()

Create an augmenter that applies a blur filter kernel to images.

928 Chapter 13. API

imgaug Documentation, Release 0.3.0

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.

Continued on next page

13.32. imgaug.augmenters.pillike 929

imgaug Documentation, Release 0.3.0

Table 198 – continued from previous page
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.pillike.FilterContour(seed=None, name=None, ran-
dom_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.pillike._FilterBase

Apply a contour detection filter kernel to images.

This augmenter has identical outputs to calling PIL.Image.filter with kernel PIL.ImageFilter.
CONTOUR.

Added in 0.4.0.

Supported dtypes:

See filter_contour().

Parameters

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.pillike.FilterContour()

Create an augmenter that applies a contour detection filter kernel to images.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.

Continued on next page

930 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 199 – continued from previous page
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.pillike.FilterDetail(seed=None, name=None, ran-
dom_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.pillike._FilterBase

13.32. imgaug.augmenters.pillike 931

imgaug Documentation, Release 0.3.0

Apply a detail enhancement filter kernel to images.

This augmenter has identical outputs to calling PIL.Image.filter with kernel PIL.ImageFilter.
DETAIL.

Added in 0.4.0.

Supported dtypes:

See filter_detail().

Parameters

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.pillike.FilterDetail()

Create an augmenter that applies a detail enhancement filter kernel to images.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

Continued on next page

932 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 200 – continued from previous page
augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.pillike.FilterEdgeEnhance(seed=None, name=None, ran-
dom_state=’deprecated’, determin-
istic=’deprecated’)

Bases: imgaug.augmenters.pillike._FilterBase

Apply an edge enhance filter kernel to images.

This augmenter has identical outputs to calling PIL.Image.filter with kernel PIL.ImageFilter.
EDGE_ENHANCE.

Added in 0.4.0.

Supported dtypes:

See filter_edge_enhance().

Parameters

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or

13.32. imgaug.augmenters.pillike 933

imgaug Documentation, Release 0.3.0

numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.pillike.FilterEdgeEnhance()

Create an augmenter that applies a edge enhancement filter kernel to images.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.

Continued on next page

934 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 201 – continued from previous page
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.pillike.FilterEdgeEnhanceMore(seed=None, name=None,
random_state=’deprecated’,
deterministic=’deprecated’)

Bases: imgaug.augmenters.pillike._FilterBase

Apply a strong edge enhancement filter kernel to images.

This augmenter has identical outputs to calling PIL.Image.filter with kernel PIL.ImageFilter.
EDGE_ENHANCE_MORE.

Added in 0.4.0.

Supported dtypes:

See filter_edge_enhance_more().

Parameters

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

13.32. imgaug.augmenters.pillike 935

imgaug Documentation, Release 0.3.0

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.pillike.FilterEdgeEnhanceMore()

Create an augmenter that applies a strong edge enhancement filter kernel to images.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.

Continued on next page

936 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 202 – continued from previous page
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.pillike.FilterEmboss(seed=None, name=None, ran-
dom_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.pillike._FilterBase

Apply an emboss filter kernel to images.

This augmenter has identical outputs to calling PIL.Image.filter with kernel PIL.ImageFilter.
EMBOSS.

Added in 0.4.0.

Supported dtypes:

See filter_emboss().

Parameters

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.pillike.FilterEmboss()

Create an augmenter that applies an emboss filter kernel to images.

13.32. imgaug.augmenters.pillike 937

imgaug Documentation, Release 0.3.0

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.

Continued on next page

938 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 203 – continued from previous page
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.pillike.FilterFindEdges(seed=None, name=None, ran-
dom_state=’deprecated’, deter-
ministic=’deprecated’)

Bases: imgaug.augmenters.pillike._FilterBase

Apply a edge detection kernel to images.

This augmenter has identical outputs to calling PIL.Image.filter with kernel PIL.ImageFilter.
FIND_EDGES.

Added in 0.4.0.

Supported dtypes:

See filter_find_edges().

Parameters

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.pillike.FilterFindEdges()

Create an augmenter that applies an edge detection filter kernel to images.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.

Continued on next page

13.32. imgaug.augmenters.pillike 939

imgaug Documentation, Release 0.3.0

Table 204 – continued from previous page
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.pillike.FilterSharpen(seed=None, name=None, ran-
dom_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.pillike._FilterBase

940 Chapter 13. API

imgaug Documentation, Release 0.3.0

Apply a sharpening filter kernel to images.

This augmenter has identical outputs to calling PIL.Image.filter with kernel PIL.ImageFilter.
SHARPEN.

Added in 0.4.0.

Supported dtypes:

See filter_sharpen().

Parameters

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.pillike.FilterSharpen()

Create an augmenter that applies a sharpening filter kernel to images.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

Continued on next page

13.32. imgaug.augmenters.pillike 941

imgaug Documentation, Release 0.3.0

Table 205 – continued from previous page
augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.pillike.FilterSmooth(seed=None, name=None, ran-
dom_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.pillike._FilterBase

Apply a smoothening filter kernel to images.

This augmenter has identical outputs to calling PIL.Image.filter with kernel PIL.ImageFilter.
SMOOTH.

Added in 0.4.0.

Supported dtypes:

See filter_smooth().

Parameters

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or

942 Chapter 13. API

imgaug Documentation, Release 0.3.0

numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.pillike.FilterSmooth()

Create an augmenter that applies a smoothening filter kernel to images.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.

Continued on next page

13.32. imgaug.augmenters.pillike 943

imgaug Documentation, Release 0.3.0

Table 206 – continued from previous page
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.pillike.FilterSmoothMore(seed=None, name=None, ran-
dom_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.pillike._FilterBase

Apply a strong smoothening filter kernel to images.

This augmenter has identical outputs to calling PIL.Image.filter with kernel PIL.ImageFilter.
BLUR.

Added in 0.4.0.

Supported dtypes:

See filter_smooth_more().

Parameters

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

944 Chapter 13. API

imgaug Documentation, Release 0.3.0

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.pillike.FilterSmoothMore()

Create an augmenter that applies a strong smoothening filter kernel to images.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.

Continued on next page

13.32. imgaug.augmenters.pillike 945

imgaug Documentation, Release 0.3.0

Table 207 – continued from previous page
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.pillike.Posterize(nb_bits=(1, 8), from_colorspace=’RGB’,
to_colorspace=None, max_size=None, inter-
polation=’linear’, seed=None, name=None,
random_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.color.Posterize

Augmenter with identical outputs to PIL’s posterize() function.

This augmenter quantizes each array component to N bits.

This class is currently an alias for Posterize, which again is an alias for
UniformColorQuantizationToNBits, i.e. all three classes are right now guarantueed to have
the same outputs as PIL’s function.

Added in 0.4.0.

Supported dtypes:

See Posterize.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

Continued on next page

946 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 208 – continued from previous page
augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.pillike.Solarize(p=1.0, threshold=128, seed=None, name=None,
random_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.arithmetic.Invert

Augmenter with identical outputs to PIL’s solarize() function.

This augmenter inverts all pixel values above a threshold.

The outputs are identical to PIL’s solarize().

Added in 0.4.0.

Supported dtypes:

See ~imgaug.augmenters.arithmetic.invert_(min_value=None and
max_value=None).

Parameters

13.32. imgaug.augmenters.pillike 947

imgaug Documentation, Release 0.3.0

• p (float or imgaug.parameters.StochasticParameter, optional) – See Invert.

• threshold (None or number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – See Invert.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Solarize(0.5, threshold=(32, 128))

Invert the colors in 50 percent of all images for pixels with a value between 32 and 128 or more. The threshold
is sampled once per image. The thresholding operation happens per channel.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

Continued on next page

948 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 209 – continued from previous page
copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence

(in-place).
deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

imgaug.augmenters.pillike.autocontrast(image, cutoff=0, ignore=None)
Maximize (normalize) image contrast.

This function calculates a histogram of the input image, removes cutoff percent of the lightest and darkest pixels
from the histogram, and remaps the image so that the darkest pixel becomes black (0), and the lightest becomes
white (255).

This function has identical outputs to PIL.ImageOps.autocontrast. The speed is almost identical.

Added in 0.4.0.

Supported dtypes:

• uint8: yes; fully tested

• uint16: no

• uint32: no

• uint64: no

• int8: no

• int16: no

• int32: no

13.32. imgaug.augmenters.pillike 949

imgaug Documentation, Release 0.3.0

• int64: no

• float16: no

• float32: no

• float64: no

• float128: no

• bool: no

Parameters

• image (ndarray) – The image for which to enhance the contrast.

• cutoff (number) – How many percent to cut off at the low and high end of the histogram.
E.g. 20 will cut off the lowest and highest 20% of values. Expected value range is [0,
100].

• ignore (None or int or iterable of int) – Intensity values to ignore, i.e. to treat as background.
If None, no pixels will be ignored. Otherwise exactly the given intensity value(s) will be
ignored.

Returns Contrast-enhanced image.

Return type ndarray

imgaug.augmenters.pillike.enhance_brightness(image, factor)
Change the brightness of images.

This function has identical outputs to PIL.ImageEnhance.Brightness.

Added in 0.4.0.

Supported dtypes:

• uint8: yes; fully tested

• uint16: no

• uint32: no

• uint64: no

• int8: no

• int16: no

• int32: no

• int64: no

• float16: no

• float32: no

• float64: no

• float128: no

• bool: no

Parameters

• image (ndarray) – The image to modify.

950 Chapter 13. API

imgaug Documentation, Release 0.3.0

• factor (number) – Brightness of the image. Values below 1.0 decrease the brightness,
leading to a black image around 0.0. Values above 1.0 increase the brightness. Sane
values are roughly in [0.5, 1.5].

Returns Brightness-modified image.

Return type ndarray

imgaug.augmenters.pillike.enhance_color(image, factor)
Change the strength of colors in an image.

This function has identical outputs to PIL.ImageEnhance.Color.

Added in 0.4.0.

Supported dtypes:

• uint8: yes; fully tested

• uint16: no

• uint32: no

• uint64: no

• int8: no

• int16: no

• int32: no

• int64: no

• float16: no

• float32: no

• float64: no

• float128: no

• bool: no

Parameters

• image (ndarray) – The image to modify.

• factor (number) – Colorfulness of the output image. Values close to 0.0 lead to grayscale
images, values above 1.0 increase the strength of colors. Sane values are roughly in [0.0,
3.0].

Returns Color-modified image.

Return type ndarray

imgaug.augmenters.pillike.enhance_contrast(image, factor)
Change the contrast of an image.

This function has identical outputs to PIL.ImageEnhance.Contrast.

Added in 0.4.0.

Supported dtypes:

• uint8: yes; fully tested

• uint16: no

13.32. imgaug.augmenters.pillike 951

imgaug Documentation, Release 0.3.0

• uint32: no

• uint64: no

• int8: no

• int16: no

• int32: no

• int64: no

• float16: no

• float32: no

• float64: no

• float128: no

• bool: no

Parameters

• image (ndarray) – The image to modify.

• factor (number) – Strength of contrast in the image. Values below 1.0 decrease the con-
trast, leading to a gray image around 0.0. Values above 1.0 increase the contrast. Sane
values are roughly in [0.5, 1.5].

Returns Contrast-modified image.

Return type ndarray

imgaug.augmenters.pillike.enhance_sharpness(image, factor)
Change the sharpness of an image.

This function has identical outputs to PIL.ImageEnhance.Sharpness.

Added in 0.4.0.

Supported dtypes:

• uint8: yes; fully tested

• uint16: no

• uint32: no

• uint64: no

• int8: no

• int16: no

• int32: no

• int64: no

• float16: no

• float32: no

• float64: no

• float128: no

• bool: no

952 Chapter 13. API

imgaug Documentation, Release 0.3.0

Parameters

• image (ndarray) – The image to modify.

• factor (number) – Sharpness of the image. Values below 1.0 decrease the sharpness, values
above 1.0 increase it. Sane values are roughly in [0.0, 2.0].

Returns Sharpness-modified image.

Return type ndarray

imgaug.augmenters.pillike.equalize(image, mask=None)
Equalize the image histogram.

See equalize_() for details.

This function is identical in inputs and outputs to PIL.ImageOps.equalize.

Added in 0.4.0.

Supported dtypes:

See equalize_().

Parameters

• image (ndarray) – uint8 (H,W,[C]) image to equalize.

• mask (None or ndarray, optional) – An optional mask. If given, only the pixels selected by
the mask are included in the analysis.

Returns Equalized image.

Return type ndarray

imgaug.augmenters.pillike.equalize_(image, mask=None)
Equalize the image histogram in-place.

This function applies a non-linear mapping to the input image, in order to create a uniform distribution of
grayscale values in the output image.

This function has identical outputs to PIL.ImageOps.equalize. It does however work in-place.

Added in 0.4.0.

Supported dtypes:

• uint8: yes; fully tested

• uint16: no

• uint32: no

• uint64: no

• int8: no

• int16: no

• int32: no

• int64: no

• float16: no

• float32: no

• float64: no

13.32. imgaug.augmenters.pillike 953

imgaug Documentation, Release 0.3.0

• float128: no

• bool: no

Parameters

• image (ndarray) – uint8 (H,W,[C]) image to equalize.

• mask (None or ndarray, optional) – An optional mask. If given, only the pixels selected by
the mask are included in the analysis.

Returns Equalized image. Might have been modified in-place.

Return type ndarray

imgaug.augmenters.pillike.filter_blur(image)
Apply a blur filter kernel to the image.

This is the same as using PIL’s PIL.ImageFilter.BLUR kernel.

Added in 0.4.0.

Supported dtypes:

• uint8: yes; fully tested

• uint16: no

• uint32: no

• uint64: no

• int8: no

• int16: no

• int32: no

• int64: no

• float16: no

• float32: no

• float64: no

• float128: no

• bool: no

Parameters image (ndarray) – The image to modify.

Returns Blurred image.

Return type ndarray

imgaug.augmenters.pillike.filter_contour(image)
Apply a contour filter kernel to the image.

This is the same as using PIL’s PIL.ImageFilter.CONTOUR kernel.

Added in 0.4.0.

Supported dtypes:

• uint8: yes; fully tested

• uint16: no

954 Chapter 13. API

imgaug Documentation, Release 0.3.0

• uint32: no

• uint64: no

• int8: no

• int16: no

• int32: no

• int64: no

• float16: no

• float32: no

• float64: no

• float128: no

• bool: no

Parameters image (ndarray) – The image to modify.

Returns Image with pronounced contours.

Return type ndarray

imgaug.augmenters.pillike.filter_detail(image)
Apply a detail enhancement filter kernel to the image.

This is the same as using PIL’s PIL.ImageFilter.DETAIL kernel.

Added in 0.4.0.

Supported dtypes:

• uint8: yes; fully tested

• uint16: no

• uint32: no

• uint64: no

• int8: no

• int16: no

• int32: no

• int64: no

• float16: no

• float32: no

• float64: no

• float128: no

• bool: no

Parameters image (ndarray) – The image to modify.

Returns Image with enhanced details.

Return type ndarray

13.32. imgaug.augmenters.pillike 955

imgaug Documentation, Release 0.3.0

imgaug.augmenters.pillike.filter_edge_enhance(image)
Apply an edge enhancement filter kernel to the image.

This is the same as using PIL’s PIL.ImageFilter.EDGE_ENHANCE kernel.

Added in 0.4.0.

Supported dtypes:

• uint8: yes; fully tested

• uint16: no

• uint32: no

• uint64: no

• int8: no

• int16: no

• int32: no

• int64: no

• float16: no

• float32: no

• float64: no

• float128: no

• bool: no

Parameters image (ndarray) – The image to modify.

Returns Image with enhanced edges.

Return type ndarray

imgaug.augmenters.pillike.filter_edge_enhance_more(image)
Apply a stronger edge enhancement filter kernel to the image.

This is the same as using PIL’s PIL.ImageFilter.EDGE_ENHANCE_MORE kernel.

Added in 0.4.0.

Supported dtypes:

• uint8: yes; fully tested

• uint16: no

• uint32: no

• uint64: no

• int8: no

• int16: no

• int32: no

• int64: no

• float16: no

• float32: no

956 Chapter 13. API

imgaug Documentation, Release 0.3.0

• float64: no

• float128: no

• bool: no

Parameters image (ndarray) – The image to modify.

Returns Smoothened image.

Return type ndarray

imgaug.augmenters.pillike.filter_emboss(image)
Apply an emboss filter kernel to the image.

This is the same as using PIL’s PIL.ImageFilter.EMBOSS kernel.

Added in 0.4.0.

Supported dtypes:

• uint8: yes; fully tested

• uint16: no

• uint32: no

• uint64: no

• int8: no

• int16: no

• int32: no

• int64: no

• float16: no

• float32: no

• float64: no

• float128: no

• bool: no

Parameters image (ndarray) – The image to modify.

Returns Embossed image.

Return type ndarray

imgaug.augmenters.pillike.filter_find_edges(image)
Apply an edge detection filter kernel to the image.

This is the same as using PIL’s PIL.ImageFilter.FIND_EDGES kernel.

Added in 0.4.0.

Supported dtypes:

• uint8: yes; fully tested

• uint16: no

• uint32: no

13.32. imgaug.augmenters.pillike 957

imgaug Documentation, Release 0.3.0

• uint64: no

• int8: no

• int16: no

• int32: no

• int64: no

• float16: no

• float32: no

• float64: no

• float128: no

• bool: no

Parameters image (ndarray) – The image to modify.

Returns Image with detected edges.

Return type ndarray

imgaug.augmenters.pillike.filter_sharpen(image)
Apply a sharpening filter kernel to the image.

This is the same as using PIL’s PIL.ImageFilter.SHARPEN kernel.

Added in 0.4.0.

Supported dtypes:

• uint8: yes; fully tested

• uint16: no

• uint32: no

• uint64: no

• int8: no

• int16: no

• int32: no

• int64: no

• float16: no

• float32: no

• float64: no

• float128: no

• bool: no

Parameters image (ndarray) – The image to modify.

Returns Sharpened image.

Return type ndarray

958 Chapter 13. API

imgaug Documentation, Release 0.3.0

imgaug.augmenters.pillike.filter_smooth(image)
Apply a smoothness filter kernel to the image.

This is the same as using PIL’s PIL.ImageFilter.SMOOTH kernel.

Added in 0.4.0.

Supported dtypes:

• uint8: yes; fully tested

• uint16: no

• uint32: no

• uint64: no

• int8: no

• int16: no

• int32: no

• int64: no

• float16: no

• float32: no

• float64: no

• float128: no

• bool: no

Parameters image (ndarray) – The image to modify.

Returns Smoothened image.

Return type ndarray

imgaug.augmenters.pillike.filter_smooth_more(image)
Apply a strong smoothness filter kernel to the image.

This is the same as using PIL’s PIL.ImageFilter.SMOOTH_MORE kernel.

Added in 0.4.0.

Supported dtypes:

• uint8: yes; fully tested

• uint16: no

• uint32: no

• uint64: no

• int8: no

• int16: no

• int32: no

• int64: no

• float16: no

• float32: no

13.32. imgaug.augmenters.pillike 959

imgaug Documentation, Release 0.3.0

• float64: no

• float128: no

• bool: no

Parameters image (ndarray) – The image to modify.

Returns Smoothened image.

Return type ndarray

imgaug.augmenters.pillike.posterize(image, bits)
Reduce the number of bits for each color channel.

This function has identical outputs to PIL.ImageOps.posterize.

Added in 0.4.0.

Supported dtypes:

See quantize_uniform_to_n_bits().

Parameters

• image (ndarray) – Image array of shape (H,W,[C]).

• bits (int) – The number of bits to keep per component. Values in the interval [1, 8] are
valid.

Returns Posterized image.

Return type ndarray

imgaug.augmenters.pillike.posterize_(image, bits)
Reduce the number of bits for each color channel in-place.

This function has identical outputs to PIL.ImageOps.posterize. It does however work in-place.

Added in 0.4.0.

Supported dtypes:

See quantize_uniform_to_n_bits_().

Parameters

• image (ndarray) – Image array of shape (H,W,[C]).

• bits (int) – The number of bits to keep per component. Values in the interval [1, 8] are
valid.

Returns Posterized image. This can be the same array as input in image, modified in-place.

Return type ndarray

imgaug.augmenters.pillike.solarize(image, threshold=128)
Invert all array components above a threshold.

This function has identical outputs to PIL.ImageOps.solarize.

Added in 0.4.0.

Supported dtypes:

See ~imgaug.augmenters.arithmetic.invert_(min_value=None and
max_value=None).

960 Chapter 13. API

imgaug Documentation, Release 0.3.0

Parameters

• image (ndarray) – Image array of shape (H,W,[C]).

• threshold (int, optional) – A threshold to use in order to invert only numbers above or below
the threshold.

Returns Inverted image.

Return type ndarray

imgaug.augmenters.pillike.solarize_(image, threshold=128)
Invert all array components above a threshold in-place.

This function has identical outputs to PIL.ImageOps.solarize. It does however work in-place.

Added in 0.4.0.

Supported dtypes:

See ~imgaug.augmenters.arithmetic.invert_(min_value=None and
max_value=None).

Parameters

• image (ndarray) – Image array of shape (H,W,[C]). The array might be modified in-
place.

• threshold (int, optional) – A threshold to use in order to invert only numbers above or below
the threshold.

Returns Inverted image. This can be the same array as input in image, modified in-place.

Return type ndarray

imgaug.augmenters.pillike.warp_affine(image, scale_x=1.0, scale_y=1.0, translate_x_px=0,
translate_y_px=0, rotate_deg=0, shear_x_deg=0,
shear_y_deg=0, fillcolor=None, center=(0.5, 0.5))

Apply an affine transformation to an image.

This function has identical outputs to PIL.Image.transform with method=PIL.Image.AFFINE.

Added in 0.4.0.

Supported dtypes:

• uint8: yes; fully tested

• uint16: no

• uint32: no

• uint64: no

• int8: no

• int16: no

• int32: no

• int64: no

• float16: no

• float32: no

• float64: no

• float128: no

13.32. imgaug.augmenters.pillike 961

imgaug Documentation, Release 0.3.0

• bool: no

Parameters

• image (ndarray) – The image to modify. Expected to be uint8 with shape (H,W) or
(H,W,C) with C being 3 or 4.

• scale_x (number, optional) – Affine scale factor along the x-axis, where 1.0 denotes an
identity transform and 2.0 is a strong zoom-in effect.

• scale_y (number, optional) – Affine scale factor along the y-axis, where 1.0 denotes an
identity transform and 2.0 is a strong zoom-in effect.

• translate_x_px (number, optional) – Affine translation along the x-axis in pixels. Positive
values translate the image towards the right.

• translate_y_px (number, optional) – Affine translation along the y-axis in pixels. Positive
values translate the image towards the bottom.

• rotate_deg (number, optional) – Affine rotation in degrees around the top left of the image.

• shear_x_deg (number, optional) – Affine shearing in degrees along the x-axis with center
point being the top-left of the image.

• shear_y_deg (number, optional) – Affine shearing in degrees along the y-axis with center
point being the top-left of the image.

• fillcolor (None or int or tuple of int, optional) – Color tuple or intensity value to use when
filling up newly created pixels. None fills with zeros. int will only fill the 0 th channel
with that intensity value and all other channels with 0 (this is the default behaviour of PIL,
use a tuple to fill all channels).

• center (tuple of number, optional) – Center xy-coordinate of the affine transformation, given
as relative values, i.e. (0.0, 0.0) sets the transformation center to the top-left image
corner, (1.0, 0.0) sets it to the the top-right image corner and (0.5, 0.5) sets it to
the image center. The transformation center is relevant e.g. for rotations (“rotate around
this center point”). PIL uses the image top-left corner as the transformation center if no
centerization is included in the affine transformation matrix.

Returns Image after affine transformation.

Return type ndarray

13.33 imgaug.augmenters.pooling

Augmenters that apply pooling operations to images.

List of augmenters:

• AveragePooling

• MaxPooling

• MinPooling

• MedianPooling

962 Chapter 13. API

imgaug Documentation, Release 0.3.0

class imgaug.augmenters.pooling.AveragePooling(kernel_size=(1, 5), keep_size=True,
seed=None, name=None, ran-
dom_state=’deprecated’, determin-
istic=’deprecated’)

Bases: imgaug.augmenters.pooling._AbstractPoolingBase

Apply average pooling to images.

This augmenter pools images with kernel sizes H x W by averaging the pixel values within these windows. For
e.g. 2 x 2 this halves the image size. Optionally, the augmenter will automatically re-upscale the image to the
input size (by default this is activated).

Note that this augmenter is very similar to AverageBlur. AverageBlur applies averaging within windows
of given kernel size without striding, while AveragePooling applies striding corresponding to the kernel
size, with optional upscaling afterwards. The upscaling is configured to create “pixelated”/”blocky” images by
default.

Note: During heatmap or segmentation map augmentation, the respective arrays are not changed, only
the shapes of the underlying images are updated. This is because imgaug can handle maps/maks that are
larger/smaller than their corresponding image.

Supported dtypes:

See avg_pool().

Variables

• kernel_size (int or tuple of int or list of int or imgaug.
parameters.StochasticParameter or tuple of tuple of int
or tuple of list of int or tuple of imgaug.parameters.
StochasticParameter, optional) – The kernel size of the pooling operation.

– If an int, then that value will be used for all images for both kernel height and width.

– If a tuple (a, b), then a value from the discrete range [a..b] will be sampled per
image.

– If a list, then a random value will be sampled from that list per image and used for both
kernel height and width.

– If a StochasticParameter, then a value will be sampled per image from that parameter per
image and used for both kernel height and width.

– If a tuple of tuple of int given as ((a, b), (c, d)), then two values will be sampled
independently from the discrete ranges [a..b] and [c..d] per image and used as the
kernel height and width.

– If a tuple of lists of int, then two values will be sampled independently per image, one
from the first list and one from the second, and used as the kernel height and width.

– If a tuple of StochasticParameter, then two values will be sampled indepdently per image,
one from the first parameter and one from the second, and used as the kernel height and
width.

• keep_size (bool, optional) – After pooling, the result image will usually have a
different height/width compared to the original input image. If this parameter is set to True,
then the pooled image will be resized to the input image’s size, i.e. the augmenter’s output
shape is always identical to the input shape.

13.33. imgaug.augmenters.pooling 963

imgaug Documentation, Release 0.3.0

• seed (None or int or imgaug.random.RNG or numpy.random.
Generator or numpy.random.BitGenerator or numpy.random.
SeedSequence or numpy.random.RandomState, optional) – See
__init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.
random.Generator or numpy.random.BitGenerator or numpy.
random.SeedSequence or numpy.random.RandomState, optional)
– Old name for parameter seed. Its usage will not yet cause a deprecation warning, but it is
still recommended to use seed now. Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.AveragePooling(2)

Create an augmenter that always pools with a kernel size of 2 x 2.

>>> aug = iaa.AveragePooling(2, keep_size=False)

Create an augmenter that always pools with a kernel size of 2 x 2 and does not resize back to the input image
size, i.e. the resulting images have half the resolution.

>>> aug = iaa.AveragePooling([2, 8])

Create an augmenter that always pools either with a kernel size of 2 x 2 or 8 x 8.

>>> aug = iaa.AveragePooling((1, 7))

Create an augmenter that always pools with a kernel size of 1 x 1 (does nothing) to 7 x 7. The kernel sizes
are always symmetric.

>>> aug = iaa.AveragePooling(((1, 7), (1, 7)))

Create an augmenter that always pools with a kernel size of H x W where H and W are both sampled indepen-
dently from the range [1..7]. E.g. resulting kernel sizes could be 3 x 7 or 5 x 1.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

Continued on next page

964 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 210 – continued from previous page
augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.pooling.MaxPooling(kernel_size=(1, 5), keep_size=True,
seed=None, name=None, ran-
dom_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.pooling._AbstractPoolingBase

Apply max pooling to images.

13.33. imgaug.augmenters.pooling 965

imgaug Documentation, Release 0.3.0

This augmenter pools images with kernel sizes H x W by taking the maximum pixel value over windows. For
e.g. 2 x 2 this halves the image size. Optionally, the augmenter will automatically re-upscale the image to the
input size (by default this is activated).

The maximum within each pixel window is always taken channelwise..

Note: During heatmap or segmentation map augmentation, the respective arrays are not changed, only
the shapes of the underlying images are updated. This is because imgaug can handle maps/maks that are
larger/smaller than their corresponding image.

Supported dtypes:

See max_pool().

Variables

• kernel_size (int or tuple of int or list of int or imgaug.
parameters.StochasticParameter or tuple of tuple of int
or tuple of list of int or tuple of imgaug.parameters.
StochasticParameter, optional) – The kernel size of the pooling operation.

– If an int, then that value will be used for all images for both kernel height and width.

– If a tuple (a, b), then a value from the discrete range [a..b] will be sampled per
image.

– If a list, then a random value will be sampled from that list per image and used for both
kernel height and width.

– If a StochasticParameter, then a value will be sampled per image from that parameter per
image and used for both kernel height and width.

– If a tuple of tuple of int given as ((a, b), (c, d)), then two values will be sampled
independently from the discrete ranges [a..b] and [c..d] per image and used as the
kernel height and width.

– If a tuple of lists of int, then two values will be sampled independently per image, one
from the first list and one from the second, and used as the kernel height and width.

– If a tuple of StochasticParameter, then two values will be sampled indepdently per image,
one from the first parameter and one from the second, and used as the kernel height and
width.

• keep_size (bool, optional) – After pooling, the result image will usually have a
different height/width compared to the original input image. If this parameter is set to True,
then the pooled image will be resized to the input image’s size, i.e. the augmenter’s output
shape is always identical to the input shape.

• seed (None or int or imgaug.random.RNG or numpy.random.
Generator or numpy.random.BitGenerator or numpy.random.
SeedSequence or numpy.random.RandomState, optional) – See
__init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.
random.Generator or numpy.random.BitGenerator or numpy.
random.SeedSequence or numpy.random.RandomState, optional)
– Old name for parameter seed. Its usage will not yet cause a deprecation warning, but it is
still recommended to use seed now. Outdated since 0.4.0.

966 Chapter 13. API

imgaug Documentation, Release 0.3.0

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.MaxPooling(2)

Create an augmenter that always pools with a kernel size of 2 x 2.

>>> aug = iaa.MaxPooling(2, keep_size=False)

Create an augmenter that always pools with a kernel size of 2 x 2 and does not resize back to the input image
size, i.e. the resulting images have half the resolution.

>>> aug = iaa.MaxPooling([2, 8])

Create an augmenter that always pools either with a kernel size of 2 x 2 or 8 x 8.

>>> aug = iaa.MaxPooling((1, 7))

Create an augmenter that always pools with a kernel size of 1 x 1 (does nothing) to 7 x 7. The kernel sizes
are always symmetric.

>>> aug = iaa.MaxPooling(((1, 7), (1, 7)))

Create an augmenter that always pools with a kernel size of H x W where H and W are both sampled indepen-
dently from the range [1..7]. E.g. resulting kernel sizes could be 3 x 7 or 5 x 1.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

Continued on next page

13.33. imgaug.augmenters.pooling 967

imgaug Documentation, Release 0.3.0

Table 211 – continued from previous page
copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.pooling.MedianPooling(kernel_size=(1, 5), keep_size=True,
seed=None, name=None, ran-
dom_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.pooling._AbstractPoolingBase

Apply median pooling to images.

This augmenter pools images with kernel sizes H x W by taking the median pixel value over windows. For
e.g. 2 x 2 this halves the image size. Optionally, the augmenter will automatically re-upscale the image to the
input size (by default this is activated).

The median within each pixel window is always taken channelwise.

Note: During heatmap or segmentation map augmentation, the respective arrays are not changed, only
the shapes of the underlying images are updated. This is because imgaug can handle maps/maks that are
larger/smaller than their corresponding image.

Supported dtypes:

968 Chapter 13. API

imgaug Documentation, Release 0.3.0

See median_pool().

Variables

• kernel_size (int or tuple of int or list of int or imgaug.
parameters.StochasticParameter or tuple of tuple of int
or tuple of list of int or tuple of imgaug.parameters.
StochasticParameter, optional) – The kernel size of the pooling operation.

– If an int, then that value will be used for all images for both kernel height and width.

– If a tuple (a, b), then a value from the discrete range [a..b] will be sampled per
image.

– If a list, then a random value will be sampled from that list per image and used for both
kernel height and width.

– If a StochasticParameter, then a value will be sampled per image from that parameter per
image and used for both kernel height and width.

– If a tuple of tuple of int given as ((a, b), (c, d)), then two values will be sampled
independently from the discrete ranges [a..b] and [c..d] per image and used as the
kernel height and width.

– If a tuple of lists of int, then two values will be sampled independently per image, one
from the first list and one from the second, and used as the kernel height and width.

– If a tuple of StochasticParameter, then two values will be sampled indepdently per image,
one from the first parameter and one from the second, and used as the kernel height and
width.

• keep_size (bool, optional) – After pooling, the result image will usually have a
different height/width compared to the original input image. If this parameter is set to True,
then the pooled image will be resized to the input image’s size, i.e. the augmenter’s output
shape is always identical to the input shape.

• seed (None or int or imgaug.random.RNG or numpy.random.
Generator or numpy.random.BitGenerator or numpy.random.
SeedSequence or numpy.random.RandomState, optional) – See
__init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.
random.Generator or numpy.random.BitGenerator or numpy.
random.SeedSequence or numpy.random.RandomState, optional)
– Old name for parameter seed. Its usage will not yet cause a deprecation warning, but it is
still recommended to use seed now. Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.MedianPooling(2)

Create an augmenter that always pools with a kernel size of 2 x 2.

13.33. imgaug.augmenters.pooling 969

imgaug Documentation, Release 0.3.0

>>> aug = iaa.MedianPooling(2, keep_size=False)

Create an augmenter that always pools with a kernel size of 2 x 2 and does not resize back to the input image
size, i.e. the resulting images have half the resolution.

>>> aug = iaa.MedianPooling([2, 8])

Create an augmenter that always pools either with a kernel size of 2 x 2 or 8 x 8.

>>> aug = iaa.MedianPooling((1, 7))

Create an augmenter that always pools with a kernel size of 1 x 1 (does nothing) to 7 x 7. The kernel sizes
are always symmetric.

>>> aug = iaa.MedianPooling(((1, 7), (1, 7)))

Create an augmenter that always pools with a kernel size of H x W where H and W are both sampled indepen-
dently from the range [1..7]. E.g. resulting kernel sizes could be 3 x 7 or 5 x 1.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

Continued on next page

970 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 212 – continued from previous page
find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.pooling.MinPooling(kernel_size=(1, 5), keep_size=True,
seed=None, name=None, ran-
dom_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.pooling._AbstractPoolingBase

Apply minimum pooling to images.

This augmenter pools images with kernel sizes H x W by taking the minimum pixel value over windows. For
e.g. 2 x 2 this halves the image size. Optionally, the augmenter will automatically re-upscale the image to the
input size (by default this is activated).

The minimum within each pixel window is always taken channelwise.

Note: During heatmap or segmentation map augmentation, the respective arrays are not changed, only
the shapes of the underlying images are updated. This is because imgaug can handle maps/maks that are
larger/smaller than their corresponding image.

Supported dtypes:

See min_pool().

Variables

• kernel_size (int or tuple of int or list of int or imgaug.
parameters.StochasticParameter or tuple of tuple of int
or tuple of list of int or tuple of imgaug.parameters.
StochasticParameter, optional) – The kernel size of the pooling operation.

– If an int, then that value will be used for all images for both kernel height and width.

– If a tuple (a, b), then a value from the discrete range [a..b] will be sampled per
image.

13.33. imgaug.augmenters.pooling 971

imgaug Documentation, Release 0.3.0

– If a list, then a random value will be sampled from that list per image and used for both
kernel height and width.

– If a StochasticParameter, then a value will be sampled per image from that parameter per
image and used for both kernel height and width.

– If a tuple of tuple of int given as ((a, b), (c, d)), then two values will be sampled
independently from the discrete ranges [a..b] and [c..d] per image and used as the
kernel height and width.

– If a tuple of lists of int, then two values will be sampled independently per image, one
from the first list and one from the second, and used as the kernel height and width.

– If a tuple of StochasticParameter, then two values will be sampled indepdently per image,
one from the first parameter and one from the second, and used as the kernel height and
width.

• keep_size (bool, optional) – After pooling, the result image will usually have a
different height/width compared to the original input image. If this parameter is set to True,
then the pooled image will be resized to the input image’s size, i.e. the augmenter’s output
shape is always identical to the input shape.

• seed (None or int or imgaug.random.RNG or numpy.random.
Generator or numpy.random.BitGenerator or numpy.random.
SeedSequence or numpy.random.RandomState, optional) – See
__init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.
random.Generator or numpy.random.BitGenerator or numpy.
random.SeedSequence or numpy.random.RandomState, optional)
– Old name for parameter seed. Its usage will not yet cause a deprecation warning, but it is
still recommended to use seed now. Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.MinPooling(2)

Create an augmenter that always pools with a kernel size of 2 x 2.

>>> aug = iaa.MinPooling(2, keep_size=False)

Create an augmenter that always pools with a kernel size of 2 x 2 and does not resize back to the input image
size, i.e. the resulting images have half the resolution.

>>> aug = iaa.MinPooling([2, 8])

Create an augmenter that always pools either with a kernel size of 2 x 2 or 8 x 8.

>>> aug = iaa.MinPooling((1, 7))

Create an augmenter that always pools with a kernel size of 1 x 1 (does nothing) to 7 x 7. The kernel sizes
are always symmetric.

972 Chapter 13. API

imgaug Documentation, Release 0.3.0

>>> aug = iaa.MinPooling(((1, 7), (1, 7)))

Create an augmenter that always pools with a kernel size of H x W where H and W are both sampled indepen-
dently from the range [1..7]. E.g. resulting kernel sizes could be 3 x 7 or 5 x 1.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
Continued on next page

13.33. imgaug.augmenters.pooling 973

imgaug Documentation, Release 0.3.0

Table 213 – continued from previous page
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

13.34 imgaug.augmenters.segmentation

Augmenters that apply changes to images based on segmentation methods.

List of augmenters:

• Superpixels

• Voronoi

• UniformVoronoi

• RegularGridVoronoi

• RelativeRegularGridVoronoi

class imgaug.augmenters.segmentation.DropoutPointsSampler(other_points_sampler,
p_drop)

Bases: imgaug.augmenters.segmentation.IPointsSampler

Remove a defined fraction of sampled points.

Parameters

• other_points_sampler (IPointsSampler) – Another point sampler that is queried to generate
a list of points. The dropout operation will be applied to that list.

• p_drop (number or tuple of number or imgaug.parameters.StochasticParameter) – The
probability that a coordinate will be removed from the list of all sampled coordinates. A
value of 1.0 would mean that (on average) 100 percent of all coordinates will be dropped,
while 0.0 denotes 0 percent. Note that this sampler will always ensure that at least one
coordinate is left after the dropout operation, i.e. even 1.0 will only drop all except one
coordinate.

– If a float, then that value will be used for all images.

– If a tuple (a, b), then a value p will be sampled from the interval [a, b] per
image.

– If a StochasticParameter, then this parameter will be used to determine per coor-
dinate whether it should be kept (sampled value of >0.5) or shouldn’t be kept (sampled
value of <=0.5). If you instead want to provide the probability as a stochastic parameter,
you can usually do imgaug.parameters.Binomial(1-p) to convert parameter p
to a 0/1 representation.

974 Chapter 13. API

imgaug Documentation, Release 0.3.0

Examples

>>> import imgaug.augmenters as iaa
>>> sampler = iaa.DropoutPointsSampler(
>>> iaa.RegularGridPointsSampler(10, 20),
>>> 0.2)

Create a point sampler that first generates points following a regular grid of 10 rows and 20 columns, then
randomly drops 20 percent of these points.

Methods

sample_points(self, images, random_state) Generate coordinates of points on images.

sample_points(self, images, random_state)
Generate coordinates of points on images.

Parameters

• images (ndarray or list of ndarray) – One or more images for which to generate points.
If this is a list of arrays, each one of them is expected to have three dimensions. If this
is an array, it must be four-dimensional and the first axis is expected to denote the image
index. For RGB images the array would hence have to be of shape (N, H, W, 3).

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState) – A random state to use for any probabilistic function
required during the point sampling. See RNG() for details.

Returns An (N,2) float32 array containing (x,y) subpixel coordinates, all of which being
within the intervals [0.0, width] and [0.0, height].

Return type ndarray

class imgaug.augmenters.segmentation.IPointsSampler
Bases: object

Interface for all point samplers.

Point samplers return coordinate arrays of shape Nx2. These coordinates can be used in other augmenters, see
e.g. Voronoi.

Methods

sample_points(self, images, random_state) Generate coordinates of points on images.

sample_points(self, images, random_state)
Generate coordinates of points on images.

Parameters

• images (ndarray or list of ndarray) – One or more images for which to generate points.
If this is a list of arrays, each one of them is expected to have three dimensions. If this
is an array, it must be four-dimensional and the first axis is expected to denote the image
index. For RGB images the array would hence have to be of shape (N, H, W, 3).

13.34. imgaug.augmenters.segmentation 975

imgaug Documentation, Release 0.3.0

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState) – A random state to use for any probabilistic function
required during the point sampling. See RNG() for details.

Returns An (N,2) float32 array containing (x,y) subpixel coordinates, all of which being
within the intervals [0.0, width] and [0.0, height].

Return type ndarray

class imgaug.augmenters.segmentation.RegularGridPointsSampler(n_rows, n_cols)
Bases: imgaug.augmenters.segmentation.IPointsSampler

Sampler that generates a regular grid of coordinates on an image.

‘Regular grid’ here means that on each axis all coordinates have the same distance from each other. Note that
the distance may change between axis.

Parameters

• n_rows (int or tuple of int or list of int or imgaug.parameters.StochasticParameter, optional)
– Number of rows of coordinates to place on each image, i.e. the number of coordinates on
the y-axis. Note that for each image, the sampled value is clipped to the interval [1..H],
where H is the image height.

– If a single int, then that value will always be used.

– If a tuple (a, b), then a value from the discrete interval [a..b] will be sampled
per image.

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then that parameter will be queried to draw one value
per image.

• n_cols (int or tuple of int or list of int or imgaug.parameters.StochasticParameter, optional)
– Number of columns of coordinates to place on each image, i.e. the number of coordinates
on the x-axis. Note that for each image, the sampled value is clipped to the interval [1..W],
where W is the image width.

– If a single int, then that value will always be used.

– If a tuple (a, b), then a value from the discrete interval [a..b] will be sampled
per image.

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then that parameter will be queried to draw one value
per image.

Examples

>>> import imgaug.augmenters as iaa
>>> sampler = iaa.RegularGridPointsSampler(
>>> n_rows=(5, 20),
>>> n_cols=50)

Create a point sampler that generates regular grids of points. These grids contain r points on the y-axis, where
r is sampled uniformly from the discrete interval [5..20] per image. On the x-axis, the grids always contain
50 points.

976 Chapter 13. API

imgaug Documentation, Release 0.3.0

Methods

sample_points(self, images, random_state) Generate coordinates of points on images.

sample_points(self, images, random_state)
Generate coordinates of points on images.

Parameters

• images (ndarray or list of ndarray) – One or more images for which to generate points.
If this is a list of arrays, each one of them is expected to have three dimensions. If this
is an array, it must be four-dimensional and the first axis is expected to denote the image
index. For RGB images the array would hence have to be of shape (N, H, W, 3).

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState) – A random state to use for any probabilistic function
required during the point sampling. See RNG() for details.

Returns An (N,2) float32 array containing (x,y) subpixel coordinates, all of which being
within the intervals [0.0, width] and [0.0, height].

Return type ndarray

class imgaug.augmenters.segmentation.RegularGridVoronoi(n_rows=(10, 30),
n_cols=(10, 30),
p_drop_points=(0.0,
0.5), p_replace=(0.5, 1.0),
max_size=128, interpola-
tion=’linear’, seed=None,
name=None, ran-
dom_state=’deprecated’,
determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.segmentation.Voronoi

Sample Voronoi cells from regular grids and color-average them.

This augmenter is a shortcut for the combination of Voronoi, RegularGridPointsSampler and
DropoutPointsSampler. Hence, it generates a regular grid with R rows and C columns of coordinates
on each image. Then, it drops p percent of the R*C coordinates to randomize the grid. Each image pixel then
belongs to the voronoi cell with the closest coordinate.

Supported dtypes:

See Voronoi.

Parameters

• n_rows (int or tuple of int or list of int or imgaug.parameters.StochasticParameter, optional)
– Number of rows of coordinates to place on each image, i.e. the number of coordinates on
the y-axis. Note that for each image, the sampled value is clipped to the interval [1..H],
where H is the image height.

– If a single int, then that value will always be used.

– If a tuple (a, b), then a value from the discrete interval [a..b] will be sampled
per image.

– If a list, then a random value will be sampled from that list per image.

13.34. imgaug.augmenters.segmentation 977

imgaug Documentation, Release 0.3.0

– If a StochasticParameter, then that parameter will be queried to draw one value
per image.

• n_cols (int or tuple of int or list of int or imgaug.parameters.StochasticParameter, optional)
– Number of columns of coordinates to place on each image, i.e. the number of coordinates
on the x-axis. Note that for each image, the sampled value is clipped to the interval [1..W],
where W is the image width.

– If a single int, then that value will always be used.

– If a tuple (a, b), then a value from the discrete interval [a..b] will be sampled
per image.

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then that parameter will be queried to draw one value
per image.

• p_drop_points (number or tuple of number or imgaug.parameters.StochasticParameter, op-
tional) – The probability that a coordinate will be removed from the list of all sampled coor-
dinates. A value of 1.0 would mean that (on average) 100 percent of all coordinates will
be dropped, while 0.0 denotes 0 percent. Note that this sampler will always ensure that
at least one coordinate is left after the dropout operation, i.e. even 1.0 will only drop all
except one coordinate.

– If a float, then that value will be used for all images.

– If a tuple (a, b), then a value p will be sampled from the interval [a, b] per
image.

– If a StochasticParameter, then this parameter will be used to determine per coor-
dinate whether it should be kept (sampled value of >0.5) or shouldn’t be kept (sampled
value of <=0.5). If you instead want to provide the probability as a stochastic parameter,
you can usually do imgaug.parameters.Binomial(1-p) to convert parameter p
to a 0/1 representation.

• p_replace (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Defines for any segment the probability
that the pixels within that segment are replaced by their average color (otherwise, the pixels
are not changed). Examples:

– A probability of 0.0 would mean, that the pixels in no segment are replaced by their
average color (image is not changed at all).

– A probability of 0.5 would mean, that around half of all segments are replaced by their
average color.

– A probability of 1.0 would mean, that all segments are replaced by their average color
(resulting in a voronoi image).

Behaviour based on chosen datatypes for this parameter:

– If a number, then that number will always be used.

– If tuple (a, b), then a random probability will be sampled from the interval [a, b]
per image.

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, it is expected to return values between 0.0 and 1.0
and will be queried for each individual segment to determine whether it is supposed to be
averaged (>0.5) or not (<=0.5). Recommended to be some form of Binomial(...
).

978 Chapter 13. API

imgaug Documentation, Release 0.3.0

• max_size (int or None, optional) – Maximum image size at which the augmentation is
performed. If the width or height of an image exceeds this value, it will be downscaled
before the augmentation so that the longest side matches max_size. This is done to speed up
the process. The final output image has the same size as the input image. Note that in case
p_replace is below 1.0, the down-/upscaling will affect the not-replaced pixels too. Use
None to apply no down-/upscaling.

• interpolation (int or str, optional) – Interpolation method to use during downscaling when
max_size is exceeded. Valid methods are the same as in imresize_single_image().

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.RegularGridVoronoi(10, 20)

Place a regular grid of 10x20 (height x width) coordinates on each image. Randomly drop on average
20 percent of these points to create a less regular pattern. Then use the remaining coordinates to group the
image pixels into voronoi cells and average the colors within them. The process is performed at an image
size not exceeding 128 px on any side (default). If necessary, the downscaling is performed using linear
interpolation (default).

>>> aug = iaa.RegularGridVoronoi(
>>> (10, 30), 20, p_drop_points=0.0, p_replace=0.9, max_size=None)

Same as above, generates a grid with randomly 10 to 30 rows, drops none of the generates points, replaces only
90 percent of the voronoi cells with their average color (the pixels of the remaining 10 percent are not changed)
and performs the transformation at the original image size (max_size=None).

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

Continued on next page

13.34. imgaug.augmenters.segmentation 979

imgaug Documentation, Release 0.3.0

Table 217 – continued from previous page
augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.segmentation.RelativeRegularGridPointsSampler(n_rows_frac,
n_cols_frac)

Bases: imgaug.augmenters.segmentation.IPointsSampler

Regular grid coordinate sampler; places more points on larger images.

This is similar to RegularGridPointsSampler, but the number of rows and columns is given as fractions

980 Chapter 13. API

imgaug Documentation, Release 0.3.0

of each image’s height and width. Hence, more coordinates are generated for larger images.

Parameters

• n_rows_frac (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Relative number of coordinates to
place on the y-axis. For a value y and image height H the number of actually placed
coordinates (i.e. computed rows) is given by int(round(y*H)). Note that for each
image, the number of coordinates is clipped to the interval [1,H], where H is the image
height.

– If a single number, then that value will always be used.

– If a tuple (a, b), then a value from the interval [a, b] will be sampled per image.

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then that parameter will be queried to draw one value
per image.

• n_cols_frac (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Relative number of coordinates to
place on the x-axis. For a value x and image height W the number of actually placed
coordinates (i.e. computed columns) is given by int(round(x*W)). Note that for each
image, the number of coordinates is clipped to the interval [1,W], where W is the image
width.

– If a single number, then that value will always be used.

– If a tuple (a, b), then a value from the interval [a, b] will be sampled per image.

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then that parameter will be queried to draw one value
per image.

Examples

>>> import imgaug.augmenters as iaa
>>> sampler = iaa.RelativeRegularGridPointsSampler(
>>> n_rows_frac=(0.01, 0.1),
>>> n_cols_frac=0.2)

Create a point sampler that generates regular grids of points. These grids contain round(y*H) points on the
y-axis, where y is sampled uniformly from the interval [0.01, 0.1] per image and H is the image height.
On the x-axis, the grids always contain 0.2*W points, where W is the image width.

Methods

sample_points(self, images, random_state) Generate coordinates of points on images.

sample_points(self, images, random_state)
Generate coordinates of points on images.

Parameters

• images (ndarray or list of ndarray) – One or more images for which to generate points.
If this is a list of arrays, each one of them is expected to have three dimensions. If this

13.34. imgaug.augmenters.segmentation 981

imgaug Documentation, Release 0.3.0

is an array, it must be four-dimensional and the first axis is expected to denote the image
index. For RGB images the array would hence have to be of shape (N, H, W, 3).

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState) – A random state to use for any probabilistic function
required during the point sampling. See RNG() for details.

Returns An (N,2) float32 array containing (x,y) subpixel coordinates, all of which being
within the intervals [0.0, width] and [0.0, height].

Return type ndarray

class imgaug.augmenters.segmentation.RelativeRegularGridVoronoi(n_rows_frac=(0.05,
0.15),
n_cols_frac=(0.05,
0.15),
p_drop_points=(0.0,
0.5),
p_replace=(0.5,
1.0),
max_size=None,
interpola-
tion=’linear’,
seed=None,
name=None,
ran-
dom_state=’deprecated’,
determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.segmentation.Voronoi

Sample Voronoi cells from image-dependent grids and color-average them.

This augmenter is a shortcut for the combination of Voronoi, RegularGridPointsSampler and
DropoutPointsSampler. Hence, it generates a regular grid with R rows and C columns of coordinates
on each image. Then, it drops p percent of the R*C coordinates to randomize the grid. Each image pixel then
belongs to the voronoi cell with the closest coordinate.

Note: In contrast to the other voronoi augmenters, this one uses None as the default value for max_size, i.e. the
color averaging is always performed at full resolution. This enables the augmenter to make use of the additional
points on larger images. It does however slow down the augmentation process.

Supported dtypes:

See Voronoi.

Parameters

• n_rows_frac (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Relative number of coordinates to
place on the y-axis. For a value y and image height H the number of actually placed
coordinates (i.e. computed rows) is given by int(round(y*H)). Note that for each
image, the number of coordinates is clipped to the interval [1,H], where H is the image
height.

– If a single number, then that value will always be used.

– If a tuple (a, b), then a value from the interval [a, b] will be sampled per image.

982 Chapter 13. API

imgaug Documentation, Release 0.3.0

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then that parameter will be queried to draw one value
per image.

• n_cols_frac (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Relative number of coordinates to
place on the x-axis. For a value x and image height W the number of actually placed
coordinates (i.e. computed columns) is given by int(round(x*W)). Note that for each
image, the number of coordinates is clipped to the interval [1,W], where W is the image
width.

– If a single number, then that value will always be used.

– If a tuple (a, b), then a value from the interval [a, b] will be sampled per image.

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then that parameter will be queried to draw one value
per image.

• p_drop_points (number or tuple of number or imgaug.parameters.StochasticParameter, op-
tional) – The probability that a coordinate will be removed from the list of all sampled coor-
dinates. A value of 1.0 would mean that (on average) 100 percent of all coordinates will
be dropped, while 0.0 denotes 0 percent. Note that this sampler will always ensure that
at least one coordinate is left after the dropout operation, i.e. even 1.0 will only drop all
except one coordinate.

– If a float, then that value will be used for all images.

– If a tuple (a, b), then a value p will be sampled from the interval [a, b] per
image.

– If a StochasticParameter, then this parameter will be used to determine per coor-
dinate whether it should be kept (sampled value of >0.5) or shouldn’t be kept (sampled
value of <=0.5). If you instead want to provide the probability as a stochastic parameter,
you can usually do imgaug.parameters.Binomial(1-p) to convert parameter p
to a 0/1 representation.

• p_replace (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Defines for any segment the probability
that the pixels within that segment are replaced by their average color (otherwise, the pixels
are not changed). Examples:

– A probability of 0.0 would mean, that the pixels in no segment are replaced by their
average color (image is not changed at all).

– A probability of 0.5 would mean, that around half of all segments are replaced by their
average color.

– A probability of 1.0 would mean, that all segments are replaced by their average color
(resulting in a voronoi image).

Behaviour based on chosen datatypes for this parameter:

– If a number, then that number will always be used.

– If tuple (a, b), then a random probability will be sampled from the interval [a, b]
per image.

– If a list, then a random value will be sampled from that list per image.

13.34. imgaug.augmenters.segmentation 983

imgaug Documentation, Release 0.3.0

– If a StochasticParameter, it is expected to return values between 0.0 and 1.0
and will be queried for each individual segment to determine whether it is supposed to be
averaged (>0.5) or not (<=0.5). Recommended to be some form of Binomial(...
).

• max_size (int or None, optional) – Maximum image size at which the augmentation is
performed. If the width or height of an image exceeds this value, it will be downscaled
before the augmentation so that the longest side matches max_size. This is done to speed up
the process. The final output image has the same size as the input image. Note that in case
p_replace is below 1.0, the down-/upscaling will affect the not-replaced pixels too. Use
None to apply no down-/upscaling.

• interpolation (int or str, optional) – Interpolation method to use during downscaling when
max_size is exceeded. Valid methods are the same as in imresize_single_image().

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.RelativeRegularGridVoronoi(0.1, 0.25)

Place a regular grid of R x C coordinates on each image, where R is the number of rows and computed as
R=0.1*H with H being the height of the input image. C is the number of columns and analogously estimated
from the image width W as C=0.25*W. Larger images will lead to larger R and C values. On average, 20 percent
of these grid coordinates are randomly dropped to create a less regular pattern. Then, the remaining coordinates
are used to group the image pixels into voronoi cells and the colors within them are averaged.

>>> aug = iaa.RelativeRegularGridVoronoi(
>>> (0.03, 0.1), 0.1, p_drop_points=0.0, p_replace=0.9, max_size=512)

Same as above, generates a grid with randomly R=r*H rows, where r is sampled uniformly from the interval
[0.03, 0.1] and C=0.1*W rows. No points are dropped. The augmenter replaces only 90 percent of the
voronoi cells with their average color (the pixels of the remaining 10 percent are not changed). Images larger
than 512 px are temporarily downscaled (before sampling the grid points) so that no side exceeds 512 px. This
improves performance, but degrades the quality of the resulting image.

Methods

__call__(self, *args, **kwargs) Alias for augment().
Continued on next page

984 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 219 – continued from previous page
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

13.34. imgaug.augmenters.segmentation 985

imgaug Documentation, Release 0.3.0

class imgaug.augmenters.segmentation.SubsamplingPointsSampler(other_points_sampler,
n_points_max)

Bases: imgaug.augmenters.segmentation.IPointsSampler

Ensure that the number of sampled points is below a maximum.

This point sampler will sample points from another sampler and then – in case more points were generated than
an allowed maximum – will randomly pick n_points_max of these.

Parameters

• other_points_sampler (IPointsSampler) – Another point sampler that is queried to generate
a list of points. The dropout operation will be applied to that list.

• n_points_max (int) – Maximum number of allowed points. If other_points_sampler gener-
ates more points than this maximum, a random subset of size n_points_max will be selected.

Examples

>>> import imgaug.augmenters as iaa
>>> sampler = iaa.SubsamplingPointsSampler(
>>> iaa.RelativeRegularGridPointsSampler(0.1, 0.2),
>>> 50
>>>)

Create a points sampler that places y*H points on the y-axis (with y being 0.1 and H being an image’s height)
and x*W on the x-axis (analogous). Then, if that number of placed points exceeds 50 (can easily happen for
larger images), a random subset of 50 points will be picked and returned.

Methods

sample_points(self, images, random_state) Generate coordinates of points on images.

sample_points(self, images, random_state)
Generate coordinates of points on images.

Parameters

• images (ndarray or list of ndarray) – One or more images for which to generate points.
If this is a list of arrays, each one of them is expected to have three dimensions. If this
is an array, it must be four-dimensional and the first axis is expected to denote the image
index. For RGB images the array would hence have to be of shape (N, H, W, 3).

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState) – A random state to use for any probabilistic function
required during the point sampling. See RNG() for details.

Returns An (N,2) float32 array containing (x,y) subpixel coordinates, all of which being
within the intervals [0.0, width] and [0.0, height].

Return type ndarray

986 Chapter 13. API

imgaug Documentation, Release 0.3.0

class imgaug.augmenters.segmentation.Superpixels(p_replace=(0.5, 1.0),
n_segments=(50, 120),
max_size=128, interpola-
tion=’linear’, seed=None,
name=None, ran-
dom_state=’deprecated’, deter-
ministic=’deprecated’)

Bases: imgaug.augmenters.meta.Augmenter

Transform images parially/completely to their superpixel representation.

This implementation uses skimage’s version of the SLIC algorithm.

Note: This augmenter is fairly slow. See Performance.

Supported dtypes:

if (image size <= max_size):

• uint8: yes; fully tested

• uint16: yes; tested

• uint32: yes; tested

• uint64: limited (1)

• int8: yes; tested

• int16: yes; tested

• int32: yes; tested

• int64: limited (1)

• float16: no (2)

• float32: no (2)

• float64: no (3)

• float128: no (2)

• bool: yes; tested

• (1) Superpixel mean intensity replacement requires computing these means as float64 s.
This can cause inaccuracies for large integer values.

• (2) Error in scikit-image.

• (3) Loss of resolution in scikit-image.

if (image size > max_size):

minimum of (imgaug.augmenters.segmentation.Superpixels(image size <=
max_size), _ensure_image_max_size()

)

Parameters

13.34. imgaug.augmenters.segmentation 987

imgaug Documentation, Release 0.3.0

• p_replace (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Defines for any segment the probability
that the pixels within that segment are replaced by their average color (otherwise, the pixels
are not changed). Examples:

– A probability of 0.0 would mean, that the pixels in no segment are replaced by their
average color (image is not changed at all).

– A probability of 0.5 would mean, that around half of all segments are replaced by their
average color.

– A probability of 1.0 would mean, that all segments are replaced by their average color
(resulting in a voronoi image).

Behaviour based on chosen datatypes for this parameter:

– If a number, then that number will always be used.

– If tuple (a, b), then a random probability will be sampled from the interval [a, b]
per image.

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, it is expected to return values between 0.0 and 1.0
and will be queried for each individual segment to determine whether it is supposed to be
averaged (>0.5) or not (<=0.5). Recommended to be some form of Binomial(...
).

• n_segments (int or tuple of int or list of int or imgaug.parameters.StochasticParameter,
optional) – Rough target number of how many superpixels to generate (the algorithm may
deviate from this number). Lower value will lead to coarser superpixels. Higher values are
computationally more intensive and will hence lead to a slowdown.

– If a single int, then that value will always be used as the number of segments.

– If a tuple (a, b), then a value from the discrete interval [a..b] will be sampled
per image.

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then that parameter will be queried to draw one value
per image.

• max_size (int or None, optional) – Maximum image size at which the augmentation is
performed. If the width or height of an image exceeds this value, it will be downscaled
before the augmentation so that the longest side matches max_size. This is done to speed up
the process. The final output image has the same size as the input image. Note that in case
p_replace is below 1.0, the down-/upscaling will affect the not-replaced pixels too. Use
None to apply no down-/upscaling.

• interpolation (int or str, optional) – Interpolation method to use during downscaling when
max_size is exceeded. Valid methods are the same as in imresize_single_image().

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage

988 Chapter 13. API

imgaug Documentation, Release 0.3.0

will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Superpixels(p_replace=1.0, n_segments=64)

Generate around 64 superpixels per image and replace all of them with their average color (standard superpixel
image).

>>> aug = iaa.Superpixels(p_replace=0.5, n_segments=64)

Generate around 64 superpixels per image and replace half of them with their average color, while the other
half are left unchanged (i.e. they still show the input image’s content).

>>> aug = iaa.Superpixels(p_replace=(0.25, 1.0), n_segments=(16, 128))

Generate between 16 and 128 superpixels per image and replace 25 to 100 percent of them with their average
color.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

Continued on next page

13.34. imgaug.augmenters.segmentation 989

imgaug Documentation, Release 0.3.0

Table 221 – continued from previous page
deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

get_parameters(self)
See get_parameters().

class imgaug.augmenters.segmentation.UniformPointsSampler(n_points)
Bases: imgaug.augmenters.segmentation.IPointsSampler

Sample points uniformly on images.

This point sampler generates n_points points per image. The x- and y-coordinates are both sampled from
uniform distributions matching the respective image width and height.

Parameters n_points (int or tuple of int or list of int or imgaug.parameters.StochasticParameter,
optional) –

Number of points to sample on each image.

• If a single int, then that value will always be used.

• If a tuple (a, b), then a value from the discrete interval [a..b] will be sampled per
image.

• If a list, then a random value will be sampled from that list per image.

• If a StochasticParameter, then that parameter will be queried to draw one value per
image.

990 Chapter 13. API

imgaug Documentation, Release 0.3.0

Examples

>>> import imgaug.augmenters as iaa
>>> sampler = iaa.UniformPointsSampler(500)

Create a point sampler that generates an array of 500 random points for each input image. The x- and y-
coordinates of each point are sampled from uniform distributions.

Methods

sample_points(self, images, random_state) Generate coordinates of points on images.

sample_points(self, images, random_state)
Generate coordinates of points on images.

Parameters

• images (ndarray or list of ndarray) – One or more images for which to generate points.
If this is a list of arrays, each one of them is expected to have three dimensions. If this
is an array, it must be four-dimensional and the first axis is expected to denote the image
index. For RGB images the array would hence have to be of shape (N, H, W, 3).

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState) – A random state to use for any probabilistic function
required during the point sampling. See RNG() for details.

Returns An (N,2) float32 array containing (x,y) subpixel coordinates, all of which being
within the intervals [0.0, width] and [0.0, height].

Return type ndarray

class imgaug.augmenters.segmentation.UniformVoronoi(n_points=(50, 500),
p_replace=(0.5, 1.0),
max_size=128, interpola-
tion=’linear’, seed=None,
name=None, ran-
dom_state=’deprecated’, de-
terministic=’deprecated’)

Bases: imgaug.augmenters.segmentation.Voronoi

Uniformly sample Voronoi cells on images and average colors within them.

This augmenter is a shortcut for the combination of Voronoi with UniformPointsSampler. Hence, it
generates a fixed amount of N random coordinates of voronoi cells on each image. The cell coordinates are
sampled uniformly using the image height and width as maxima.

Supported dtypes:

See Voronoi.

Parameters

• n_points (int or tuple of int or list of int or imgaug.parameters.StochasticParameter, op-
tional) –

Number of points to sample on each image.

– If a single int, then that value will always be used.

13.34. imgaug.augmenters.segmentation 991

imgaug Documentation, Release 0.3.0

– If a tuple (a, b), then a value from the discrete interval [a..b] will be sampled
per image.

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then that parameter will be queried to draw one value
per image.

• p_replace (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Defines for any segment the probability
that the pixels within that segment are replaced by their average color (otherwise, the pixels
are not changed). Examples:

– A probability of 0.0 would mean, that the pixels in no segment are replaced by their
average color (image is not changed at all).

– A probability of 0.5 would mean, that around half of all segments are replaced by their
average color.

– A probability of 1.0 would mean, that all segments are replaced by their average color
(resulting in a voronoi image).

Behaviour based on chosen datatypes for this parameter:

– If a number, then that number will always be used.

– If tuple (a, b), then a random probability will be sampled from the interval [a, b]
per image.

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, it is expected to return values between 0.0 and 1.0
and will be queried for each individual segment to determine whether it is supposed to be
averaged (>0.5) or not (<=0.5). Recommended to be some form of Binomial(...
).

• max_size (int or None, optional) – Maximum image size at which the augmentation is
performed. If the width or height of an image exceeds this value, it will be downscaled
before the augmentation so that the longest side matches max_size. This is done to speed up
the process. The final output image has the same size as the input image. Note that in case
p_replace is below 1.0, the down-/upscaling will affect the not-replaced pixels too. Use
None to apply no down-/upscaling.

• interpolation (int or str, optional) – Interpolation method to use during downscaling when
max_size is exceeded. Valid methods are the same as in imresize_single_image().

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

992 Chapter 13. API

imgaug Documentation, Release 0.3.0

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.UniformVoronoi((100, 500))

Sample for each image uniformly the number of voronoi cells N from the interval [100, 500]. Then generate
N coordinates by sampling uniformly the x-coordinates from [0, W] and the y-coordinates from [0, H],
where H is the image height and W the image width. Then use these coordinates to group the image pixels into
voronoi cells and average the colors within them. The process is performed at an image size not exceeding 128
px on any side (default). If necessary, the downscaling is performed using linear interpolation (default).

>>> aug = iaa.UniformVoronoi(250, p_replace=0.9, max_size=None)

Same as above, but always samples N=250 cells, replaces only 90 percent of them with their average color (the
pixels of the remaining 10 percent are not changed) and performs the transformation at the original image size
(max_size=None).

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

Continued on next page

13.34. imgaug.augmenters.segmentation 993

imgaug Documentation, Release 0.3.0

Table 223 – continued from previous page
get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.segmentation.Voronoi(points_sampler, p_replace=1.0,
max_size=128, interpolation=’linear’,
seed=None, name=None, ran-
dom_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.meta.Augmenter

Average colors of an image within Voronoi cells.

This augmenter performs the following steps:

1. Query points_sampler to sample random coordinates of cell centers. On the image.

2. Estimate for each pixel to which voronoi cell (i.e. segment) it belongs. Each pixel belongs to the cell with
the closest center coordinate (euclidean distance).

3. Compute for each cell the average color of the pixels within it.

4. Replace the pixels of p_replace percent of all cells by their average color. Do not change the pixels of
(1 - p_replace) percent of all cells. (The percentages are average values over many images. Some
images may get more/less cells replaced by their average color.)

This code is very loosely based on https://codegolf.stackexchange.com/questions/50299/
draw-an-image-as-a-voronoi-map/50345#50345

Supported dtypes:

if (image size <= max_size):

• uint8: yes; fully tested

• uint16: no; not tested

• uint32: no; not tested

• uint64: no; not tested

• int8: no; not tested

994 Chapter 13. API

https://codegolf.stackexchange.com/questions/50299/draw-an-image-as-a-voronoi-map/50345#50345
https://codegolf.stackexchange.com/questions/50299/draw-an-image-as-a-voronoi-map/50345#50345

imgaug Documentation, Release 0.3.0

• int16: no; not tested

• int32: no; not tested

• int64: no; not tested

• float16: no; not tested

• float32: no; not tested

• float64: no; not tested

• float128: no; not tested

• bool: no; not tested

if (image size > max_size):

minimum of (imgaug.augmenters.segmentation.Voronoi(image size <=
max_size), _ensure_image_max_size()

)

Parameters

• points_sampler (IPointsSampler) – A points sampler which will be queried per image to
generate the coordinates of the centers of voronoi cells.

• p_replace (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Defines for any segment the probability
that the pixels within that segment are replaced by their average color (otherwise, the pixels
are not changed). Examples:

– A probability of 0.0 would mean, that the pixels in no segment are replaced by their
average color (image is not changed at all).

– A probability of 0.5 would mean, that around half of all segments are replaced by their
average color.

– A probability of 1.0 would mean, that all segments are replaced by their average color
(resulting in a voronoi image).

Behaviour based on chosen datatypes for this parameter:

– If a number, then that number will always be used.

– If tuple (a, b), then a random probability will be sampled from the interval [a, b]
per image.

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, it is expected to return values between 0.0 and 1.0
and will be queried for each individual segment to determine whether it is supposed to be
averaged (>0.5) or not (<=0.5). Recommended to be some form of Binomial(...
).

• max_size (int or None, optional) – Maximum image size at which the augmentation is
performed. If the width or height of an image exceeds this value, it will be downscaled
before the augmentation so that the longest side matches max_size. This is done to speed up
the process. The final output image has the same size as the input image. Note that in case
p_replace is below 1.0, the down-/upscaling will affect the not-replaced pixels too. Use
None to apply no down-/upscaling.

• interpolation (int or str, optional) – Interpolation method to use during downscaling when
max_size is exceeded. Valid methods are the same as in imresize_single_image().

13.34. imgaug.augmenters.segmentation 995

imgaug Documentation, Release 0.3.0

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> points_sampler = iaa.RegularGridPointsSampler(n_cols=20, n_rows=40)
>>> aug = iaa.Voronoi(points_sampler)

Create an augmenter that places a 20x40 (HxW) grid of cells on the image and replaces all pixels within each
cell by the cell’s average color. The process is performed at an image size not exceeding 128 px on any side
(default). If necessary, the downscaling is performed using linear interpolation (default).

>>> points_sampler = iaa.DropoutPointsSampler(
>>> iaa.RelativeRegularGridPointsSampler(
>>> n_cols_frac=(0.05, 0.2),
>>> n_rows_frac=0.1),
>>> 0.2)
>>> aug = iaa.Voronoi(points_sampler, p_replace=0.9, max_size=None)

Create a voronoi augmenter that generates a grid of cells dynamically adapted to the image size. Larger images
get more cells. On the x-axis, the distance between two cells is w * W pixels, where W is the width of the image
and w is always 0.1. On the y-axis, the distance between two cells is h * H pixels, where H is the height
of the image and h is sampled uniformly from the interval [0.05, 0.2]. To make the voronoi pattern less
regular, about 20 percent of the cell coordinates are randomly dropped (i.e. the remaining cells grow in size).
In contrast to the first example, the image is not resized (if it was, the sampling would happen after the resizing,
which would affect W and H). Not all voronoi cells are replaced by their average color, only around 90 percent
of them. The remaining 10 percent’s pixels remain unchanged.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

Continued on next page

996 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 224 – continued from previous page
augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

get_parameters(self)
See get_parameters().

imgaug.augmenters.segmentation.segment_voronoi(image, cell_coordinates, re-
place_mask=None)

Average colors within voronoi cells of an image.

Parameters

• image (ndarray) – The image to convert to a voronoi image. May be HxW or HxWxC. Note

13.34. imgaug.augmenters.segmentation 997

imgaug Documentation, Release 0.3.0

that for RGBA images the alpha channel will currently also by averaged.

• cell_coordinates (ndarray) – A Nx2 float array containing the center coordinates of voronoi
cells on the image. Values are expected to be in the interval [0.0, height-1.0] for
the y-axis (x-axis analogous). If this array contains no coordinate, the image will not be
changed.

• replace_mask (None or ndarray, optional) – Boolean mask of the same length as
cell_coordinates, denoting for each cell whether its pixels are supposed to be replaced by
the cell’s average color (True) or left untouched (False). If this is set to None, all cells
will be replaced.

Returns Voronoi image.

Return type ndarray

13.35 imgaug.augmenters.size

Augmenters that somehow change the size of the images.

List of augmenters:

• Resize

• CropAndPad

• Crop

• Pad

• PadToFixedSize

• CenterPadToFixedSize

• CropToFixedSize

• CenterCropToFixedSize

• CropToMultiplesOf

• CenterCropToMultiplesOf

• PadToMultiplesOf

• CenterPadToMultiplesOf

• CropToPowersOf

• CenterCropToPowersOf

• PadToPowersOf

• CenterPadToPowersOf

• CropToAspectRatio

• CenterCropToAspectRatio

• PadToAspectRatio

• CenterPadToAspectRatio

• CropToSquare

• CenterCropToSquare

998 Chapter 13. API

imgaug Documentation, Release 0.3.0

• PadToSquare

• CenterPadToSquare

• KeepSizeByResize

class imgaug.augmenters.size.CenterCropToAspectRatio(aspect_ratio, seed=None,
name=None, ran-
dom_state=’deprecated’,
deterministic=’deprecated’)

Bases: imgaug.augmenters.size.CropToAspectRatio

Crop images equally on all sides until they reach an aspect ratio.

This is the same as CropToAspectRatio, but uses position="center" by default, which spreads the
crop amounts equally over all image sides, while CropToAspectRatio by default spreads them randomly.

Added in 0.4.0.

Supported dtypes:

See CropToFixedSize.

Parameters

• aspect_ratio (number) – See CropToAspectRatio.__init__().

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.CenterCropToAspectRatio(2.0)

Create an augmenter that crops each image until its aspect ratio is as close as possible to 2.0 (i.e. two times as
many pixels along the x-axis than the y-axis). The rows to be cropped will be spread equally over the top and
bottom sides (analogous for the left/right sides).

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.

Continued on next page

13.35. imgaug.augmenters.size 999

imgaug Documentation, Release 0.3.0

Table 225 – continued from previous page
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

1000 Chapter 13. API

imgaug Documentation, Release 0.3.0

class imgaug.augmenters.size.CenterCropToFixedSize(width, height, seed=None,
name=None, ran-
dom_state=’deprecated’, de-
terministic=’deprecated’)

Bases: imgaug.augmenters.size.CropToFixedSize

Take a crop from the center of each image.

This is an alias for CropToFixedSize with position="center".

Note: If images already have a width and/or height below the provided width and/or height then this augmenter
will do nothing for the respective axis. Hence, resulting images can be smaller than the provided axis sizes.

Added in 0.4.0.

Supported dtypes:

See CropToFixedSize.

Parameters

• width (int or None) – See CropToFixedSize.__init__().

• height (int or None) – See CropToFixedSize.__init__().

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> crop = iaa.CenterCropToFixedSize(height=20, width=10)

Create an augmenter that takes 20x10 sized crops from the center of images.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.

Continued on next page

13.35. imgaug.augmenters.size 1001

imgaug Documentation, Release 0.3.0

Table 226 – continued from previous page
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

1002 Chapter 13. API

imgaug Documentation, Release 0.3.0

class imgaug.augmenters.size.CenterCropToMultiplesOf(width_multiple,
height_multiple, seed=None,
name=None, ran-
dom_state=’deprecated’,
deterministic=’deprecated’)

Bases: imgaug.augmenters.size.CropToMultiplesOf

Crop images equally on all sides until H/W are multiples of given values.

This is the same as CropToMultiplesOf, but uses position="center" by default, which spreads the
crop amounts equally over all image sides, while CropToMultiplesOf by default spreads them randomly.

Added in 0.4.0.

Supported dtypes:

See CropToFixedSize.

Parameters

• width_multiple (int or None) – See CropToMultiplesOf.__init__().

• height_multiple (int or None) – See CropToMultiplesOf.__init__().

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.CenterCropToMultiplesOf(height_multiple=10, width_multiple=6)

Create an augmenter that crops images to multiples of 10 along the y-axis (i.e. 10, 20, 30, . . .) and to multiples
of 6 along the x-axis (i.e. 6, 12, 18, . . .). The rows to be cropped will be spread equally over the top and bottom
sides (analogous for the left/right sides).

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.

Continued on next page

13.35. imgaug.augmenters.size 1003

imgaug Documentation, Release 0.3.0

Table 227 – continued from previous page
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

1004 Chapter 13. API

imgaug Documentation, Release 0.3.0

class imgaug.augmenters.size.CenterCropToPowersOf(width_base, height_base,
seed=None, name=None, ran-
dom_state=’deprecated’, determin-
istic=’deprecated’)

Bases: imgaug.augmenters.size.CropToPowersOf

Crop images equally on all sides until H/W is a power of a base.

This is the same as CropToPowersOf, but uses position="center" by default, which spreads the crop
amounts equally over all image sides, while CropToPowersOf by default spreads them randomly.

Added in 0.4.0.

Supported dtypes:

See CropToFixedSize.

Parameters

• width_base (int or None) – See CropToPowersOf.__init__().

• height_base (int or None) – See CropToPowersOf.__init__().

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.CropToPowersOf(height_base=3, width_base=2)

Create an augmenter that crops each image down to powers of 3 along the y-axis (i.e. 3, 9, 27, . . .) and powers
of 2 along the x-axis (i.e. 2, 4, 8, 16, . . .). The rows to be cropped will be spread equally over the top and
bottom sides (analogous for the left/right sides).

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

Continued on next page

13.35. imgaug.augmenters.size 1005

imgaug Documentation, Release 0.3.0

Table 228 – continued from previous page
augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.size.CenterCropToSquare(seed=None, name=None, ran-
dom_state=’deprecated’, deter-
ministic=’deprecated’)

Bases: imgaug.augmenters.size.CropToSquare

Crop images equally on all sides until their height/width are identical.

1006 Chapter 13. API

imgaug Documentation, Release 0.3.0

In contrast to CropToSquare, this augmenter always tries to spread the columns/rows to remove equally
over both sides of the respective axis to be cropped. CropToAspectRatio by default spreads the croppings
randomly.

This augmenter is identical to CropToSquare with position="center", and thereby the same as
CropToAspectRatio with aspect_ratio=1.0, position="center".

Images with axis sizes of 0 will not be altered.

Added in 0.4.0.

Supported dtypes:

See CropToFixedSize.

Parameters

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.CenterCropToSquare()

Create an augmenter that crops each image until its square, i.e. height and width match. The rows to be cropped
will be spread equally over the top and bottom sides (analogous for the left/right sides).

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.

Continued on next page

13.35. imgaug.augmenters.size 1007

imgaug Documentation, Release 0.3.0

Table 229 – continued from previous page
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.size.CenterPadToAspectRatio(aspect_ratio,
pad_mode=’constant’,
pad_cval=0, seed=None,
name=None, ran-
dom_state=’deprecated’, de-
terministic=’deprecated’)

Bases: imgaug.augmenters.size.PadToAspectRatio

Pad images equally on all sides until H/W matches an aspect ratio.

This is the same as PadToAspectRatio, but uses position="center" by default, which spreads the

1008 Chapter 13. API

imgaug Documentation, Release 0.3.0

pad amounts equally over all image sides, while PadToAspectRatio by default spreads them randomly.

Added in 0.4.0.

Supported dtypes:

See PadToFixedSize.

Parameters

• aspect_ratio (number) – See PadToAspectRatio.__init__().

• name (None or str, optional) – See __init__().

• pad_mode (imgaug.ALL or str or list of str or imgaug.parameters.StochasticParameter,
optional) – See __init__().

• pad_cval (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – See __init__().

• deterministic (bool, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.PadToAspectRatio(2.0)

Create am augmenter that pads each image until its aspect ratio is as close as possible to 2.0 (i.e. two times as
many pixels along the x-axis than the y-axis). The rows to be padded will be spread equally over the top and
bottom sides (analogous for the left/right sides).

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

Continued on next page

13.35. imgaug.augmenters.size 1009

imgaug Documentation, Release 0.3.0

Table 230 – continued from previous page
augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.size.CenterPadToFixedSize(width, height,
pad_mode=’constant’, pad_cval=0,
seed=None, name=None, ran-
dom_state=’deprecated’, determin-
istic=’deprecated’)

Bases: imgaug.augmenters.size.PadToFixedSize

Pad images equally on all sides up to given minimum heights/widths.

This is an alias for PadToFixedSize with position="center". It spreads the pad amounts equally over
all image sides, while PadToFixedSize by defaults spreads them randomly.

Added in 0.4.0.

Supported dtypes:

See PadToFixedSize.

Parameters

1010 Chapter 13. API

imgaug Documentation, Release 0.3.0

• width (int or None) – See PadToFixedSize.__init__().

• height (int or None) – See PadToFixedSize.__init__().

• pad_mode (imgaug.ALL or str or list of str or imgaug.parameters.StochasticParameter,
optional) – See PadToFixedSize.__init__().

• pad_cval (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – See PadToFixedSize.
__init__().

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.CenterPadToFixedSize(height=20, width=30)

Create an augmenter that pads images up to 20x30, with the padded rows added equally on the top and bottom
(analogous for the padded columns).

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

Continued on next page

13.35. imgaug.augmenters.size 1011

imgaug Documentation, Release 0.3.0

Table 231 – continued from previous page
augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.size.CenterPadToMultiplesOf(width_multiple, height_multiple,
pad_mode=’constant’,
pad_cval=0, seed=None,
name=None, ran-
dom_state=’deprecated’, de-
terministic=’deprecated’)

Bases: imgaug.augmenters.size.PadToMultiplesOf

Pad images equally on all sides until H/W are multiples of given values.

This is the same as PadToMultiplesOf, but uses position="center" by default, which spreads the
pad amounts equally over all image sides, while PadToMultiplesOf by default spreads them randomly.

Added in 0.4.0.

Supported dtypes:

See PadToFixedSize.

1012 Chapter 13. API

imgaug Documentation, Release 0.3.0

Parameters

• width_multiple (int or None) – See PadToMultiplesOf.__init__().

• height_multiple (int or None) – See PadToMultiplesOf.__init__().

• pad_mode (imgaug.ALL or str or list of str or imgaug.parameters.StochasticParameter,
optional) – See __init__().

• pad_cval (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – See __init__().

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.CenterPadToMultiplesOf(height_multiple=10, width_multiple=6)

Create an augmenter that pads images to multiples of 10 along the y-axis (i.e. 10, 20, 30, . . .) and to multiples
of 6 along the x-axis (i.e. 6, 12, 18, . . .). The rows to be padded will be spread equally over the top and bottom
sides (analogous for the left/right sides).

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

Continued on next page

13.35. imgaug.augmenters.size 1013

imgaug Documentation, Release 0.3.0

Table 232 – continued from previous page
augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.size.CenterPadToPowersOf(width_base, height_base,
pad_mode=’constant’, pad_cval=0,
seed=None, name=None, ran-
dom_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.size.PadToPowersOf

Pad images equally on all sides until H/W is a power of a base.

This is the same as PadToPowersOf, but uses position="center" by default, which spreads the pad
amounts equally over all image sides, while PadToPowersOf by default spreads them randomly.

Added in 0.4.0.

Supported dtypes:

See PadToFixedSize.

1014 Chapter 13. API

imgaug Documentation, Release 0.3.0

Parameters

• width_base (int or None) – See PadToPowersOf.__init__().

• height_base (int or None) – See PadToPowersOf.__init__().

• pad_mode (imgaug.ALL or str or list of str or imgaug.parameters.StochasticParameter,
optional) – See __init__().

• pad_cval (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – See __init__().

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.CenterPadToPowersOf(height_base=5, width_base=2)

Create an augmenter that pads each image to powers of 3 along the y-axis (i.e. 3, 9, 27, . . .) and powers of 2
along the x-axis (i.e. 2, 4, 8, 16, . . .). The rows to be padded will be spread equally over the top and bottom
sides (analogous for the left/right sides).

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

Continued on next page

13.35. imgaug.augmenters.size 1015

imgaug Documentation, Release 0.3.0

Table 233 – continued from previous page
augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.size.CenterPadToSquare(pad_mode=’constant’, pad_cval=0,
seed=None, name=None, ran-
dom_state=’deprecated’, determin-
istic=’deprecated’)

Bases: imgaug.augmenters.size.PadToSquare

Pad images equally on all sides until their height & width are identical.

This is the same as PadToSquare, but uses position="center" by default, which spreads the pad
amounts equally over all image sides, while PadToSquare by default spreads them randomly. This augmenter
is thus also identical to PadToAspectRatio with aspect_ratio=1.0, position="center".

Added in 0.4.0.

Supported dtypes:

See PadToFixedSize.

1016 Chapter 13. API

imgaug Documentation, Release 0.3.0

Parameters

• name (None or str, optional) – See __init__().

• pad_mode (imgaug.ALL or str or list of str or imgaug.parameters.StochasticParameter,
optional) – See __init__().

• pad_cval (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – See __init__().

• deterministic (bool, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.CenterPadToSquare()

Create an augmenter that pads each image until its square, i.e. height and width match. The rows to be padded
will be spread equally over the top and bottom sides (analogous for the left/right sides).

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
Continued on next page

13.35. imgaug.augmenters.size 1017

imgaug Documentation, Release 0.3.0

Table 234 – continued from previous page
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.size.Crop(px=None, percent=None, keep_size=True, sam-
ple_independently=True, seed=None, name=None,
random_state=’deprecated’, deterministic=’deprecated’)

Bases: imgaug.augmenters.size.CropAndPad

Crop images, i.e. remove columns/rows of pixels at the sides of images.

This augmenter allows to extract smaller-sized subimages from given full-sized input images. The number of
pixels to cut off may be defined in absolute values or as fractions of the image sizes.

This augmenter will never crop images below a height or width of 1.

Supported dtypes:

See CropAndPad.

Parameters

• px (None or int or imgaug.parameters.StochasticParameter or tuple, optional) – The num-
ber of pixels to crop on each side of the image. Expected value range is [0, inf). Either
this or the parameter percent may be set, not both at the same time.

– If None, then pixel-based cropping will not be used.

– If int, then that exact number of pixels will always be cropped.

– If StochasticParameter, then that parameter will be used for each image. Four
samples will be drawn per image (top, right, bottom, left), unless sample_independently
is set to False, as then only one value will be sampled per image and used for all sides.

– If a tuple of two int s with values a and b, then each side will be cropped by a random
amount sampled uniformly per image and side from the inteval [a, b]. If however

1018 Chapter 13. API

imgaug Documentation, Release 0.3.0

sample_independently is set to False, only one value will be sampled per image and
used for all sides.

– If a tuple of four entries, then the entries represent top, right, bottom, left. Each entry
may be a single int (always crop by exactly that value), a tuple of two int s a and
b (crop by an amount within [a, b]), a list of int s (crop by a random value that
is contained in the list) or a StochasticParameter (sample the amount to crop
from that parameter).

• percent (None or int or float or imgaug.parameters.StochasticParameter or tuple, optional)
– The number of pixels to crop on each side of the image given as a fraction of the image
height/width. E.g. if this is set to 0.1, the augmenter will always crop 10% of the image’s
height at both the top and the bottom (both 10% each), as well as 10% of the width at the
right and left. Expected value range is [0.0, 1.0). Either this or the parameter px may
be set, not both at the same time.

– If None, then fraction-based cropping will not be used.

– If number, then that fraction will always be cropped.

– If StochasticParameter, then that parameter will be used for each image.
Four samples will be drawn per image (top, right, bottom, left). If however sam-
ple_independently is set to False, only one value will be sampled per image and used
for all sides.

– If a tuple of two float s with values a and b, then each side will be cropped by
a random fraction sampled uniformly per image and side from the interval [a, b].
If however sample_independently is set to False, only one value will be sampled per
image and used for all sides.

– If a tuple of four entries, then the entries represent top, right, bottom, left. Each entry
may be a single float (always crop by exactly that fraction), a tuple of two float s
a and b (crop by a fraction from [a, b]), a list of float s (crop by a random value
that is contained in the list) or a StochasticParameter (sample the percentage to
crop from that parameter).

• keep_size (bool, optional) – After cropping, the result image will usually have a different
height/width compared to the original input image. If this parameter is set to True, then the
cropped image will be resized to the input image’s size, i.e. the augmenter’s output shape is
always identical to the input shape.

• sample_independently (bool, optional) – If False and the values for px/percent result
in exactly one probability distribution for all image sides, only one single value will be
sampled from that probability distribution and used for all sides. I.e. the crop amount then
is the same for all sides. If True, four values will be sampled independently, one per side.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic

13.35. imgaug.augmenters.size 1019

imgaug Documentation, Release 0.3.0

mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Crop(px=(0, 10))

Crop each side by a random pixel value sampled uniformly per image and side from the discrete interval [0..
10].

>>> aug = iaa.Crop(px=(0, 10), sample_independently=False)

Crop each side by a random pixel value sampled uniformly once per image from the discrete interval [0..10].
Each sampled value is used for all sides of the corresponding image.

>>> aug = iaa.Crop(px=(0, 10), keep_size=False)

Crop each side by a random pixel value sampled uniformly per image and side from the discrete interval [0..
10]. Afterwards, do not resize the cropped image back to the input image’s size. This will decrease the image’s
height and width by a maximum of 20 pixels.

>>> aug = iaa.Crop(px=((0, 10), (0, 5), (0, 10), (0, 5)))

Crop the top and bottom by a random pixel value sampled uniformly from the discrete interval [0..10].
Crop the left and right analogously by a random value sampled from [0..5]. Each value is always sampled
independently.

>>> aug = iaa.Crop(percent=(0, 0.1))

Crop each side by a random fraction sampled uniformly from the continuous interval [0.0, 0.10]. The
fraction is sampled once per image and side. E.g. a sampled fraction of 0.1 for the top side would crop by
0.1*H, where H is the height of the input image.

>>> aug = iaa.Crop(
>>> percent=([0.05, 0.1], [0.05, 0.1], [0.05, 0.1], [0.05, 0.1]))

Crops each side by either 5% or 10%. The values are sampled once per side and image.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.

Continued on next page

1020 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 235 – continued from previous page
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.size.CropAndPad(px=None, percent=None, pad_mode=’constant’,
pad_cval=0, keep_size=True, sam-
ple_independently=True, seed=None,
name=None, random_state=’deprecated’, de-
terministic=’deprecated’)

Bases: imgaug.augmenters.meta.Augmenter

Crop/pad images by pixel amounts or fractions of image sizes.

Cropping removes pixels at the sides (i.e. extracts a subimage from a given full image). Padding adds pixels to
the sides (e.g. black pixels).

13.35. imgaug.augmenters.size 1021

imgaug Documentation, Release 0.3.0

This augmenter will never crop images below a height or width of 1.

Note: This augmenter automatically resizes images back to their original size after it has augmented them. To
deactivate this, add the parameter keep_size=False.

Supported dtypes:

if (keep_size=False):

• uint8: yes; fully tested

• uint16: yes; tested

• uint32: yes; tested

• uint64: yes; tested

• int8: yes; tested

• int16: yes; tested

• int32: yes; tested

• int64: yes; tested

• float16: yes; tested

• float32: yes; tested

• float64: yes; tested

• float128: yes; tested

• bool: yes; tested

if (keep_size=True):

minimum of (imgaug.augmenters.size.CropAndPad(keep_size=False),
imresize_many_images()

)

Parameters

• px (None or int or imgaug.parameters.StochasticParameter or tuple, optional) – The num-
ber of pixels to crop (negative values) or pad (positive values) on each side of the image.
Either this or the parameter percent may be set, not both at the same time.

– If None, then pixel-based cropping/padding will not be used.

– If int, then that exact number of pixels will always be cropped/padded.

– If StochasticParameter, then that parameter will be used for each image. Four
samples will be drawn per image (top, right, bottom, left), unless sample_independently
is set to False, as then only one value will be sampled per image and used for all sides.

– If a tuple of two int s with values a and b, then each side will be cropped/padded
by a random amount sampled uniformly per image and side from the inteval [a, b].
If however sample_independently is set to False, only one value will be sampled per
image and used for all sides.

– If a tuple of four entries, then the entries represent top, right, bottom, left. Each entry
may be a single int (always crop/pad by exactly that value), a tuple of two int s a
and b (crop/pad by an amount within [a, b]), a list of int s (crop/pad by a random

1022 Chapter 13. API

imgaug Documentation, Release 0.3.0

value that is contained in the list) or a StochasticParameter (sample the amount
to crop/pad from that parameter).

• percent (None or number or imgaug.parameters.StochasticParameter or tuple, optional)
– The number of pixels to crop (negative values) or pad (positive values) on each side of
the image given as a fraction of the image height/width. E.g. if this is set to -0.1, the
augmenter will always crop away 10% of the image’s height at both the top and the bottom
(both 10% each), as well as 10% of the width at the right and left. Expected value range is
(-1.0, inf). Either this or the parameter px may be set, not both at the same time.

– If None, then fraction-based cropping/padding will not be used.

– If number, then that fraction will always be cropped/padded.

– If StochasticParameter, then that parameter will be used for each image.
Four samples will be drawn per image (top, right, bottom, left). If however sam-
ple_independently is set to False, only one value will be sampled per image and used
for all sides.

– If a tuple of two float s with values a and b, then each side will be cropped/padded
by a random fraction sampled uniformly per image and side from the interval [a, b].
If however sample_independently is set to False, only one value will be sampled per
image and used for all sides.

– If a tuple of four entries, then the entries represent top, right, bottom, left. Each entry
may be a single float (always crop/pad by exactly that percent value), a tuple of two
float s a and b (crop/pad by a fraction from [a, b]), a list of float s (crop/pad
by a random value that is contained in the list) or a StochasticParameter (sample
the percentage to crop/pad from that parameter).

• pad_mode (imgaug.ALL or str or list of str or imgaug.parameters.StochasticParameter, op-
tional) – Padding mode to use. The available modes match the numpy padding modes,
i.e. constant, edge, linear_ramp, maximum, median, minimum, reflect,
symmetric, wrap. The modes constant and linear_ramp use extra values, which
are provided by pad_cval when necessary. See pad() for more details.

– If imgaug.ALL, then a random mode from all available modes will be sampled per
image.

– If a str, it will be used as the pad mode for all images.

– If a list of str, a random one of these will be sampled per image and used as the
mode.

– If StochasticParameter, a random mode will be sampled from this parameter per
image.

• pad_cval (number or tuple of number list of number or im-
gaug.parameters.StochasticParameter, optional) – The constant value to use if the
pad mode is constant or the end value to use if the mode is linear_ramp. See pad()
for more details.

– If number, then that value will be used.

– If a tuple of two number s and at least one of them is a float, then a random number
will be uniformly sampled per image from the continuous interval [a, b] and used as
the value. If both number s are int s, the interval is discrete.

– If a list of number, then a random value will be chosen from the elements of the list
and used as the value.

13.35. imgaug.augmenters.size 1023

imgaug Documentation, Release 0.3.0

– If StochasticParameter, a random value will be sampled from that parameter per
image.

• keep_size (bool, optional) – After cropping and padding, the result image will usually have
a different height/width compared to the original input image. If this parameter is set to
True, then the cropped/padded image will be resized to the input image’s size, i.e. the
augmenter’s output shape is always identical to the input shape.

• sample_independently (bool, optional) – If False and the values for px/percent result in
exactly one probability distribution for all image sides, only one single value will be sampled
from that probability distribution and used for all sides. I.e. the crop/pad amount then is the
same for all sides. If True, four values will be sampled independently, one per side.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.CropAndPad(px=(-10, 0))

Crop each side by a random pixel value sampled uniformly per image and side from the discrete interval [-10.
.0].

>>> aug = iaa.CropAndPad(px=(0, 10))

Pad each side by a random pixel value sampled uniformly per image and side from the discrete interval [0..
10]. The padding happens by zero-padding, i.e. it adds black pixels (default setting).

>>> aug = iaa.CropAndPad(px=(0, 10), pad_mode="edge")

Pad each side by a random pixel value sampled uniformly per image and side from the discrete interval [0..
10]. The padding uses the edge mode from numpy’s pad function, i.e. the pixel colors around the image sides
are repeated.

>>> aug = iaa.CropAndPad(px=(0, 10), pad_mode=["constant", "edge"])

Similar to the previous example, but uses zero-padding (constant) for half of the images and edge padding
for the other half.

>>> aug = iaa.CropAndPad(px=(0, 10), pad_mode=ia.ALL, pad_cval=(0, 255))

Similar to the previous example, but uses any available padding mode. In case the padding mode ends up being
constant or linear_ramp, and random intensity is uniformly sampled (once per image) from the discrete
interval [0..255] and used as the intensity of the new pixels.

1024 Chapter 13. API

imgaug Documentation, Release 0.3.0

>>> aug = iaa.CropAndPad(px=(0, 10), sample_independently=False)

Pad each side by a random pixel value sampled uniformly once per image from the discrete interval [0..10].
Each sampled value is used for all sides of the corresponding image.

>>> aug = iaa.CropAndPad(px=(0, 10), keep_size=False)

Pad each side by a random pixel value sampled uniformly per image and side from the discrete interval [0..
10]. Afterwards, do not resize the padded image back to the input image’s size. This will increase the image’s
height and width by a maximum of 20 pixels.

>>> aug = iaa.CropAndPad(px=((0, 10), (0, 5), (0, 10), (0, 5)))

Pad the top and bottom by a random pixel value sampled uniformly from the discrete interval [0..10]. Pad
the left and right analogously by a random value sampled from [0..5]. Each value is always sampled inde-
pendently.

>>> aug = iaa.CropAndPad(percent=(0, 0.1))

Pad each side by a random fraction sampled uniformly from the continuous interval [0.0, 0.10]. The
fraction is sampled once per image and side. E.g. a sampled fraction of 0.1 for the top side would pad by
0.1*H, where H is the height of the input image.

>>> aug = iaa.CropAndPad(
>>> percent=([0.05, 0.1], [0.05, 0.1], [0.05, 0.1], [0.05, 0.1]))

Pads each side by either 5% or 10%. The values are sampled once per side and image.

>>> aug = iaa.CropAndPad(px=(-10, 10))

Sample uniformly per image and side a value v from the discrete range [-10..10]. Then either crop (negative
sample) or pad (positive sample) the side by v pixels.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

Continued on next page

13.35. imgaug.augmenters.size 1025

imgaug Documentation, Release 0.3.0

Table 236 – continued from previous page
augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

get_parameters(self)
See get_parameters().

class imgaug.augmenters.size.CropToAspectRatio(aspect_ratio, position=’uniform’,
seed=None, name=None, ran-
dom_state=’deprecated’, determin-
istic=’deprecated’)

Bases: imgaug.augmenters.size.CropToFixedSize

Crop images until their width/height matches an aspect ratio.

This augmenter removes either rows or columns until the image reaches the desired aspect ratio given in width
/ height. The cropping operation is stopped once the desired aspect ratio is reached or the image side to
crop reaches a size of 1. If any side of the image starts with a size of 0, the image will not be changed.

Added in 0.4.0.

Supported dtypes:

1026 Chapter 13. API

imgaug Documentation, Release 0.3.0

See CropToFixedSize.

Parameters

• aspect_ratio (number) – The desired aspect ratio, given as width/height. E.g. a ratio
of 2.0 denotes an image that is twice as wide as it is high.

• position ({‘uniform’, ‘normal’, ‘center’, ‘left-top’, ‘left-center’, ‘left-bottom’, ‘center-
top’, ‘center-center’, ‘center-bottom’, ‘right-top’, ‘right-center’, ‘right-bottom’} or tu-
ple of float or StochasticParameter or tuple of StochasticParameter, optional) – See
CropToFixedSize.__init__().

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.CropToAspectRatio(2.0)

Create an augmenter that crops each image until its aspect ratio is as close as possible to 2.0 (i.e. two times as
many pixels along the x-axis than the y-axis). The rows to be cropped will be spread randomly over the top and
bottom sides (analogous for the left/right sides).

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

Continued on next page

13.35. imgaug.augmenters.size 1027

imgaug Documentation, Release 0.3.0

Table 237 – continued from previous page
augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

get_parameters(self)
See get_parameters().

class imgaug.augmenters.size.CropToFixedSize(width, height, position=’uniform’,
seed=None, name=None, ran-
dom_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.meta.Augmenter

Crop images down to a predefined maximum width and/or height.

If images are already at the maximum width/height or are smaller, they will not be cropped. Note that this also
means that images will not be padded if they are below the required width/height.

The augmenter randomly decides per image how to distribute the required cropping amounts over the image axis.
E.g. if 2px have to be cropped on the left or right to reach the required width, the augmenter will sometimes

1028 Chapter 13. API

imgaug Documentation, Release 0.3.0

remove 2px from the left and 0px from the right, sometimes remove 2px from the right and 0px from the left
and sometimes remove 1px from both sides. Set position to center to prevent that.

Supported dtypes:

• uint8: yes; fully tested

• uint16: yes; tested

• uint32: yes; tested

• uint64: yes; tested

• int8: yes; tested

• int16: yes; tested

• int32: yes; tested

• int64: yes; tested

• float16: yes; tested

• float32: yes; tested

• float64: yes; tested

• float128: yes; tested

• bool: yes; tested

Parameters

• width (int or None) – Crop images down to this maximum width. If None, image widths
will not be altered.

• height (int or None) – Crop images down to this maximum height. If None, image heights
will not be altered.

• position ({‘uniform’, ‘normal’, ‘center’, ‘left-top’, ‘left-center’, ‘left-bottom’, ‘center-top’,
‘center-center’, ‘center-bottom’, ‘right-top’, ‘right-center’, ‘right-bottom’} or tuple of float
or StochasticParameter or tuple of StochasticParameter, optional) – Sets the center point of
the cropping, which determines how the required cropping amounts are distributed to each
side. For a tuple (a, b), both a and b are expected to be in range [0.0, 1.0] and
describe the fraction of cropping applied to the left/right (low/high values for a) and the
fraction of cropping applied to the top/bottom (low/high values for b). A cropping position
at (0.5, 0.5) would be the center of the image and distribute the cropping equally over
all sides. A cropping position at (1.0, 0.0) would be the right-top and would apply
100% of the required cropping to the right and top sides of the image.

– If string uniform then the share of cropping is randomly and uniformly distributed over
each side. Equivalent to (Uniform(0.0, 1.0), Uniform(0.0, 1.0)).

– If string normal then the share of cropping is distributed based on a normal distribution,
leading to a focus on the center of the images. Equivalent to (Clip(Normal(0.5,
0.45/2), 0, 1), Clip(Normal(0.5, 0.45/2), 0, 1)).

– If string center then center point of the cropping is identical to the image center. Equiv-
alent to (0.5, 0.5).

– If a string matching regex ^(left|center|right)-(top|center|bottom)$,
e.g. left-top or center-bottom then sets the center point of the cropping to the
X-Y position matching that description.

13.35. imgaug.augmenters.size 1029

imgaug Documentation, Release 0.3.0

– If a tuple of float, then expected to have exactly two entries between 0.0 and 1.0, which
will always be used as the combination the position matching (x, y) form.

– If a StochasticParameter, then that parameter will be queried once per call to
augment_*() to get Nx2 center positions in (x, y) form (with N the number of
images).

– If a tuple of StochasticParameter, then expected to have exactly two entries that
will both be queried per call to augment_*(), each for (N,) values, to get the center
positions. First parameter is used for x coordinates, second for y coordinates.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.CropToFixedSize(width=100, height=100)

For image sides larger than 100 pixels, crop to 100 pixels. Do nothing for the other sides. The cropping
amounts are randomly (and uniformly) distributed over the sides of the image.

>>> aug = iaa.CropToFixedSize(width=100, height=100, position="center")

For sides larger than 100 pixels, crop to 100 pixels. Do nothing for the other sides. The cropping amounts are
always equally distributed over the left/right sides of the image (and analogously for top/bottom).

>>> aug = iaa.Sequential([
>>> iaa.PadToFixedSize(width=100, height=100),
>>> iaa.CropToFixedSize(width=100, height=100)
>>>])

Pad images smaller than 100x100 until they reach 100x100. Analogously, crop images larger than 100x100
until they reach 100x100. The output images therefore have a fixed size of 100x100.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.

Continued on next page

1030 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 238 – continued from previous page
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

get_parameters(self)
See get_parameters().

13.35. imgaug.augmenters.size 1031

imgaug Documentation, Release 0.3.0

class imgaug.augmenters.size.CropToMultiplesOf(width_multiple, height_multiple,
position=’uniform’,
seed=None, name=None, ran-
dom_state=’deprecated’, determin-
istic=’deprecated’)

Bases: imgaug.augmenters.size.CropToFixedSize

Crop images down until their height/width is a multiple of a value.

Note: For a given axis size A and multiple M, if A is in the interval [0 .. M], the axis will not be changed.
As a result, this augmenter can still produce axis sizes that are not multiples of the given values.

Added in 0.4.0.

Supported dtypes:

See CropToFixedSize.

Parameters

• width_multiple (int or None) – Multiple for the width. Images will be cropped down until
their width is a multiple of this value. If None, image widths will not be altered.

• height_multiple (int or None) – Multiple for the height. Images will be cropped down until
their height is a multiple of this value. If None, image heights will not be altered.

• position ({‘uniform’, ‘normal’, ‘center’, ‘left-top’, ‘left-center’, ‘left-bottom’, ‘center-
top’, ‘center-center’, ‘center-bottom’, ‘right-top’, ‘right-center’, ‘right-bottom’} or tu-
ple of float or StochasticParameter or tuple of StochasticParameter, optional) – See
CropToFixedSize.__init__().

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.CropToMultiplesOf(height_multiple=10, width_multiple=6)

Create an augmenter that crops images to multiples of 10 along the y-axis (i.e. 10, 20, 30, . . .) and to multiples
of 6 along the x-axis (i.e. 6, 12, 18, . . .). The rows to be cropped will be spread randomly over the top and
bottom sides (analogous for the left/right sides).

1032 Chapter 13. API

imgaug Documentation, Release 0.3.0

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.

Continued on next page

13.35. imgaug.augmenters.size 1033

imgaug Documentation, Release 0.3.0

Table 239 – continued from previous page
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

get_parameters(self)
See get_parameters().

class imgaug.augmenters.size.CropToPowersOf(width_base, height_base, posi-
tion=’uniform’, seed=None, name=None,
random_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.size.CropToFixedSize

Crop images until their height/width is a power of a base.

This augmenter removes pixels from an axis with size S leading to the new size S' until S' = B^E is fulfilled,
where B is a provided base (e.g. 2) and E is an exponent from the discrete interval [1 .. inf).

Note: This augmenter does nothing for axes with size less than B^1 = B. If you have images with S < B^1,
it is recommended to combine this augmenter with a padding augmenter that pads each axis up to B.

Added in 0.4.0.

Supported dtypes:

See CropToFixedSize.

Parameters

• width_base (int or None) – Base for the width. Images will be cropped down until their
width fulfills width' = width_base ^ E with E being any natural number. If None,
image widths will not be altered.

• height_base (int or None) – Base for the height. Images will be cropped down until their
height fulfills height' = height_base ^ E with E being any natural number. If
None, image heights will not be altered.

• position ({‘uniform’, ‘normal’, ‘center’, ‘left-top’, ‘left-center’, ‘left-bottom’, ‘center-
top’, ‘center-center’, ‘center-bottom’, ‘right-top’, ‘right-center’, ‘right-bottom’} or tu-
ple of float or StochasticParameter or tuple of StochasticParameter, optional) – See
CropToFixedSize.__init__().

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

1034 Chapter 13. API

imgaug Documentation, Release 0.3.0

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.CropToPowersOf(height_base=3, width_base=2)

Create an augmenter that crops each image down to powers of 3 along the y-axis (i.e. 3, 9, 27, . . .) and powers
of 2 along the x-axis (i.e. 2, 4, 8, 16, . . .). The rows to be cropped will be spread randomly over the top and
bottom sides (analogous for the left/right sides).

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
Continued on next page

13.35. imgaug.augmenters.size 1035

imgaug Documentation, Release 0.3.0

Table 240 – continued from previous page
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

get_parameters(self)
See get_parameters().

class imgaug.augmenters.size.CropToSquare(position=’uniform’, seed=None, name=None,
random_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.size.CropToAspectRatio

Crop images until their width and height are identical.

This is identical to CropToAspectRatio with aspect_ratio=1.0.

Images with axis sizes of 0 will not be altered.

Added in 0.4.0.

Supported dtypes:

See CropToFixedSize.

Parameters

• position ({‘uniform’, ‘normal’, ‘center’, ‘left-top’, ‘left-center’, ‘left-bottom’, ‘center-
top’, ‘center-center’, ‘center-bottom’, ‘right-top’, ‘right-center’, ‘right-bottom’} or tu-
ple of float or StochasticParameter or tuple of StochasticParameter, optional) – See
CropToFixedSize.__init__().

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

1036 Chapter 13. API

imgaug Documentation, Release 0.3.0

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.CropToSquare()

Create an augmenter that crops each image until its square, i.e. height and width match. The rows to be cropped
will be spread randomly over the top and bottom sides (analogous for the left/right sides).

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.

Continued on next page

13.35. imgaug.augmenters.size 1037

imgaug Documentation, Release 0.3.0

Table 241 – continued from previous page
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.size.KeepSizeByResize(children, interpolation=’cubic’, interpo-
lation_heatmaps=’SAME_AS_IMAGES’,
interpolation_segmaps=’nearest’,
seed=None, name=None, ran-
dom_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.meta.Augmenter

Resize images back to their input sizes after applying child augmenters.

Combining this with e.g. a cropping augmenter as the child will lead to images being resized back to the
input size after the crop operation was applied. Some augmenters have a keep_size argument that achieves
the same goal (if set to True), though this augmenter offers control over the interpolation mode and which
augmentables to resize (images, heatmaps, segmentation maps).

Supported dtypes:

See imresize_many_images().

Parameters

• children (Augmenter or list of imgaug.augmenters.meta.Augmenter or None, optional) –
One or more augmenters to apply to images. These augmenters may change the image size.

• interpolation (KeepSizeByResize.NO_RESIZE or {‘nearest’, ‘linear’, ‘area’, ‘cubic’} or
{cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_AREA, cv2.INTER_CUBIC} or
list of str or list of int or StochasticParameter, optional) – The interpolation mode to use
when resizing images. Can take any value that imresize_single_image() accepts,
e.g. cubic.

– If this is KeepSizeByResize.NO_RESIZE then images will not be resized.

– If this is a single str, it is expected to have one of the following values: nearest,
linear, area, cubic.

– If this is a single integer, it is expected to have a value identical to one
of: cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_AREA, cv2.
INTER_CUBIC.

– If this is a list of str or int, it is expected that each str/int is one of the above
mentioned valid ones. A random one of these values will be sampled per image.

– If this is a StochasticParameter, it will be queried once per call to
_augment_images() and must return N str s or int s (matching the above men-
tioned ones) for N images.

1038 Chapter 13. API

imgaug Documentation, Release 0.3.0

• interpolation_heatmaps (KeepSizeByResize.SAME_AS_IMAGES or KeepSizeByRe-
size.NO_RESIZE or {‘nearest’, ‘linear’, ‘area’, ‘cubic’} or {cv2.INTER_NEAREST,
cv2.INTER_LINEAR, cv2.INTER_AREA, cv2.INTER_CUBIC} or list of str or list of int or
StochasticParameter, optional) – The interpolation mode to use when resizing heatmaps.
Meaning and valid values are similar to interpolation. This parameter may also take
the value KeepSizeByResize.SAME_AS_IMAGES, which will lead to copying the
interpolation modes used for the corresponding images. The value may also be returned on
a per-image basis if interpolation_heatmaps is provided as a StochasticParameter
or may be one possible value if it is provided as a list of str.

• interpolation_segmaps (KeepSizeByResize.SAME_AS_IMAGES or KeepSizeByRe-
size.NO_RESIZE or {‘nearest’, ‘linear’, ‘area’, ‘cubic’} or {cv2.INTER_NEAREST,
cv2.INTER_LINEAR, cv2.INTER_AREA, cv2.INTER_CUBIC} or list of str or list of
int or StochasticParameter, optional) – The interpolation mode to use when resizing
segmentation maps. Similar to interpolation_heatmaps. Note: For segmentation maps,
only NO_RESIZE or nearest neighbour interpolation (i.e. nearest) make sense in the
vast majority of all cases.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.KeepSizeByResize(
>>> iaa.Crop((20, 40), keep_size=False)
>>>)

Apply random cropping to input images, then resize them back to their original input sizes. The resizing is done
using this augmenter instead of the corresponding internal resizing operation in Crop.

>>> aug = iaa.KeepSizeByResize(
>>> iaa.Crop((20, 40), keep_size=False),
>>> interpolation="nearest"
>>>)

Same as in the previous example, but images are now always resized using nearest neighbour interpolation.

>>> aug = iaa.KeepSizeByResize(
>>> iaa.Crop((20, 40), keep_size=False),
>>> interpolation=["nearest", "cubic"],
>>> interpolation_heatmaps=iaa.KeepSizeByResize.SAME_AS_IMAGES,
>>> interpolation_segmaps=iaa.KeepSizeByResize.NO_RESIZE
>>>)

13.35. imgaug.augmenters.size 1039

imgaug Documentation, Release 0.3.0

Similar to the previous example, but images are now sometimes resized using linear interpolation and sometimes
using nearest neighbour interpolation. Heatmaps are resized using the same interpolation as was used for the
corresponding image. Segmentation maps are not resized and will therefore remain at their size after cropping.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) See get_children_lists().
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
Continued on next page

1040 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 242 – continued from previous page
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

NO_RESIZE = 'NO_RESIZE'

SAME_AS_IMAGES = 'SAME_AS_IMAGES'

get_children_lists(self)
See get_children_lists().

get_parameters(self)
See get_parameters().

class imgaug.augmenters.size.Pad(px=None, percent=None, pad_mode=’constant’,
pad_cval=0, keep_size=True, sample_independently=True,
seed=None, name=None, random_state=’deprecated’,
deterministic=’deprecated’)

Bases: imgaug.augmenters.size.CropAndPad

Pad images, i.e. adds columns/rows of pixels to them.

Supported dtypes:

See CropAndPad.

Parameters

• px (None or int or imgaug.parameters.StochasticParameter or tuple, optional) – The num-
ber of pixels to pad on each side of the image. Expected value range is [0, inf). Either
this or the parameter percent may be set, not both at the same time.

– If None, then pixel-based padding will not be used.

– If int, then that exact number of pixels will always be padded.

– If StochasticParameter, then that parameter will be used for each image. Four
samples will be drawn per image (top, right, bottom, left), unless sample_independently
is set to False, as then only one value will be sampled per image and used for all sides.

– If a tuple of two int s with values a and b, then each side will be padded by a random
amount sampled uniformly per image and side from the inteval [a, b]. If however
sample_independently is set to False, only one value will be sampled per image and
used for all sides.

– If a tuple of four entries, then the entries represent top, right, bottom, left. Each entry
may be a single int (always pad by exactly that value), a tuple of two int s a and
b (pad by an amount within [a, b]), a list of int s (pad by a random value that is
contained in the list) or a StochasticParameter (sample the amount to pad from
that parameter).

• percent (None or int or float or imgaug.parameters.StochasticParameter or tuple, optional)
– The number of pixels to pad on each side of the image given as a fraction of the image
height/width. E.g. if this is set to 0.1, the augmenter will always pad 10% of the image’s
height at both the top and the bottom (both 10% each), as well as 10% of the width at the

13.35. imgaug.augmenters.size 1041

imgaug Documentation, Release 0.3.0

right and left. Expected value range is [0.0, inf). Either this or the parameter px may
be set, not both at the same time.

– If None, then fraction-based padding will not be used.

– If number, then that fraction will always be padded.

– If StochasticParameter, then that parameter will be used for each image.
Four samples will be drawn per image (top, right, bottom, left). If however sam-
ple_independently is set to False, only one value will be sampled per image and used
for all sides.

– If a tuple of two float s with values a and b, then each side will be padded by
a random fraction sampled uniformly per image and side from the interval [a, b].
If however sample_independently is set to False, only one value will be sampled per
image and used for all sides.

– If a tuple of four entries, then the entries represent top, right, bottom, left. Each entry
may be a single float (always pad by exactly that fraction), a tuple of two float s
a and b (pad by a fraction from [a, b]), a list of float s (pad by a random value
that is contained in the list) or a StochasticParameter (sample the percentage to
pad from that parameter).

• pad_mode (imgaug.ALL or str or list of str or imgaug.parameters.StochasticParameter, op-
tional) – Padding mode to use. The available modes match the numpy padding modes,
i.e. constant, edge, linear_ramp, maximum, median, minimum, reflect,
symmetric, wrap. The modes constant and linear_ramp use extra values, which
are provided by pad_cval when necessary. See pad() for more details.

– If imgaug.ALL, then a random mode from all available modes will be sampled per
image.

– If a str, it will be used as the pad mode for all images.

– If a list of str, a random one of these will be sampled per image and used as the
mode.

– If StochasticParameter, a random mode will be sampled from this parameter per
image.

• pad_cval (number or tuple of number list of number or im-
gaug.parameters.StochasticParameter, optional) – The constant value to use if the
pad mode is constant or the end value to use if the mode is linear_ramp. See pad()
for more details.

– If number, then that value will be used.

– If a tuple of two number s and at least one of them is a float, then a random number
will be uniformly sampled per image from the continuous interval [a, b] and used as
the value. If both number s are int s, the interval is discrete.

– If a list of number, then a random value will be chosen from the elements of the list
and used as the value.

– If StochasticParameter, a random value will be sampled from that parameter per
image.

• keep_size (bool, optional) – After padding, the result image will usually have a different
height/width compared to the original input image. If this parameter is set to True, then
the padded image will be resized to the input image’s size, i.e. the augmenter’s output shape
is always identical to the input shape.

1042 Chapter 13. API

imgaug Documentation, Release 0.3.0

• sample_independently (bool, optional) – If False and the values for px/percent result in
exactly one probability distribution for all image sides, only one single value will be sampled
from that probability distribution and used for all sides. I.e. the pad amount then is the same
for all sides. If True, four values will be sampled independently, one per side.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Pad(px=(0, 10))

Pad each side by a random pixel value sampled uniformly per image and side from the discrete interval [0..
10]. The padding happens by zero-padding, i.e. it adds black pixels (default setting).

>>> aug = iaa.Pad(px=(0, 10), pad_mode="edge")

Pad each side by a random pixel value sampled uniformly per image and side from the discrete interval [0..
10]. The padding uses the edge mode from numpy’s pad function, i.e. the pixel colors around the image sides
are repeated.

>>> aug = iaa.Pad(px=(0, 10), pad_mode=["constant", "edge"])

Similar to the previous example, but uses zero-padding (constant) for half of the images and edge padding
for the other half.

>>> aug = iaa.Pad(px=(0, 10), pad_mode=ia.ALL, pad_cval=(0, 255))

Similar to the previous example, but uses any available padding mode. In case the padding mode ends up being
constant or linear_ramp, and random intensity is uniformly sampled (once per image) from the discrete
interval [0..255] and used as the intensity of the new pixels.

>>> aug = iaa.Pad(px=(0, 10), sample_independently=False)

Pad each side by a random pixel value sampled uniformly once per image from the discrete interval [0..10].
Each sampled value is used for all sides of the corresponding image.

>>> aug = iaa.Pad(px=(0, 10), keep_size=False)

Pad each side by a random pixel value sampled uniformly per image and side from the discrete interval [0..
10]. Afterwards, do not resize the padded image back to the input image’s size. This will increase the image’s
height and width by a maximum of 20 pixels.

13.35. imgaug.augmenters.size 1043

imgaug Documentation, Release 0.3.0

>>> aug = iaa.Pad(px=((0, 10), (0, 5), (0, 10), (0, 5)))

Pad the top and bottom by a random pixel value sampled uniformly from the discrete interval [0..10]. Pad
the left and right analogously by a random value sampled from [0..5]. Each value is always sampled inde-
pendently.

>>> aug = iaa.Pad(percent=(0, 0.1))

Pad each side by a random fraction sampled uniformly from the continuous interval [0.0, 0.10]. The
fraction is sampled once per image and side. E.g. a sampled fraction of 0.1 for the top side would pad by
0.1*H, where H is the height of the input image.

>>> aug = iaa.Pad(
>>> percent=([0.05, 0.1], [0.05, 0.1], [0.05, 0.1], [0.05, 0.1]))

Pads each side by either 5% or 10%. The values are sampled once per side and image.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

Continued on next page

1044 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 243 – continued from previous page
get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.size.PadToAspectRatio(aspect_ratio, pad_mode=’constant’,
pad_cval=0, position=’uniform’,
seed=None, name=None, ran-
dom_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.size.PadToFixedSize

Pad images until their width/height matches an aspect ratio.

This augmenter adds either rows or columns until the image reaches the desired aspect ratio given in width /
height.

Added in 0.4.0.

Supported dtypes:

See PadToFixedSize.

Parameters

• aspect_ratio (number) – The desired aspect ratio, given as width/height. E.g. a ratio
of 2.0 denotes an image that is twice as wide as it is high.

• position ({‘uniform’, ‘normal’, ‘center’, ‘left-top’, ‘left-center’, ‘left-bottom’, ‘center-
top’, ‘center-center’, ‘center-bottom’, ‘right-top’, ‘right-center’, ‘right-bottom’} or tu-
ple of float or StochasticParameter or tuple of StochasticParameter, optional) – See
PadToFixedSize.__init__().

• pad_mode (imgaug.ALL or str or list of str or imgaug.parameters.StochasticParameter,
optional) – See __init__().

• pad_cval (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – See __init__().

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

13.35. imgaug.augmenters.size 1045

imgaug Documentation, Release 0.3.0

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.PadToAspectRatio(2.0)

Create an augmenter that pads each image until its aspect ratio is as close as possible to 2.0 (i.e. two times as
many pixels along the x-axis than the y-axis). The rows to be padded will be spread randomly over the top and
bottom sides (analogous for the left/right sides).

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.

Continued on next page

1046 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 244 – continued from previous page
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

get_parameters(self)
See get_parameters().

class imgaug.augmenters.size.PadToFixedSize(width, height, pad_mode=’constant’,
pad_cval=0, position=’uniform’,
seed=None, name=None, ran-
dom_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.meta.Augmenter

Pad images to a predefined minimum width and/or height.

If images are already at the minimum width/height or are larger, they will not be padded. Note that this also
means that images will not be cropped if they exceed the required width/height.

The augmenter randomly decides per image how to distribute the required padding amounts over the image axis.
E.g. if 2px have to be padded on the left or right to reach the required width, the augmenter will sometimes add
2px to the left and 0px to the right, sometimes add 2px to the right and 0px to the left and sometimes add 1px to
both sides. Set position to center to prevent that.

Supported dtypes:

See pad().

Parameters

• width (int or None) – Pad images up to this minimum width. If None, image widths will
not be altered.

• height (int or None) – Pad images up to this minimum height. If None, image heights will
not be altered.

13.35. imgaug.augmenters.size 1047

imgaug Documentation, Release 0.3.0

• pad_mode (imgaug.ALL or str or list of str or imgaug.parameters.StochasticParameter,
optional) – See __init__().

• pad_cval (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – See __init__().

• position ({‘uniform’, ‘normal’, ‘center’, ‘left-top’, ‘left-center’, ‘left-bottom’, ‘center-top’,
‘center-center’, ‘center-bottom’, ‘right-top’, ‘right-center’, ‘right-bottom’} or tuple of float
or StochasticParameter or tuple of StochasticParameter, optional) – Sets the center point of
the padding, which determines how the required padding amounts are distributed to each
side. For a tuple (a, b), both a and b are expected to be in range [0.0, 1.0] and
describe the fraction of padding applied to the left/right (low/high values for a) and the
fraction of padding applied to the top/bottom (low/high values for b). A padding position
at (0.5, 0.5) would be the center of the image and distribute the padding equally to
all sides. A padding position at (0.0, 1.0) would be the left-bottom and would apply
100% of the required padding to the bottom and left sides of the image so that the bottom left
corner becomes more and more the new image center (depending on how much is padded).

– If string uniform then the share of padding is randomly and uniformly distributed over
each side. Equivalent to (Uniform(0.0, 1.0), Uniform(0.0, 1.0)).

– If string normal then the share of padding is distributed based on a normal distribution,
leading to a focus on the center of the images. Equivalent to (Clip(Normal(0.5,
0.45/2), 0, 1), Clip(Normal(0.5, 0.45/2), 0, 1)).

– If string center then center point of the padding is identical to the image center. Equiv-
alent to (0.5, 0.5).

– If a string matching regex ^(left|center|right)-(top|center|bottom)$,
e.g. left-top or center-bottom then sets the center point of the padding to the
X-Y position matching that description.

– If a tuple of float, then expected to have exactly two entries between 0.0 and 1.0, which
will always be used as the combination the position matching (x, y) form.

– If a StochasticParameter, then that parameter will be queried once per call to
augment_*() to get Nx2 center positions in (x, y) form (with N the number of
images).

– If a tuple of StochasticParameter, then expected to have exactly two entries that
will both be queried per call to augment_*(), each for (N,) values, to get the center
positions. First parameter is used for x coordinates, second for y coordinates.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

1048 Chapter 13. API

imgaug Documentation, Release 0.3.0

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.PadToFixedSize(width=100, height=100)

For image sides smaller than 100 pixels, pad to 100 pixels. Do nothing for the other edges. The padding is
randomly (uniformly) distributed over the sides, so that e.g. sometimes most of the required padding is applied
to the left, sometimes to the right (analogous top/bottom).

>>> aug = iaa.PadToFixedSize(width=100, height=100, position="center")

For image sides smaller than 100 pixels, pad to 100 pixels. Do nothing for the other image sides. The padding
is always equally distributed over the left/right and top/bottom sides.

>>> aug = iaa.PadToFixedSize(width=100, height=100, pad_mode=ia.ALL)

For image sides smaller than 100 pixels, pad to 100 pixels and use any possible padding mode for that. Do
nothing for the other image sides. The padding is always equally distributed over the left/right and top/bottom
sides.

>>> aug = iaa.Sequential([
>>> iaa.PadToFixedSize(width=100, height=100),
>>> iaa.CropToFixedSize(width=100, height=100)
>>>])

Pad images smaller than 100x100 until they reach 100x100. Analogously, crop images larger than 100x100
until they reach 100x100. The output images therefore have a fixed size of 100x100.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

Continued on next page

13.35. imgaug.augmenters.size 1049

imgaug Documentation, Release 0.3.0

Table 245 – continued from previous page
copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence

(in-place).
deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

get_parameters(self)
See get_parameters().

class imgaug.augmenters.size.PadToMultiplesOf(width_multiple, height_multiple,
pad_mode=’constant’, pad_cval=0, posi-
tion=’uniform’, seed=None, name=None,
random_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.size.PadToFixedSize

Pad images until their height/width is a multiple of a value.

Added in 0.4.0.

Supported dtypes:

See PadToFixedSize.

Parameters

• width_multiple (int or None) – Multiple for the width. Images will be padded until their
width is a multiple of this value. If None, image widths will not be altered.

• height_multiple (int or None) – Multiple for the height. Images will be padded until their
height is a multiple of this value. If None, image heights will not be altered.

1050 Chapter 13. API

imgaug Documentation, Release 0.3.0

• pad_mode (imgaug.ALL or str or list of str or imgaug.parameters.StochasticParameter,
optional) – See __init__().

• pad_cval (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – See __init__().

• position ({‘uniform’, ‘normal’, ‘center’, ‘left-top’, ‘left-center’, ‘left-bottom’, ‘center-
top’, ‘center-center’, ‘center-bottom’, ‘right-top’, ‘right-center’, ‘right-bottom’} or tu-
ple of float or StochasticParameter or tuple of StochasticParameter, optional) – See
PadToFixedSize.__init__().

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.PadToMultiplesOf(height_multiple=10, width_multiple=6)

Create an augmenter that pads images to multiples of 10 along the y-axis (i.e. 10, 20, 30, . . .) and to multiples
of 6 along the x-axis (i.e. 6, 12, 18, . . .). The rows to be padded will be spread randomly over the top and
bottom sides (analogous for the left/right sides).

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

Continued on next page

13.35. imgaug.augmenters.size 1051

imgaug Documentation, Release 0.3.0

Table 246 – continued from previous page
augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

get_parameters(self)
See get_parameters().

class imgaug.augmenters.size.PadToPowersOf(width_base, height_base,
pad_mode=’constant’, pad_cval=0, posi-
tion=’uniform’, seed=None, name=None,
random_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.size.PadToFixedSize

Pad images until their height/width is a power of a base.

This augmenter adds pixels to an axis with size S leading to the new size S' until S' = B^E is fulfilled, where
B is a provided base (e.g. 2) and E is an exponent from the discrete interval [1 .. inf).

Added in 0.4.0.

1052 Chapter 13. API

imgaug Documentation, Release 0.3.0

Supported dtypes:

See PadToFixedSize.

Parameters

• width_base (int or None) – Base for the width. Images will be padded down until their
width fulfills width' = width_base ^ E with E being any natural number. If None,
image widths will not be altered.

• height_base (int or None) – Base for the height. Images will be padded until their height
fulfills height' = height_base ^ E with E being any natural number. If None,
image heights will not be altered.

• pad_mode (imgaug.ALL or str or list of str or imgaug.parameters.StochasticParameter,
optional) – See __init__().

• pad_cval (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – See __init__().

• position ({‘uniform’, ‘normal’, ‘center’, ‘left-top’, ‘left-center’, ‘left-bottom’, ‘center-
top’, ‘center-center’, ‘center-bottom’, ‘right-top’, ‘right-center’, ‘right-bottom’} or tu-
ple of float or StochasticParameter or tuple of StochasticParameter, optional) – See
PadToFixedSize.__init__().

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.PadToPowersOf(height_base=3, width_base=2)

Create an augmenter that pads each image to powers of 3 along the y-axis (i.e. 3, 9, 27, . . .) and powers of 2
along the x-axis (i.e. 2, 4, 8, 16, . . .). The rows to be padded will be spread randomly over the top and bottom
sides (analogous for the left/right sides).

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.

Continued on next page

13.35. imgaug.augmenters.size 1053

imgaug Documentation, Release 0.3.0

Table 247 – continued from previous page
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

get_parameters(self)
See get_parameters().

1054 Chapter 13. API

imgaug Documentation, Release 0.3.0

class imgaug.augmenters.size.PadToSquare(pad_mode=’constant’, pad_cval=0, posi-
tion=’uniform’, seed=None, name=None,
random_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.size.PadToAspectRatio

Pad images until their height and width are identical.

This augmenter is identical to PadToAspectRatio with aspect_ratio=1.0.

Added in 0.4.0.

Supported dtypes:

See PadToFixedSize.

Parameters

• position ({‘uniform’, ‘normal’, ‘center’, ‘left-top’, ‘left-center’, ‘left-bottom’, ‘center-
top’, ‘center-center’, ‘center-bottom’, ‘right-top’, ‘right-center’, ‘right-bottom’} or tu-
ple of float or StochasticParameter or tuple of StochasticParameter, optional) – See
PadToFixedSize.__init__().

• pad_mode (imgaug.ALL or str or list of str or imgaug.parameters.StochasticParameter,
optional) – See __init__().

• pad_cval (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – See __init__().

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.PadToSquare()

Create an augmenter that pads each image until its square, i.e. height and width match. The rows to be padded
will be spread randomly over the top and bottom sides (analogous for the left/right sides).

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.

Continued on next page

13.35. imgaug.augmenters.size 1055

imgaug Documentation, Release 0.3.0

Table 248 – continued from previous page
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

1056 Chapter 13. API

imgaug Documentation, Release 0.3.0

class imgaug.augmenters.size.Resize(size, interpolation=’cubic’, seed=None,
name=None, random_state=’deprecated’, determin-
istic=’deprecated’)

Bases: imgaug.augmenters.meta.Augmenter

Augmenter that resizes images to specified heights and widths.

Supported dtypes:

See imresize_many_images().

Parameters

• size (‘keep’ or int or float or tuple of int or tuple of float or list of int or list of float or
imgaug.parameters.StochasticParameter or dict) –

The new size of the images.

– If this has the string value keep, the original height and width values will be kept (image
is not resized).

– If this is an int, this value will always be used as the new height and width of the images.

– If this is a float v, then per image the image’s height H and width W will be changed to
H*v and W*v.

– If this is a tuple, it is expected to have two entries (a, b). If at least one of these are
float s, a value will be sampled from range [a, b] and used as the float value to
resize the image (see above). If both are int s, a value will be sampled from the discrete
range [a..b] and used as the integer value to resize the image (see above).

– If this is a list, a random value from the list will be picked to resize the image. All
values in the list must be int s or float s (no mixture is possible).

– If this is a StochasticParameter, then this parameter will first be queried once per
image. The resulting value will be used for both height and width.

– If this is a dict, it may contain the keys height and width or the keys
shorter-side and longer-side. Each key may have the same datatypes as above
and describes the scaling on x and y-axis or the shorter and longer axis, respectively.
Both axis are sampled independently. Additionally, one of the keys may have the value
keep-aspect-ratio, which means that the respective side of the image will be re-
sized so that the original aspect ratio is kept. This is useful when only resizing one image
size by a pixel value (e.g. resize images to a height of 64 pixels and resize the width so
that the overall aspect ratio is maintained).

• interpolation (imgaug.ALL or int or str or list of int or list of str or im-
gaug.parameters.StochasticParameter, optional) –

Interpolation to use.

– If imgaug.ALL, then a random interpolation from nearest, linear, area or
cubic will be picked (per image).

– If int, then this interpolation will always be used. Expected to be any of the fol-
lowing: cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_AREA, cv2.
INTER_CUBIC

– If string, then this interpolation will always be used. Expected to be any of the following:
nearest, linear, area, cubic

– If list of int / str, then a random one of the values will be picked per image as the
interpolation.

13.35. imgaug.augmenters.size 1057

imgaug Documentation, Release 0.3.0

– If a StochasticParameter, then this parameter will be queried per image and is
expected to return an int or str.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Resize(32)

Resize all images to 32x32 pixels.

>>> aug = iaa.Resize(0.5)

Resize all images to 50 percent of their original size.

>>> aug = iaa.Resize((16, 22))

Resize all images to a random height and width within the discrete interval [16..22] (uniformly sampled per
image).

>>> aug = iaa.Resize((0.5, 0.75))

Resize all any input image so that its height (H) and width (W) become H*v and W*v, where v is uniformly
sampled from the interval [0.5, 0.75].

>>> aug = iaa.Resize([16, 32, 64])

Resize all images either to 16x16, 32x32 or 64x64 pixels.

>>> aug = iaa.Resize({"height": 32})

Resize all images to a height of 32 pixels and keeps the original width.

>>> aug = iaa.Resize({"height": 32, "width": 48})

Resize all images to a height of 32 pixels and a width of 48.

>>> aug = iaa.Resize({"height": 32, "width": "keep-aspect-ratio"})

Resize all images to a height of 32 pixels and resizes the x-axis (width) so that the aspect ratio is maintained.

1058 Chapter 13. API

imgaug Documentation, Release 0.3.0

>>> aug = iaa.Resize(
>>> {"shorter-side": 224, "longer-side": "keep-aspect-ratio"})

Resize all images to a height/width of 224 pixels, depending on which axis is shorter and resize the other axis
so that the aspect ratio is maintained.

>>> aug = iaa.Resize({"height": (0.5, 0.75), "width": [16, 32, 64]})

Resize all images to a height of H*v, where H is the original height and v is a random value sampled from the
interval [0.5, 0.75]. The width/x-axis of each image is resized to either 16 or 32 or 64 pixels.

>>> aug = iaa.Resize(32, interpolation=["linear", "cubic"])

Resize all images to 32x32 pixels. Randomly use either linear or cubic interpolation.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.

Continued on next page

13.35. imgaug.augmenters.size 1059

imgaug Documentation, Release 0.3.0

Table 249 – continued from previous page
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

get_parameters(self)
See get_parameters().

imgaug.augmenters.size.Scale(*args, **kwargs)
Deprecated. Use Resize instead. Resize has the exactly same interface as Scale.

Augmenter that resizes images to specified heights and widths.

imgaug.augmenters.size.compute_croppings_to_reach_aspect_ratio(arr, as-
pect_ratio)

Compute crop amounts required to fulfill an aspect ratio.

“Crop amounts” here denotes the number of pixels that have to be removed from each side to fulfill the desired
constraint.

The aspect ratio is given as ratio = width / height. Depending on which dimension is smaller (height
or width), only the corresponding sides (top/bottom or left/right) will be cropped.

The axis-wise padding amounts are always distributed equally over the sides of the respective axis (i.e. left and
right, top and bottom). For odd pixel amounts, one pixel will be left over after the equal distribution and could
be added to either side of the axis. This function will always add such a left over pixel to the bottom (y-axis) or
right (x-axis) side.

If an aspect ratio cannot be reached exactly, this function will return rather one pixel too few than one pixel too
many.

Added in 0.4.0.

Parameters

• arr ((H,W) ndarray or (H,W,C) ndarray or tuple of int) – Image-like array or shape tuple
for which to compute crop amounts.

• aspect_ratio (float) – Target aspect ratio, given as width/height. E.g. 2.0 denotes the
image having twice as much width as height.

Returns Required cropping amounts to reach the target aspect ratio, given as a tuple of the form
(top, right, bottom, left).

Return type tuple of int

1060 Chapter 13. API

imgaug Documentation, Release 0.3.0

imgaug.augmenters.size.compute_croppings_to_reach_multiples_of(arr,
height_multiple,
width_multiple)

Compute croppings to reach multiples of given heights/widths.

See compute_paddings_for_aspect_ratio() for an explanation of how the required cropping
amounts are distributed per image axis.

Added in 0.4.0.

Parameters

• arr ((H,W) ndarray or (H,W,C) ndarray or tuple of int) – Image-like array or shape tuple
for which to compute crop amounts.

• height_multiple (None or int) – The desired multiple of the height. The computed crop-
pings will reflect a crop operation that decreases the y axis size until it is a multiple of this
value.

• width_multiple (None or int) – The desired multiple of the width. The computed croppings
amount will reflect a crop operation that decreases the x axis size until it is a multiple of this
value.

Returns Required cropping amounts to reach multiples of the provided values, given as a tuple of
the form (top, right, bottom, left).

Return type tuple of int

imgaug.augmenters.size.compute_croppings_to_reach_powers_of(arr, height_base,
width_base, al-
low_zero_exponent=False)

Compute croppings to reach powers of given base values.

For given axis size S, cropped size S' (S' <= S) and base B this function computes croppings that fulfill S'
= B^E, where E is any exponent from the discrete interval [0 .. inf).

See compute_paddings_for_aspect_ratio() for an explanation of how the required cropping
amounts are distributed per image axis.

Note: For axes where S == 0, this function alwayws returns zeros as croppings.

For axes where 1 <= S < B see parameter allow_zero_exponent.

Added in 0.4.0.

Parameters

• arr ((H,W) ndarray or (H,W,C) ndarray or tuple of int) – Image-like array or shape tuple
for which to compute crop amounts.

• height_base (None or int) – The desired base of the height.

• width_base (None or int) – The desired base of the width.

• allow_zero_exponent (bool) – Whether E=0 in S'=B^E is a valid value. If True, axes
with size 1 <= S < B will be cropped to size B^0=1. If False, axes with sizes S < B
will not be changed.

Returns Required cropping amounts to fulfill S' = B^E given as a tuple of the form (top,
right, bottom, left).

Return type tuple of int

13.35. imgaug.augmenters.size 1061

imgaug Documentation, Release 0.3.0

imgaug.augmenters.size.compute_paddings_to_reach_aspect_ratio(arr, as-
pect_ratio)

Compute pad amounts required to fulfill an aspect ratio.

“Pad amounts” here denotes the number of pixels that have to be added to each side to fulfill the desired con-
straint.

The aspect ratio is given as ratio = width / height. Depending on which dimension is smaller (height
or width), only the corresponding sides (top/bottom or left/right) will be padded.

The axis-wise padding amounts are always distributed equally over the sides of the respective axis (i.e. left and
right, top and bottom). For odd pixel amounts, one pixel will be left over after the equal distribution and could
be added to either side of the axis. This function will always add such a left over pixel to the bottom (y-axis) or
right (x-axis) side.

Added in 0.4.0. (Previously named imgaug.imgaug.compute_paddings_to_reach_aspect_ratio().)

Parameters

• arr ((H,W) ndarray or (H,W,C) ndarray or tuple of int) – Image-like array or shape tuple
for which to compute pad amounts.

• aspect_ratio (float) – Target aspect ratio, given as width/height. E.g. 2.0 denotes the
image having twice as much width as height.

Returns Required padding amounts to reach the target aspect ratio, given as a tuple of the form
(top, right, bottom, left).

Return type tuple of int

imgaug.augmenters.size.compute_paddings_to_reach_multiples_of(arr,
height_multiple,
width_multiple)

Compute pad amounts until img height/width are multiples of given values.

See compute_paddings_for_aspect_ratio() for an explanation of how the required padding
amounts are distributed per image axis.

Added in 0.4.0. (Previously named imgaug.imgaug.compute_paddings_to_reach_multiples_of().)

Parameters

• arr ((H,W) ndarray or (H,W,C) ndarray or tuple of int) – Image-like array or shape tuple
for which to compute pad amounts.

• height_multiple (None or int) – The desired multiple of the height. The computed padding
amount will reflect a padding that increases the y axis size until it is a multiple of this value.

• width_multiple (None or int) – The desired multiple of the width. The computed padding
amount will reflect a padding that increases the x axis size until it is a multiple of this value.

Returns Required padding amounts to reach multiples of the provided values, given as a tuple of
the form (top, right, bottom, left).

Return type tuple of int

imgaug.augmenters.size.compute_paddings_to_reach_powers_of(arr, height_base,
width_base, al-
low_zero_exponent=False)

Compute paddings to reach powers of given base values.

For given axis size S, padded size S' (S' >= S) and base B this function computes paddings that fulfill S' =
B^E, where E is any exponent from the discrete interval [0 .. inf).

1062 Chapter 13. API

imgaug Documentation, Release 0.3.0

See compute_paddings_for_aspect_ratio() for an explanation of how the required padding
amounts are distributed per image axis.

Added in 0.4.0. (Previously named imgaug.imgaug.compute_paddings_to_reach_exponents_of().)

Parameters

• arr ((H,W) ndarray or (H,W,C) ndarray or tuple of int) – Image-like array or shape tuple
for which to compute pad amounts.

• height_base (None or int) – The desired base of the height.

• width_base (None or int) – The desired base of the width.

• allow_zero_exponent (bool, optional) – Whether E=0 in S'=B^E is a valid value. If True,
axes with size 0 or 1 will be padded up to size B^0=1 and axes with size 1 < S <= B
will be padded up to B^1=B. If False, the minimum output axis size is always at least B.

Returns Required padding amounts to fulfill S' = B^E given as a tuple of the form (top,
right, bottom, left).

Return type tuple of int

imgaug.augmenters.size.pad(arr, top=0, right=0, bottom=0, left=0, mode=’constant’, cval=0)
Pad an image-like array on its top/right/bottom/left side.

This function is a wrapper around numpy.pad().

Added in 0.4.0. (Previously named imgaug.imgaug.pad().)

Supported dtypes:

• uint8: yes; fully tested (1)

• uint16: yes; fully tested (1)

• uint32: yes; fully tested (2) (3)

• uint64: yes; fully tested (2) (3)

• int8: yes; fully tested (1)

• int16: yes; fully tested (1)

• int32: yes; fully tested (1)

• int64: yes; fully tested (2) (3)

• float16: yes; fully tested (2) (3)

• float32: yes; fully tested (1)

• float64: yes; fully tested (1)

• float128: yes; fully tested (2) (3)

• bool: yes; tested (2) (3)

• (1) Uses cv2 if mode is one of: "constant", "edge", "reflect", "symmetric".
Otherwise uses numpy.

• (2) Uses numpy.

• (3) Rejected by cv2.

Parameters

• arr ((H,W) ndarray or (H,W,C) ndarray) – Image-like array to pad.

13.35. imgaug.augmenters.size 1063

imgaug Documentation, Release 0.3.0

• top (int, optional) – Amount of pixels to add to the top side of the image. Must be 0 or
greater.

• right (int, optional) – Amount of pixels to add to the right side of the image. Must be 0 or
greater.

• bottom (int, optional) – Amount of pixels to add to the bottom side of the image. Must be
0 or greater.

• left (int, optional) – Amount of pixels to add to the left side of the image. Must be 0 or
greater.

• mode (str, optional) – Padding mode to use. See numpy.pad() for details. In case of
mode constant, the parameter cval will be used as the constant_values parameter
to numpy.pad(). In case of mode linear_ramp, the parameter cval will be used as
the end_values parameter to numpy.pad().

• cval (number or iterable of number, optional) – Value to use for padding if mode is
constant. See numpy.pad() for details. The cval is expected to match the input
array’s dtype and value range. If an iterable is used, it is expected to contain one value per
channel. The number of values and number of channels are expected to match.

Returns Padded array with height H'=H+top+bottom and width W'=W+left+right.

Return type (H’,W’) ndarray or (H’,W’,C) ndarray

imgaug.augmenters.size.pad_to_aspect_ratio(arr, aspect_ratio, mode=’constant’, cval=0,
return_pad_amounts=False)

Pad an image array on its sides so that it matches a target aspect ratio.

See compute_paddings_for_aspect_ratio() for an explanation of how the required padding
amounts are distributed per image axis.

Added in 0.4.0. (Previously named imgaug.imgaug.pad_to_aspect_ratio().)

Supported dtypes:

See pad().

Parameters

• arr ((H,W) ndarray or (H,W,C) ndarray) – Image-like array to pad.

• aspect_ratio (float) – Target aspect ratio, given as width/height. E.g. 2.0 denotes the
image having twice as much width as height.

• mode (str, optional) – Padding mode to use. See pad() for details.

• cval (number, optional) – Value to use for padding if mode is constant. See numpy.
pad() for details.

• return_pad_amounts (bool, optional) – If False, then only the padded image will be
returned. If True, a tuple with two entries will be returned, where the first entry is the
padded image and the second entry are the amounts by which each image side was padded.
These amounts are again a tuple of the form (top, right, bottom, left), with
each value being an int.

Returns

• (H’,W’) ndarray or (H’,W’,C) ndarray – Padded image as (H',W') or (H',W',C) ndar-
ray, fulfilling the given aspect_ratio.

1064 Chapter 13. API

imgaug Documentation, Release 0.3.0

• tuple of int – Amounts by which the image was padded on each side, given as a
tuple (top, right, bottom, left). This tuple is only returned if re-
turn_pad_amounts was set to True.

imgaug.augmenters.size.pad_to_multiples_of(arr, height_multiple, width_multiple,
mode=’constant’, cval=0, re-
turn_pad_amounts=False)

Pad an image array until its side lengths are multiples of given values.

See compute_paddings_for_aspect_ratio() for an explanation of how the required padding
amounts are distributed per image axis.

Added in 0.4.0. (Previously named imgaug.imgaug.pad_to_multiples_of().)

Supported dtypes:

See pad().

Parameters

• arr ((H,W) ndarray or (H,W,C) ndarray) – Image-like array to pad.

• height_multiple (None or int) – The desired multiple of the height. The computed padding
amount will reflect a padding that increases the y axis size until it is a multiple of this value.

• width_multiple (None or int) – The desired multiple of the width. The computed padding
amount will reflect a padding that increases the x axis size until it is a multiple of this value.

• mode (str, optional) – Padding mode to use. See pad() for details.

• cval (number, optional) – Value to use for padding if mode is constant. See numpy.
pad() for details.

• return_pad_amounts (bool, optional) – If False, then only the padded image will be
returned. If True, a tuple with two entries will be returned, where the first entry is the
padded image and the second entry are the amounts by which each image side was padded.
These amounts are again a tuple of the form (top, right, bottom, left), with
each value being an integer.

Returns

• (H’,W’) ndarray or (H’,W’,C) ndarray – Padded image as (H',W') or (H',W',C) ndar-
ray.

• tuple of int – Amounts by which the image was padded on each side, given as a
tuple (top, right, bottom, left). This tuple is only returned if re-
turn_pad_amounts was set to True.

13.36 imgaug.augmenters.weather

Augmenters that create weather effects.

List of augmenters:

• FastSnowyLandscape

• CloudLayer

• Clouds

• Fog

• SnowflakesLayer

13.36. imgaug.augmenters.weather 1065

imgaug Documentation, Release 0.3.0

• Snowflakes

• RainLayer

• Rain

class imgaug.augmenters.weather.CloudLayer(intensity_mean, intensity_freq_exponent,
intensity_coarse_scale, alpha_min, al-
pha_multiplier, alpha_size_px_max,
alpha_freq_exponent, sparsity, den-
sity_multiplier, seed=None, name=None,
random_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.meta.Augmenter

Add a single layer of clouds to an image.

Supported dtypes:

• uint8: yes; indirectly tested (1)

• uint16: no

• uint32: no

• uint64: no

• int8: no

• int16: no

• int32: no

• int64: no

• float16: yes; not tested

• float32: yes; not tested

• float64: yes; not tested

• float128: yes; not tested (2)

• bool: no

• (1) Indirectly tested via tests for Clouds` and Fog

• (2) Note that random values are usually sampled as int64 or float64, which float128
images would exceed. Note also that random values might have to upscaled, which is done
via imresize_many_images() and has its own limited dtype support (includes how-
ever floats up to 64bit).

Parameters

• intensity_mean (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter) – Mean intensity of the clouds (i.e. mean
color). Recommended to be in the interval [190, 255].

– If a number, then that value will always be used.

– If a tuple (a, b), then a value will be uniformly sampled per image from the interval
[a, b].

– If a list, then a random value will be sampled from that list per image.

1066 Chapter 13. API

imgaug Documentation, Release 0.3.0

– If a StochasticParameter, then a value will be sampled per image from that pa-
rameter.

• intensity_freq_exponent (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter) – Exponent of the frequency noise used to add fine
intensity to the mean intensity. Recommended to be in the interval [-2.5, -1.5]. See
__init__() for details.

• intensity_coarse_scale (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter) – Standard deviation of the gaussian distribution
used to add more localized intensity to the mean intensity. Sampled in low resolution space,
i.e. affects final intensity on a coarse level. Recommended to be in the interval (0, 10].

– If a number, then that value will always be used.

– If a tuple (a, b), then a value will be uniformly sampled per image from the interval
[a, b].

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then a value will be sampled per image from that pa-
rameter.

• alpha_min (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter) – Minimum alpha when blending cloud noise
with the image. High values will lead to clouds being “everywhere”. Recommended to
usually be at around 0.0 for clouds and >0 for fog.

– If a number, then that value will always be used.

– If a tuple (a, b), then a value will be uniformly sampled per image from the interval
[a, b].

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then a value will be sampled per image from that pa-
rameter.

• alpha_multiplier (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter) – Multiplier for the sampled alpha values.
High values will lead to denser clouds wherever they are visible. Recommended to be in the
interval [0.3, 1.0]. Note that this parameter currently overlaps with density_multiplier,
which is applied a bit later to the alpha mask.

– If a number, then that value will always be used.

– If a tuple (a, b), then a value will be uniformly sampled per image from the interval
[a, b].

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then a value will be sampled per image from that pa-
rameter.

• alpha_size_px_max (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter) – Controls the image size at which the alpha mask is
sampled. Lower values will lead to coarser alpha masks and hence larger clouds (and empty
areas). See __init__() for details.

• alpha_freq_exponent (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter) – Exponent of the frequency noise used to sample
the alpha mask. Similarly to alpha_size_max_px, lower values will lead to coarser alpha

13.36. imgaug.augmenters.weather 1067

imgaug Documentation, Release 0.3.0

patterns. Recommended to be in the interval [-4.0, -1.5]. See __init__() for
details.

• sparsity (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter) – Exponent applied late to the alpha mask.
Lower values will lead to coarser cloud patterns, higher values to finer patterns. Recom-
mended to be somewhere around 1.0. Do not deviate far from that value, otherwise the
alpha mask might get weird patterns with sudden fall-offs to zero that look very unnatural.

– If a number, then that value will always be used.

– If a tuple (a, b), then a value will be uniformly sampled per image from the interval
[a, b].

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then a value will be sampled per image from that pa-
rameter.

• density_multiplier (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter) – Late multiplier for the alpha mask, similar
to alpha_multiplier. Set this higher to get “denser” clouds wherever they are visible.
Recommended to be around [0.5, 1.5].

– If a number, then that value will always be used.

– If a tuple (a, b), then a value will be uniformly sampled per image from the interval
[a, b].

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then a value will be sampled per image from that pa-
rameter.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.

Continued on next page

1068 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 250 – continued from previous page
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

draw_on_image
generate_maps

13.36. imgaug.augmenters.weather 1069

imgaug Documentation, Release 0.3.0

draw_on_image(self, image, random_state)

generate_maps(self, image, random_state)

get_parameters(self)
See get_parameters().

class imgaug.augmenters.weather.Clouds(seed=None, name=None, ran-
dom_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.meta.SomeOf

Add clouds to images.

This is a wrapper around CloudLayer. It executes 1 to 2 layers per image, leading to varying densities and
frequency patterns of clouds.

This augmenter seems to be fairly robust w.r.t. the image size. Tested with 96x128, 192x256 and 960x1280.

Supported dtypes:

• uint8: yes; tested

• uint16: no (1)

• uint32: no (1)

• uint64: no (1)

• int8: no (1)

• int16: no (1)

• int32: no (1)

• int64: no (1)

• float16: no (1)

• float32: no (1)

• float64: no (1)

• float128: no (1)

• bool: no (1)

• (1) Parameters of this augmenter are optimized for the value range of uint8. While other
dtypes may be accepted, they will lead to images augmented in ways inappropriate for the
respective dtype.

Parameters

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

1070 Chapter 13. API

imgaug Documentation, Release 0.3.0

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Clouds()

Create an augmenter that adds clouds to images.

Methods

__call__(self, *args, **kwargs) Alias for augment().
add(self, augmenter) Add an augmenter to the list of child augmenters.
append(self, object, /) Append object to the end of the list.
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

clear(self, /) Remove all items from list.
copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

count(self, value, /) Return number of occurrences of value.
deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
extend(self, iterable, /) Extend list by appending elements from the iterable.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

Continued on next page

13.36. imgaug.augmenters.weather 1071

imgaug Documentation, Release 0.3.0

Table 251 – continued from previous page
get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) See get_children_lists().
get_parameters(self) See get_parameters().
index(self, value[, start, stop]) Return first index of value.
insert(self, index, object, /) Insert object before index.
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
pop(self[, index]) Remove and return item at index (default last).
remove(self, value, /) Remove first occurrence of value.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
reverse(self, /) Reverse IN PLACE.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
sort(self, /, *[, key, reverse]) Stable sort IN PLACE.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.weather.FastSnowyLandscape(lightness_threshold=(100,
255), lightness_multiplier=(1.0,
4.0), from_colorspace=’RGB’,
seed=None, name=None, ran-
dom_state=’deprecated’, deter-
ministic=’deprecated’)

Bases: imgaug.augmenters.meta.Augmenter

Convert non-snowy landscapes to snowy ones.

This augmenter expects to get an image that roughly shows a landscape.

This augmenter is based on the method proposed in https://medium.freecodecamp.org/
image-augmentation-make-it-rain-make-it-snow-how-to-modify-a-photo-with-machine-learning-163c0cb3843f?
gi=bca4a13e634c

Supported dtypes:

• uint8: yes; fully tested

• uint16: no (1)

• uint32: no (1)

• uint64: no (1)

• int8: no (1)

• int16: no (1)

• int32: no (1)

1072 Chapter 13. API

https://medium.freecodecamp.org/image-augmentation-make-it-rain-make-it-snow-how-to-modify-a-photo-with-machine-learning-163c0cb3843f?gi=bca4a13e634c
https://medium.freecodecamp.org/image-augmentation-make-it-rain-make-it-snow-how-to-modify-a-photo-with-machine-learning-163c0cb3843f?gi=bca4a13e634c
https://medium.freecodecamp.org/image-augmentation-make-it-rain-make-it-snow-how-to-modify-a-photo-with-machine-learning-163c0cb3843f?gi=bca4a13e634c

imgaug Documentation, Release 0.3.0

• int64: no (1)

• float16: no (1)

• float32: no (1)

• float64: no (1)

• float128: no (1)

• bool: no (1)

• (1) This augmenter is based on a colorspace conversion to HLS. Hence, only RGB uint8
inputs are sensible.

Parameters

• lightness_threshold (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – All pixels with lightness in HLS col-
orspace that is below this value will have their lightness increased by lightness_multiplier.

– If a number, then that value will always be used.

– If a tuple (a, b), then a value will be uniformly sampled per image from the discrete
interval [a..b].

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then a value will be sampled per image from that pa-
rameter.

• lightness_multiplier (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter, optional) – Multiplier for pixel’s lightness value in
HLS colorspace. Affects all pixels selected via lightness_threshold.

– If a number, then that value will always be used.

– If a tuple (a, b), then a value will be uniformly sampled per image from the discrete
interval [a..b].

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then a value will be sampled per image from that pa-
rameter.

• from_colorspace (str, optional) – The source colorspace of the input images. See
__init__().

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

13.36. imgaug.augmenters.weather 1073

imgaug Documentation, Release 0.3.0

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.FastSnowyLandscape(
>>> lightness_threshold=140,
>>> lightness_multiplier=2.5
>>>)

Search for all pixels in the image with a lightness value in HLS colorspace of less than 140 and increase their
lightness by a factor of 2.5.

>>> aug = iaa.FastSnowyLandscape(
>>> lightness_threshold=[128, 200],
>>> lightness_multiplier=(1.5, 3.5)
>>>)

Search for all pixels in the image with a lightness value in HLS colorspace of less than 128 or less than 200
(one of these values is picked per image) and multiply their lightness by a factor of x with x being sampled from
uniform(1.5, 3.5) (once per image).

>>> aug = iaa.FastSnowyLandscape(
>>> lightness_threshold=(100, 255),
>>> lightness_multiplier=(1.0, 4.0)
>>>)

Similar to the previous example, but the lightness threshold is sampled from uniform(100, 255) (per
image) and the multiplier from uniform(1.0, 4.0) (per image). This seems to produce good and varied
results.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
Continued on next page

1074 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 252 – continued from previous page
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

get_parameters(self)
See get_parameters().

class imgaug.augmenters.weather.Fog(seed=None, name=None, random_state=’deprecated’,
deterministic=’deprecated’)

Bases: imgaug.augmenters.weather.CloudLayer

Add fog to images.

This is a wrapper around CloudLayer. It executes a single layer per image with a configuration leading to
fairly dense clouds with low-frequency patterns.

This augmenter seems to be fairly robust w.r.t. the image size. Tested with 96x128, 192x256 and 960x1280.

Supported dtypes:

• uint8: yes; tested

• uint16: no (1)

• uint32: no (1)

• uint64: no (1)

13.36. imgaug.augmenters.weather 1075

imgaug Documentation, Release 0.3.0

• int8: no (1)

• int16: no (1)

• int32: no (1)

• int64: no (1)

• float16: no (1)

• float32: no (1)

• float64: no (1)

• float128: no (1)

• bool: no (1)

• (1) Parameters of this augmenter are optimized for the value range of uint8. While other
dtypes may be accepted, they will lead to images augmented in ways inappropriate for the
respective dtype.

Parameters

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Fog()

Create an augmenter that adds fog to images.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

Continued on next page

1076 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 253 – continued from previous page
augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

draw_on_image
generate_maps

13.36. imgaug.augmenters.weather 1077

imgaug Documentation, Release 0.3.0

class imgaug.augmenters.weather.Rain(nb_iterations=(1, 3), drop_size=(0.01, 0.02),
speed=(0.04, 0.2), seed=None, name=None, ran-
dom_state=’deprecated’, deterministic=’deprecated’)

Bases: imgaug.augmenters.meta.SomeOf

Add falling snowflakes to images.

This is a wrapper around RainLayer. It executes 1 to 3 layers per image.

Note: This augmenter currently seems to work best for medium-sized images around 192x256. For smaller
images, you may want to increase the speed value to e.g. (0.1, 0.3), otherwise the drops tend to look like
snowflakes. For larger images, you may want to increase the drop_size to e.g. (0.10, 0.20).

Added in 0.4.0.

Supported dtypes:

• uint8: yes; tested

• uint16: no (1)

• uint32: no (1)

• uint64: no (1)

• int8: no (1)

• int16: no (1)

• int32: no (1)

• int64: no (1)

• float16: no (1)

• float32: no (1)

• float64: no (1)

• float128: no (1)

• bool: no (1)

• (1) Parameters of this augmenter are optimized for the value range of uint8. While other
dtypes may be accepted, they will lead to images augmented in ways inappropriate for the
respective dtype.

Parameters

• drop_size (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter) – See RainLayer.

• speed (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter) – See RainLayer.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage

1078 Chapter 13. API

imgaug Documentation, Release 0.3.0

will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Rain(speed=(0.1, 0.3))

Add rain to small images (around 96x128).

>>> aug = iaa.Rain()

Add rain to medium sized images (around 192x256).

>>> aug = iaa.Rain(drop_size=(0.10, 0.20))

Add rain to large images (around 960x1280).

Methods

__call__(self, *args, **kwargs) Alias for augment().
add(self, augmenter) Add an augmenter to the list of child augmenters.
append(self, object, /) Append object to the end of the list.
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

clear(self, /) Remove all items from list.
copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

Continued on next page

13.36. imgaug.augmenters.weather 1079

imgaug Documentation, Release 0.3.0

Table 254 – continued from previous page
count(self, value, /) Return number of occurrences of value.
deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
extend(self, iterable, /) Extend list by appending elements from the iterable.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) See get_children_lists().
get_parameters(self) See get_parameters().
index(self, value[, start, stop]) Return first index of value.
insert(self, index, object, /) Insert object before index.
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
pop(self[, index]) Remove and return item at index (default last).
remove(self, value, /) Remove first occurrence of value.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
reverse(self, /) Reverse IN PLACE.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
sort(self, /, *[, key, reverse]) Stable sort IN PLACE.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.weather.RainLayer(density, density_uniformity, drop_size,
drop_size_uniformity, angle, speed,
blur_sigma_fraction, blur_sigma_limits=(0.5,
3.75), seed=None, name=None, ran-
dom_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.weather.SnowflakesLayer

Add a single layer of falling raindrops to images.

Added in 0.4.0.

Supported dtypes:

• uint8: yes; indirectly tested (1)

• uint16: no

1080 Chapter 13. API

imgaug Documentation, Release 0.3.0

• uint32: no

• uint64: no

• int8: no

• int16: no

• int32: no

• int64: no

• float16: no

• float32: no

• float64: no

• float128: no

• bool: no

• (1) indirectly tested via tests for Rain

Parameters

• density (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter) – Same as in SnowflakesLayer.

• density_uniformity (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter) – Same as in SnowflakesLayer.

• drop_size (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter) – Same as flake_size in SnowflakesLayer.

• drop_size_uniformity (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter) – Same as flake_size_uniformity in
SnowflakesLayer.

• angle (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter) – Same as in SnowflakesLayer.

• speed (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter) – Same as in SnowflakesLayer.

• blur_sigma_fraction (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter) – Same as in SnowflakesLayer.

• blur_sigma_limits (tuple of float, optional) – Same as in SnowflakesLayer.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

13.36. imgaug.augmenters.weather 1081

imgaug Documentation, Release 0.3.0

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.

Continued on next page

1082 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 255 – continued from previous page
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

draw_on_image

class imgaug.augmenters.weather.Snowflakes(density=(0.005, 0.075), den-
sity_uniformity=(0.3, 0.9), flake_size=(0.2,
0.7), flake_size_uniformity=(0.4,
0.8), angle=(-30, 30), speed=(0.007,
0.03), seed=None, name=None, ran-
dom_state=’deprecated’, determinis-
tic=’deprecated’)

Bases: imgaug.augmenters.meta.SomeOf

Add falling snowflakes to images.

This is a wrapper around SnowflakesLayer. It executes 1 to 3 layers per image.

Supported dtypes:

• uint8: yes; tested

• uint16: no (1)

• uint32: no (1)

• uint64: no (1)

• int8: no (1)

• int16: no (1)

• int32: no (1)

• int64: no (1)

• float16: no (1)

• float32: no (1)

• float64: no (1)

• float128: no (1)

• bool: no (1)

• (1) Parameters of this augmenter are optimized for the value range of uint8. While other
dtypes may be accepted, they will lead to images augmented in ways inappropriate for the
respective dtype.

Parameters

• density (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter) – Density of the snowflake layer, as a probability of
each pixel in low resolution space to be a snowflake. Valid values are in the interval [0.0,
1.0]. Recommended to be in the interval [0.01, 0.075].

– If a number, then that value will always be used.

13.36. imgaug.augmenters.weather 1083

imgaug Documentation, Release 0.3.0

– If a tuple (a, b), then a value will be uniformly sampled per image from the interval
[a, b].

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then a value will be sampled per image from that pa-
rameter.

• density_uniformity (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter) – Size uniformity of the snowflakes. Higher
values denote more similarly sized snowflakes. Valid values are in the interval [0.0,
1.0]. Recommended to be around 0.5.

– If a number, then that value will always be used.

– If a tuple (a, b), then a value will be uniformly sampled per image from the interval
[a, b].

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then a value will be sampled per image from that pa-
rameter.

• flake_size (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter) – Size of the snowflakes. This parameter controls
the resolution at which snowflakes are sampled. Higher values mean that the resolution is
closer to the input image’s resolution and hence each sampled snowflake will be smaller
(because of the smaller pixel size).

Valid values are in the interval (0.0, 1.0]. Recommended values:

– On 96x128 a value of (0.1, 0.4) worked well.

– On 192x256 a value of (0.2, 0.7) worked well.

– On 960x1280 a value of (0.7, 0.95) worked well.

Datatype behaviour:

– If a number, then that value will always be used.

– If a tuple (a, b), then a value will be uniformly sampled per image from the interval
[a, b].

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then a value will be sampled per image from that pa-
rameter.

• flake_size_uniformity (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter) – Controls the size uniformity of the snowflakes.
Higher values mean that the snowflakes are more similarly sized. Valid values are in the
interval [0.0, 1.0]. Recommended to be around 0.5.

– If a number, then that value will always be used.

– If a tuple (a, b), then a value will be uniformly sampled per image from the interval
[a, b].

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then a value will be sampled per image from that pa-
rameter.

1084 Chapter 13. API

imgaug Documentation, Release 0.3.0

• angle (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter) – Angle in degrees of motion blur applied to
the snowflakes, where 0.0 is motion blur that points straight upwards. Recommended to
be in the interval [-30, 30]. See also __init__().

– If a number, then that value will always be used.

– If a tuple (a, b), then a value will be uniformly sampled per image from the interval
[a, b].

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then a value will be sampled per image from that pa-
rameter.

• speed (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter) – Perceived falling speed of the snowflakes.
This parameter controls the motion blur’s kernel size. It follows roughly the form
kernel_size = image_size * speed. Hence, values around 1.0 denote that the
motion blur should “stretch” each snowflake over the whole image.

Valid values are in the interval [0.0, 1.0]. Recommended values:

– On 96x128 a value of (0.01, 0.05) worked well.

– On 192x256 a value of (0.007, 0.03) worked well.

– On 960x1280 a value of (0.001, 0.03) worked well.

Datatype behaviour:

– If a number, then that value will always be used.

– If a tuple (a, b), then a value will be uniformly sampled per image from the interval
[a, b].

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then a value will be sampled per image from that pa-
rameter.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Examples

>>> import imgaug.augmenters as iaa
>>> aug = iaa.Snowflakes(flake_size=(0.1, 0.4), speed=(0.01, 0.05))

13.36. imgaug.augmenters.weather 1085

imgaug Documentation, Release 0.3.0

Add snowflakes to small images (around 96x128).

>>> aug = iaa.Snowflakes(flake_size=(0.2, 0.7), speed=(0.007, 0.03))

Add snowflakes to medium-sized images (around 192x256).

>>> aug = iaa.Snowflakes(flake_size=(0.7, 0.95), speed=(0.001, 0.03))

Add snowflakes to large images (around 960x1280).

Methods

__call__(self, *args, **kwargs) Alias for augment().
add(self, augmenter) Add an augmenter to the list of child augmenters.
append(self, object, /) Append object to the end of the list.
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

clear(self, /) Remove all items from list.
copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence
(in-place).

count(self, value, /) Return number of occurrences of value.
deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
extend(self, iterable, /) Extend list by appending elements from the iterable.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) See get_children_lists().

Continued on next page

1086 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 256 – continued from previous page
get_parameters(self) See get_parameters().
index(self, value[, start, stop]) Return first index of value.
insert(self, index, object, /) Insert object before index.
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
pop(self[, index]) Remove and return item at index (default last).
remove(self, value, /) Remove first occurrence of value.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
reverse(self, /) Reverse IN PLACE.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
sort(self, /, *[, key, reverse]) Stable sort IN PLACE.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

class imgaug.augmenters.weather.SnowflakesLayer(density, density_uniformity,
flake_size, flake_size_uniformity,
angle, speed, blur_sigma_fraction,
blur_sigma_limits=(0.5, 3.75),
seed=None, name=None, ran-
dom_state=’deprecated’, deter-
ministic=’deprecated’)

Bases: imgaug.augmenters.meta.Augmenter

Add a single layer of falling snowflakes to images.

Supported dtypes:

• uint8: yes; indirectly tested (1)

• uint16: no

• uint32: no

• uint64: no

• int8: no

• int16: no

• int32: no

• int64: no

• float16: no

• float32: no

• float64: no

13.36. imgaug.augmenters.weather 1087

imgaug Documentation, Release 0.3.0

• float128: no

• bool: no

• (1) indirectly tested via tests for Snowflakes

Parameters

• density (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter) – Density of the snowflake layer, as a probability of
each pixel in low resolution space to be a snowflake. Valid values are in the interval [0.0,
1.0]. Recommended to be in the interval [0.01, 0.075].

– If a number, then that value will always be used.

– If a tuple (a, b), then a value will be uniformly sampled per image from the interval
[a, b].

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then a value will be sampled per image from that pa-
rameter.

• density_uniformity (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter) – Size uniformity of the snowflakes. Higher
values denote more similarly sized snowflakes. Valid values are in the interval [0.0,
1.0]. Recommended to be around 0.5.

– If a number, then that value will always be used.

– If a tuple (a, b), then a value will be uniformly sampled per image from the interval
[a, b].

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then a value will be sampled per image from that pa-
rameter.

• flake_size (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter) – Size of the snowflakes. This parameter controls
the resolution at which snowflakes are sampled. Higher values mean that the resolution is
closer to the input image’s resolution and hence each sampled snowflake will be smaller
(because of the smaller pixel size).

Valid values are in the interval (0.0, 1.0]. Recommended values:

– On 96x128 a value of (0.1, 0.4) worked well.

– On 192x256 a value of (0.2, 0.7) worked well.

– On 960x1280 a value of (0.7, 0.95) worked well.

Datatype behaviour:

– If a number, then that value will always be used.

– If a tuple (a, b), then a value will be uniformly sampled per image from the interval
[a, b].

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then a value will be sampled per image from that pa-
rameter.

1088 Chapter 13. API

imgaug Documentation, Release 0.3.0

• flake_size_uniformity (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter) – Controls the size uniformity of the snowflakes.
Higher values mean that the snowflakes are more similarly sized. Valid values are in the
interval [0.0, 1.0]. Recommended to be around 0.5.

– If a number, then that value will always be used.

– If a tuple (a, b), then a value will be uniformly sampled per image from the interval
[a, b].

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then a value will be sampled per image from that pa-
rameter.

• angle (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter) – Angle in degrees of motion blur applied to
the snowflakes, where 0.0 is motion blur that points straight upwards. Recommended to
be in the interval [-30, 30]. See also __init__().

– If a number, then that value will always be used.

– If a tuple (a, b), then a value will be uniformly sampled per image from the interval
[a, b].

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then a value will be sampled per image from that pa-
rameter.

• speed (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter) – Perceived falling speed of the snowflakes.
This parameter controls the motion blur’s kernel size. It follows roughly the form
kernel_size = image_size * speed. Hence, values around 1.0 denote that the
motion blur should “stretch” each snowflake over the whole image.

Valid values are in the interval [0.0, 1.0]. Recommended values:

– On 96x128 a value of (0.01, 0.05) worked well.

– On 192x256 a value of (0.007, 0.03) worked well.

– On 960x1280 a value of (0.001, 0.03) worked well.

Datatype behaviour:

– If a number, then that value will always be used.

– If a tuple (a, b), then a value will be uniformly sampled per image from the interval
[a, b].

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then a value will be sampled per image from that pa-
rameter.

• blur_sigma_fraction (number or tuple of number or list of number or im-
gaug.parameters.StochasticParameter) – Standard deviation (as a fraction of the image size)
of gaussian blur applied to the snowflakes. Valid values are in the interval [0.0, 1.0].
Recommended to be in the interval [0.0001, 0.001]. May still require tinkering based
on image size.

– If a number, then that value will always be used.

13.36. imgaug.augmenters.weather 1089

imgaug Documentation, Release 0.3.0

– If a tuple (a, b), then a value will be uniformly sampled per image from the interval
[a, b].

– If a list, then a random value will be sampled from that list per image.

– If a StochasticParameter, then a value will be sampled per image from that pa-
rameter.

• blur_sigma_limits (tuple of float, optional) – Controls allowed min and max values of
blur_sigma_fraction after(!) multiplication with the image size. First value is the minimum,
second value is the maximum. Values outside of that range will be clipped to be within that
range. This prevents extreme values for very small or large images.

• seed (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – See __init__().

• name (None or str, optional) – See __init__().

• random_state (None or int or imgaug.random.RNG or numpy.random.Generator
or numpy.random.BitGenerator or numpy.random.SeedSequence or
numpy.random.RandomState, optional) – Old name for parameter seed. Its usage
will not yet cause a deprecation warning, but it is still recommended to use seed now.
Outdated since 0.4.0.

• deterministic (bool, optional) – Deprecated since 0.4.0. See method
to_deterministic() for an alternative and for details about what the “deterministic
mode” actually does.

Methods

__call__(self, *args, **kwargs) Alias for augment().
augment(self[, return_batch, hooks]) Augment a batch.
augment_batch(self, batch[, hooks]) Deprecated.
augment_batch_(self, batch[, parents, hooks]) Augment a single batch in-place.
augment_batches(self, batches[, hooks, . . .]) Augment multiple batches.
augment_bounding_boxes(self, . . . [, parents,
. . .])

Augment a batch of bounding boxes.

augment_heatmaps(self, heatmaps[, parents,
. . .])

Augment a batch of heatmaps.

augment_image(self, image[, hooks]) Augment a single image.
augment_images(self, images[, parents, hooks]) Augment a batch of images.
augment_keypoints(self, key-
points_on_images)

Augment a batch of keypoints/landmarks.

augment_line_strings(self, . . . [, parents,
hooks])

Augment a batch of line strings.

augment_polygons(self, polygons_on_images[,
. . .])

Augment a batch of polygons.

augment_segmentation_maps(self,
segmaps[, . . .])

Augment a batch of segmentation maps.

copy(self) Create a shallow copy of this Augmenter instance.
copy_random_state(self, source[, recursive,
. . .])

Copy the RNGs from a source augmenter sequence.

Continued on next page

1090 Chapter 13. API

imgaug Documentation, Release 0.3.0

Table 257 – continued from previous page
copy_random_state_(self, source[, . . .]) Copy the RNGs from a source augmenter sequence

(in-place).
deepcopy(self) Create a deep copy of this Augmenter instance.
draw_grid(self, images, rows, cols) Augment images and draw the results as a single

grid-like image.
find_augmenters(self, func[, parents, flat]) Find augmenters that match a condition.
find_augmenters_by_name(self, name[,
regex, . . .])

Find augmenter(s) by name.

find_augmenters_by_names(self, names[,
. . .])

Find augmenter(s) by names.

get_all_children(self[, flat]) Get all children of this augmenter as a list.
get_children_lists(self) Get a list of lists of children of this augmenter.
get_parameters(self) See get_parameters().
localize_random_state(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
localize_random_state_(self[, recursive]) Assign augmenter-specific RNGs to this augmenter

and its children.
pool(self[, processes, maxtasksperchild, seed]) Create a pool used for multicore augmentation.
remove_augmenters(self, func[, copy, . . .]) Remove this augmenter or children that match a con-

dition.
remove_augmenters_(self, func[, parents]) Remove in-place children of this augmenter that

match a condition.
remove_augmenters_inplace(self, func[,
parents])

Deprecated.

reseed(self[, random_state, deterministic_too]) Deprecated.
seed_(self[, entropy, deterministic_too]) Seed this augmenter and all of its children.
show_grid(self, images, rows, cols) Augment images and plot the results as a single grid-

like image.
to_deterministic(self[, n]) Convert this augmenter from a stochastic to a deter-

ministic one.

draw_on_image

draw_on_image(self, image, random_state)

get_parameters(self)
See get_parameters().

See modindex for API.

13.36. imgaug.augmenters.weather 1091

imgaug Documentation, Release 0.3.0

1092 Chapter 13. API

CHAPTER 14

Indices and tables

• genindex

• modindex

• search

1093

imgaug Documentation, Release 0.3.0

1094 Chapter 14. Indices and tables

Python Module Index

i
imgaug.augmentables.base, 409
imgaug.augmentables.batches, 409
imgaug.augmentables.bbs, 416
imgaug.augmentables.heatmaps, 434
imgaug.augmentables.kps, 439
imgaug.augmentables.lines, 452
imgaug.augmentables.normalization, 471
imgaug.augmentables.polys, 472
imgaug.augmentables.segmaps, 491
imgaug.augmentables.utils, 494
imgaug.augmenters.arithmetic, 497
imgaug.augmenters.artistic, 568
imgaug.augmenters.base, 572
imgaug.augmenters.blend, 572
imgaug.augmenters.blur, 626
imgaug.augmenters.collections, 645
imgaug.augmenters.color, 648
imgaug.augmenters.contrast, 703
imgaug.augmenters.convolutional, 729
imgaug.augmenters.debug, 741
imgaug.augmenters.edges, 745
imgaug.augmenters.flip, 750
imgaug.augmenters.geometric, 756
imgaug.augmenters.imgcorruptlike, 810
imgaug.augmenters.meta, 855
imgaug.augmenters.pillike, 912
imgaug.augmenters.pooling, 962
imgaug.augmenters.segmentation, 974
imgaug.augmenters.size, 998
imgaug.augmenters.weather, 1065
imgaug.dtypes, 393
imgaug.imgaug, 343
imgaug.multicore, 389
imgaug.parameters, 362
imgaug.random, 394
imgaug.validation, 408

1095

imgaug Documentation, Release 0.3.0

1096 Python Module Index

Index

A
Absolute (class in imgaug.parameters), 362
Add (class in imgaug.augmenters.arithmetic), 498
Add (class in imgaug.parameters), 363
add() (imgaug.augmenters.meta.Sequential method),

902
add() (imgaug.augmenters.meta.SomeOf method), 906
add_elementwise() (in module im-

gaug.augmenters.arithmetic), 559
add_scalar() (in module im-

gaug.augmenters.arithmetic), 560
AddElementwise (class in im-

gaug.augmenters.arithmetic), 500
AdditiveGaussianNoise (class in im-

gaug.augmenters.arithmetic), 502
AdditiveLaplaceNoise (class in im-

gaug.augmenters.arithmetic), 505
AdditivePoissonNoise (class in im-

gaug.augmenters.arithmetic), 508
AddToBrightness (class in im-

gaug.augmenters.color), 649
AddToHue (class in imgaug.augmenters.color), 651
AddToHueAndSaturation (class in im-

gaug.augmenters.color), 653
AddToSaturation (class in im-

gaug.augmenters.color), 656
adjust_contrast_gamma() (in module im-

gaug.augmenters.contrast), 725
adjust_contrast_linear() (in module im-

gaug.augmenters.contrast), 726
adjust_contrast_log() (in module im-

gaug.augmenters.contrast), 727
adjust_contrast_sigmoid() (in module im-

gaug.augmenters.contrast), 728
advance_() (imgaug.random.RNG method), 397
advance_generator_() (in module im-

gaug.random), 403
Affine (class in imgaug.augmenters.geometric), 756
Affine (class in imgaug.augmenters.pillike), 913

AffineCv2 (class in imgaug.augmenters.geometric),
766

all_finished() (im-
gaug.multicore.BackgroundAugmenter
method), 390

all_finished() (imgaug.multicore.BatchLoader
method), 391

AllChannelsCLAHE (class in im-
gaug.augmenters.contrast), 704

AllChannelsHistogramEqualization (class in
imgaug.augmenters.contrast), 707

ALLOW_DTYPES_CUSTOM_MINMAX (im-
gaug.augmenters.arithmetic.Invert attribute),
538

almost_equals() (im-
gaug.augmentables.bbs.BoundingBox method),
418

almost_equals() (im-
gaug.augmentables.kps.Keypoint method),
440

almost_equals() (im-
gaug.augmentables.lines.LineString method),
453

almost_equals() (im-
gaug.augmentables.polys.Polygon method),
474

Alpha() (in module imgaug.augmenters.blend), 572
AlphaElementwise() (in module im-

gaug.augmenters.blend), 573
angle_between_vectors() (in module im-

gaug.imgaug), 346
apply_brightness() (in module im-

gaug.augmenters.imgcorruptlike), 848
apply_contrast() (in module im-

gaug.augmenters.imgcorruptlike), 849
apply_defocus_blur() (in module im-

gaug.augmenters.imgcorruptlike), 849
apply_elastic_transform() (in module im-

gaug.augmenters.imgcorruptlike), 849
apply_fog() (in module im-

1097

imgaug Documentation, Release 0.3.0

gaug.augmenters.imgcorruptlike), 850
apply_frost() (in module im-

gaug.augmenters.imgcorruptlike), 850
apply_gaussian_blur() (in module im-

gaug.augmenters.imgcorruptlike), 850
apply_gaussian_noise() (in module im-

gaug.augmenters.imgcorruptlike), 851
apply_glass_blur() (in module im-

gaug.augmenters.imgcorruptlike), 851
apply_impulse_noise() (in module im-

gaug.augmenters.imgcorruptlike), 851
apply_jigsaw() (in module im-

gaug.augmenters.geometric), 809
apply_jigsaw_to_coords() (in module im-

gaug.augmenters.geometric), 809
apply_jpeg_compression() (in module im-

gaug.augmenters.imgcorruptlike), 852
apply_lut() (in module imgaug.imgaug), 346
apply_lut_() (in module imgaug.imgaug), 347
apply_motion_blur() (in module im-

gaug.augmenters.imgcorruptlike), 852
apply_pixelate() (in module im-

gaug.augmenters.imgcorruptlike), 852
apply_saturate() (in module im-

gaug.augmenters.imgcorruptlike), 853
apply_shot_noise() (in module im-

gaug.augmenters.imgcorruptlike), 853
apply_snow() (in module im-

gaug.augmenters.imgcorruptlike), 853
apply_spatter() (in module im-

gaug.augmenters.imgcorruptlike), 854
apply_speckle_noise() (in module im-

gaug.augmenters.imgcorruptlike), 854
apply_zoom_blur() (in module im-

gaug.augmenters.imgcorruptlike), 854
area (imgaug.augmentables.bbs.BoundingBox at-

tribute), 418
area (imgaug.augmentables.polys.Polygon attribute),

474
assert_is_iterable_of() (in module im-

gaug.validation), 408
AssertLambda (class in imgaug.augmenters.meta),

856
AssertShape (class in imgaug.augmenters.meta), 859
augment() (imgaug.augmenters.meta.Augmenter

method), 864
augment_batch() (im-

gaug.augmenters.meta.Augmenter method),
867

augment_batch_() (im-
gaug.augmenters.meta.Augmenter method),
868

augment_batches() (im-
gaug.augmenters.meta.Augmenter method),

868
augment_bounding_boxes() (im-

gaug.augmenters.meta.Augmenter method),
869

augment_heatmaps() (im-
gaug.augmenters.meta.Augmenter method),
869

augment_image() (im-
gaug.augmenters.meta.Augmenter method),
870

augment_images() (im-
gaug.augmenters.meta.Augmenter method),
870

augment_keypoints() (im-
gaug.augmenters.meta.Augmenter method),
871

augment_line_strings() (im-
gaug.augmenters.meta.Augmenter method),
871

augment_polygons() (im-
gaug.augmenters.meta.Augmenter method),
872

augment_segmentation_maps() (im-
gaug.augmenters.meta.Augmenter method),
873

Augmenter (class in imgaug.augmenters.meta), 862
Autocontrast (class in imgaug.augmenters.pillike),

916
autocontrast() (in module im-

gaug.augmenters.pillike), 949
AverageBlur (class in imgaug.augmenters.blur), 626
AveragePooling (class in im-

gaug.augmenters.pooling), 962
avg_pool() (imgaug.augmentables.heatmaps.HeatmapsOnImage

method), 435
avg_pool() (in module imgaug.imgaug), 347

B
BackgroundAugmenter (class in imgaug.multicore),

389
BackgroundAugmenter() (in module im-

gaug.imgaug), 343
Batch (class in imgaug.augmentables.batches), 409
Batch() (in module imgaug.imgaug), 343
BatchLoader (class in imgaug.multicore), 390
BatchLoader() (in module imgaug.imgaug), 343
Beta (class in imgaug.parameters), 364
beta() (imgaug.random.RNG method), 398
BGR (imgaug.augmenters.color.ChangeColorspace at-

tribute), 662
BGR (imgaug.augmenters.contrast.CLAHE attribute),

713
BGR (imgaug.augmenters.contrast.HistogramEqualization

attribute), 718

1098 Index

imgaug Documentation, Release 0.3.0

BilateralBlur (class in imgaug.augmenters.blur),
629

Binomial (class in imgaug.parameters), 365
binomial() (imgaug.random.RNG method), 398
blend_alpha() (in module im-

gaug.augmenters.blend), 625
BlendAlpha (class in imgaug.augmenters.blend), 573
BlendAlphaBoundingBoxes (class in im-

gaug.augmenters.blend), 576
BlendAlphaCheckerboard (class in im-

gaug.augmenters.blend), 579
BlendAlphaElementwise (class in im-

gaug.augmenters.blend), 582
BlendAlphaFrequencyNoise (class in im-

gaug.augmenters.blend), 585
BlendAlphaHorizontalLinearGradient (class

in imgaug.augmenters.blend), 590
BlendAlphaMask (class in im-

gaug.augmenters.blend), 593
BlendAlphaRegularGrid (class in im-

gaug.augmenters.blend), 595
BlendAlphaSegMapClassIds (class in im-

gaug.augmenters.blend), 598
BlendAlphaSimplexNoise (class in im-

gaug.augmenters.blend), 601
BlendAlphaSomeColors (class in im-

gaug.augmenters.blend), 606
BlendAlphaVerticalLinearGradient (class in

imgaug.augmenters.blend), 609
blur_gaussian_() (in module im-

gaug.augmenters.blur), 641
blur_mean_shift_() (in module im-

gaug.augmenters.blur), 644
both_np_float_if_one_is_float() (in mod-

ule imgaug.parameters), 389
bounding_boxes (im-

gaug.augmentables.batches.Batch attribute),
410

BoundingBox (class in imgaug.augmentables.bbs),
416

BoundingBox() (in module imgaug.imgaug), 343
BoundingBoxesMaskGen (class in im-

gaug.augmenters.blend), 612
BoundingBoxesOnImage (class in im-

gaug.augmentables.bbs), 427
BoundingBoxesOnImage() (in module im-

gaug.imgaug), 343
Brightness (class in im-

gaug.augmenters.imgcorruptlike), 811
bytes() (imgaug.random.RNG method), 398

C
caller_name() (in module imgaug.imgaug), 348
Canny (class in imgaug.augmenters.edges), 745

Cartoon (class in imgaug.augmenters.artistic), 568
center_x (imgaug.augmentables.bbs.BoundingBox at-

tribute), 418
center_y (imgaug.augmentables.bbs.BoundingBox at-

tribute), 418
CenterCropToAspectRatio (class in im-

gaug.augmenters.size), 999
CenterCropToFixedSize (class in im-

gaug.augmenters.size), 1001
CenterCropToMultiplesOf (class in im-

gaug.augmenters.size), 1003
CenterCropToPowersOf (class in im-

gaug.augmenters.size), 1005
CenterCropToSquare (class in im-

gaug.augmenters.size), 1006
CenterPadToAspectRatio (class in im-

gaug.augmenters.size), 1008
CenterPadToFixedSize (class in im-

gaug.augmenters.size), 1010
CenterPadToMultiplesOf (class in im-

gaug.augmenters.size), 1012
CenterPadToPowersOf (class in im-

gaug.augmenters.size), 1014
CenterPadToSquare (class in im-

gaug.augmenters.size), 1016
change_color_temperature() (in module im-

gaug.augmenters.color), 697
change_color_temperatures_() (in module im-

gaug.augmenters.color), 697
change_colorspace_() (in module im-

gaug.augmenters.color), 698
change_colorspaces_() (in module im-

gaug.augmenters.color), 699
change_dtype_() (in module imgaug.dtypes), 393
change_dtypes_() (in module imgaug.dtypes), 393
change_first_point_by_coords() (im-

gaug.augmentables.polys.Polygon method),
474

change_first_point_by_index() (im-
gaug.augmentables.polys.Polygon method),
475

change_normalization() (im-
gaug.augmentables.heatmaps.HeatmapsOnImage
class method), 435

ChangeColorspace (class in im-
gaug.augmenters.color), 660

ChangeColorTemperature (class in im-
gaug.augmenters.color), 658

ChannelShuffle (class in imgaug.augmenters.meta),
881

CheckerboardMaskGen (class in im-
gaug.augmenters.blend), 613

ChiSquare (class in imgaug.parameters), 365
chisquare() (imgaug.random.RNG method), 398

Index 1099

imgaug Documentation, Release 0.3.0

Choice (class in imgaug.parameters), 366
choice() (imgaug.random.RNG method), 398
CIE (imgaug.augmenters.color.ChangeColorspace at-

tribute), 662
CLAHE (class in imgaug.augmenters.contrast), 709
Clip (class in imgaug.parameters), 367
clip_() (in module imgaug.dtypes), 393
clip_augmented_image() (in module im-

gaug.augmenters.meta), 911
clip_augmented_image_() (in module im-

gaug.augmenters.meta), 911
clip_augmented_images() (in module im-

gaug.augmenters.meta), 911
clip_augmented_images_() (in module im-

gaug.augmenters.meta), 911
clip_out_of_image() (im-

gaug.augmentables.bbs.BoundingBox method),
418

clip_out_of_image() (im-
gaug.augmentables.bbs.BoundingBoxesOnImage
method), 429

clip_out_of_image() (im-
gaug.augmentables.kps.KeypointsOnImage
method), 445

clip_out_of_image() (im-
gaug.augmentables.lines.LineString method),
454

clip_out_of_image() (im-
gaug.augmentables.lines.LineStringsOnImage
method), 466

clip_out_of_image() (im-
gaug.augmentables.polys.Polygon method),
475

clip_out_of_image() (im-
gaug.augmentables.polys.PolygonsOnImage
method), 484

clip_out_of_image_() (im-
gaug.augmentables.bbs.BoundingBox method),
418

clip_out_of_image_() (im-
gaug.augmentables.bbs.BoundingBoxesOnImage
method), 429

clip_out_of_image_() (im-
gaug.augmentables.kps.KeypointsOnImage
method), 446

clip_out_of_image_() (im-
gaug.augmentables.lines.LineStringsOnImage
method), 466

clip_out_of_image_() (im-
gaug.augmentables.polys.PolygonsOnImage
method), 485

clip_to_dtype_value_range_() (in module im-
gaug.dtypes), 393

ClipCBAsToImagePlanes (class in im-

gaug.augmenters.meta), 884
close() (imgaug.multicore.Pool method), 392
CloudLayer (class in imgaug.augmenters.weather),

1066
Clouds (class in imgaug.augmenters.weather), 1070
CoarseDropout (class in im-

gaug.augmenters.arithmetic), 511
CoarsePepper (class in im-

gaug.augmenters.arithmetic), 514
CoarseSalt (class in imgaug.augmenters.arithmetic),

517
CoarseSaltAndPepper (class in im-

gaug.augmenters.arithmetic), 520
colorize() (imgaug.augmenters.edges.IBinaryImageColorizer

method), 749
colorize() (imgaug.augmenters.edges.RandomColorsBinaryImageColorizer

method), 750
COLORSPACES (imgaug.augmenters.color.ChangeColorspace

attribute), 662
compress_jpeg() (in module im-

gaug.augmenters.arithmetic), 560
compute_croppings_to_reach_aspect_ratio()

(in module imgaug.augmenters.size), 1060
compute_croppings_to_reach_multiples_of()

(in module imgaug.augmenters.size), 1060
compute_croppings_to_reach_powers_of()

(in module imgaug.augmenters.size), 1061
compute_distance() (im-

gaug.augmentables.lines.LineString method),
454

compute_geometric_median() (in module im-
gaug.augmentables.kps), 451

compute_geometric_median() (in module im-
gaug.imgaug), 348

compute_line_intersection_point() (in
module imgaug.imgaug), 348

compute_neighbour_distances() (im-
gaug.augmentables.lines.LineString method),
454

compute_out_of_image_area() (im-
gaug.augmentables.bbs.BoundingBox method),
418

compute_out_of_image_area() (im-
gaug.augmentables.polys.Polygon method),
475

compute_out_of_image_fraction() (im-
gaug.augmentables.bbs.BoundingBox method),
419

compute_out_of_image_fraction() (im-
gaug.augmentables.kps.Keypoint method),
440

compute_out_of_image_fraction() (im-
gaug.augmentables.lines.LineString method),
454

1100 Index

imgaug Documentation, Release 0.3.0

compute_out_of_image_fraction() (im-
gaug.augmentables.polys.Polygon method),
476

compute_paddings_for_aspect_ratio() (in
module imgaug.imgaug), 349

compute_paddings_to_reach_aspect_ratio()
(in module imgaug.augmenters.size), 1061

compute_paddings_to_reach_exponents_of()
(in module imgaug.imgaug), 349

compute_paddings_to_reach_multiples_of()
(in module imgaug.augmenters.size), 1062

compute_paddings_to_reach_multiples_of()
(in module imgaug.imgaug), 349

compute_paddings_to_reach_powers_of()
(in module imgaug.augmenters.size), 1062

compute_pointwise_distances() (im-
gaug.augmentables.lines.LineString method),
454

concatenate() (im-
gaug.augmentables.lines.LineString method),
455

contains() (imgaug.augmentables.bbs.BoundingBox
method), 419

contains() (imgaug.augmentables.lines.LineString
method), 455

Contrast (class in im-
gaug.augmenters.imgcorruptlike), 814

ContrastNormalization() (in module im-
gaug.augmenters.arithmetic), 523

convert_cbaois_to_kpsois() (in module im-
gaug.augmentables.utils), 494

convert_iterable_to_string_of_types()
(in module imgaug.validation), 408

convert_seed_sequence_to_generator() (in
module imgaug.random), 403

convert_seed_to_generator() (in module im-
gaug.random), 404

Convolve (class in imgaug.augmenters.convolutional),
729

coords (imgaug.augmentables.bbs.BoundingBox
attribute), 419

coords (imgaug.augmentables.kps.Keypoint attribute),
441

coords (imgaug.augmentables.polys.Polygon attribute),
476

coords_almost_equals() (im-
gaug.augmentables.bbs.BoundingBox method),
419

coords_almost_equals() (im-
gaug.augmentables.kps.Keypoint method),
441

coords_almost_equals() (im-
gaug.augmentables.lines.LineString method),
455

coords_almost_equals() (im-
gaug.augmentables.polys.Polygon method),
476

copy() (imgaug.augmentables.bbs.BoundingBox
method), 420

copy() (imgaug.augmentables.bbs.BoundingBoxesOnImage
method), 429

copy() (imgaug.augmentables.heatmaps.HeatmapsOnImage
method), 436

copy() (imgaug.augmentables.kps.Keypoint method),
441

copy() (imgaug.augmentables.kps.KeypointsOnImage
method), 446

copy() (imgaug.augmentables.lines.LineString
method), 455

copy() (imgaug.augmentables.lines.LineStringsOnImage
method), 466

copy() (imgaug.augmentables.polys.Polygon method),
476

copy() (imgaug.augmentables.polys.PolygonsOnImage
method), 485

copy() (imgaug.augmentables.segmaps.SegmentationMapsOnImage
method), 491

copy() (imgaug.augmenters.meta.Augmenter method),
873

copy() (imgaug.parameters.StochasticParameter
method), 384

copy() (imgaug.random.RNG method), 398
copy_arrays() (in module im-

gaug.augmenters.meta), 911
copy_augmentables() (in module im-

gaug.augmentables.utils), 495
copy_dtypes_for_restore() (in module im-

gaug.dtypes), 393
copy_generator() (in module imgaug.random), 404
copy_generator_unless_global_generator()

(in module imgaug.random), 404
copy_random_state() (im-

gaug.augmenters.meta.Augmenter method),
874

copy_random_state() (in module imgaug.imgaug),
349

copy_random_state_() (im-
gaug.augmenters.meta.Augmenter method),
874

copy_unless_global_rng() (im-
gaug.random.RNG method), 398

count_workers_alive() (im-
gaug.multicore.BatchLoader method), 391

create_for_noise() (imgaug.parameters.Sigmoid
static method), 382

create_fully_random() (imgaug.random.RNG
class method), 398

create_fully_random_generator() (in mod-

Index 1101

imgaug Documentation, Release 0.3.0

ule imgaug.random), 404
create_pseudo_random_() (imgaug.random.RNG

class method), 398
create_pseudo_random_generator_() (in

module imgaug.random), 404
Crop (class in imgaug.augmenters.size), 1018
CropAndPad (class in imgaug.augmenters.size), 1021
CropToAspectRatio (class in im-

gaug.augmenters.size), 1026
CropToFixedSize (class in imgaug.augmenters.size),

1028
CropToMultiplesOf (class in im-

gaug.augmenters.size), 1031
CropToPowersOf (class in imgaug.augmenters.size),

1034
CropToSquare (class in imgaug.augmenters.size),

1036
current_random_state() (in module im-

gaug.imgaug), 349
cut_out_of_image() (im-

gaug.augmentables.bbs.BoundingBox method),
420

cut_out_of_image() (im-
gaug.augmentables.bbs.BoundingBoxesOnImage
method), 429

cut_out_of_image() (im-
gaug.augmentables.polys.Polygon method),
477

Cutout (class in imgaug.augmenters.arithmetic), 524
cutout() (in module imgaug.augmenters.arithmetic),

561
cutout_() (in module imgaug.augmenters.arithmetic),

562
CV_VARS (imgaug.augmenters.color.ChangeColorspace

attribute), 662

D
deepcopy() (imgaug.augmentables.batches.Batch

method), 410
deepcopy() (imgaug.augmentables.bbs.BoundingBox

method), 420
deepcopy() (imgaug.augmentables.bbs.BoundingBoxesOnImage

method), 429
deepcopy() (imgaug.augmentables.heatmaps.HeatmapsOnImage

method), 436
deepcopy() (imgaug.augmentables.kps.Keypoint

method), 441
deepcopy() (imgaug.augmentables.kps.KeypointsOnImage

method), 446
deepcopy() (imgaug.augmentables.lines.LineString

method), 456
deepcopy() (imgaug.augmentables.lines.LineStringsOnImage

method), 466

deepcopy() (imgaug.augmentables.polys.Polygon
method), 477

deepcopy() (imgaug.augmentables.polys.PolygonsOnImage
method), 485

deepcopy() (imgaug.augmentables.segmaps.SegmentationMapsOnImage
method), 492

deepcopy() (imgaug.augmenters.meta.Augmenter
method), 874

deepcopy() (imgaug.parameters.StochasticParameter
method), 384

deepcopy_fast() (in module im-
gaug.augmentables.utils), 495

DEFAULT_SEGMENT_COLORS (im-
gaug.augmentables.segmaps.SegmentationMapsOnImage
attribute), 491

DefocusBlur (class in im-
gaug.augmenters.imgcorruptlike), 816

deprecated (class in imgaug.imgaug), 349
DeprecationWarning, 343
derive_generator_() (in module imgaug.random),

404
derive_generators_() (in module im-

gaug.random), 405
derive_random_state() (in module im-

gaug.imgaug), 350
derive_random_states() (in module im-

gaug.imgaug), 350
derive_rng_() (imgaug.random.RNG method), 398
derive_rngs_() (imgaug.random.RNG method), 399
Deterministic (class in imgaug.parameters), 367
DeterministicList (class in imgaug.parameters),

368
DirectedEdgeDetect (class in im-

gaug.augmenters.convolutional), 732
dirichlet() (imgaug.random.RNG method), 399
DiscreteUniform (class in imgaug.parameters), 368
Discretize (class in imgaug.parameters), 369
Divide (class in imgaug.parameters), 370
do_assert() (in module imgaug.imgaug), 350
draw() (imgaug.augmentables.heatmaps.HeatmapsOnImage

method), 436
draw() (imgaug.augmentables.segmaps.SegmentationMapsOnImage

method), 492
draw_box_on_image() (im-

gaug.augmentables.bbs.BoundingBox method),
420

draw_debug_image() (in module im-
gaug.augmenters.debug), 743

draw_distribution_graph() (im-
gaug.parameters.StochasticParameter
method), 384

draw_distributions_grid() (in module im-
gaug.parameters), 389

draw_grid() (imgaug.augmenters.meta.Augmenter

1102 Index

imgaug Documentation, Release 0.3.0

method), 875
draw_grid() (in module imgaug.imgaug), 350
draw_heatmap_array() (im-

gaug.augmentables.lines.LineString method),
456

draw_label_on_image() (im-
gaug.augmentables.bbs.BoundingBox method),
421

draw_lines_heatmap_array() (im-
gaug.augmentables.lines.LineString method),
456

draw_lines_on_image() (im-
gaug.augmentables.lines.LineString method),
457

draw_mask() (imgaug.augmentables.lines.LineString
method), 457

draw_masks() (imgaug.augmenters.blend.BoundingBoxesMaskGen
method), 613

draw_masks() (imgaug.augmenters.blend.CheckerboardMaskGen
method), 614

draw_masks() (imgaug.augmenters.blend.IBatchwiseMaskGenerator
method), 617

draw_masks() (imgaug.augmenters.blend.InvertMaskGen
method), 617

draw_masks() (imgaug.augmenters.blend.RegularGridMaskGen
method), 618

draw_masks() (imgaug.augmenters.blend.SegMapClassIdsMaskGen
method), 620

draw_masks() (imgaug.augmenters.blend.SomeColorsMaskGen
method), 622

draw_masks() (imgaug.augmenters.blend.StochasticParameterMaskGen
method), 623

draw_on_image() (im-
gaug.augmentables.bbs.BoundingBox method),
422

draw_on_image() (im-
gaug.augmentables.bbs.BoundingBoxesOnImage
method), 429

draw_on_image() (im-
gaug.augmentables.heatmaps.HeatmapsOnImage
method), 436

draw_on_image() (im-
gaug.augmentables.kps.Keypoint method),
442

draw_on_image() (im-
gaug.augmentables.kps.KeypointsOnImage
method), 446

draw_on_image() (im-
gaug.augmentables.lines.LineString method),
457

draw_on_image() (im-
gaug.augmentables.lines.LineStringsOnImage
method), 467

draw_on_image() (im-

gaug.augmentables.polys.Polygon method),
477

draw_on_image() (im-
gaug.augmentables.polys.PolygonsOnImage
method), 486

draw_on_image() (im-
gaug.augmentables.segmaps.SegmentationMapsOnImage
method), 492

draw_on_image() (im-
gaug.augmenters.weather.CloudLayer
method), 1069

draw_on_image() (im-
gaug.augmenters.weather.SnowflakesLayer
method), 1091

draw_points_heatmap_array() (im-
gaug.augmentables.lines.LineString method),
458

draw_points_on_image() (im-
gaug.augmentables.lines.LineString method),
458

draw_sample() (im-
gaug.parameters.StochasticParameter
method), 385

draw_samples() (im-
gaug.parameters.StochasticParameter
method), 385

draw_text() (in module imgaug.imgaug), 351
Dropout (class in imgaug.augmenters.arithmetic), 528
Dropout2d (class in imgaug.augmenters.arithmetic),

530
DropoutPointsSampler (class in im-

gaug.augmenters.segmentation), 974
dummy_random_state() (in module im-

gaug.imgaug), 352
duplicate() (imgaug.random.RNG method), 399

E
EdgeDetect (class in im-

gaug.augmenters.convolutional), 734
ElasticTransform (class in im-

gaug.augmenters.imgcorruptlike), 818
ElasticTransformation (class in im-

gaug.augmenters.geometric), 772
Emboss (class in imgaug.augmenters.convolutional),

736
empty (imgaug.augmentables.bbs.BoundingBoxesOnImage

attribute), 430
empty (imgaug.augmentables.kps.KeypointsOnImage

attribute), 447
empty (imgaug.augmentables.lines.LineStringsOnImage

attribute), 467
empty (imgaug.augmentables.polys.PolygonsOnImage

attribute), 487

Index 1103

imgaug Documentation, Release 0.3.0

enhance_brightness() (in module im-
gaug.augmenters.pillike), 950

enhance_color() (in module im-
gaug.augmenters.pillike), 951

enhance_contrast() (in module im-
gaug.augmenters.pillike), 951

enhance_sharpness() (in module im-
gaug.augmenters.pillike), 952

EnhanceBrightness (class in im-
gaug.augmenters.pillike), 918

EnhanceColor (class in imgaug.augmenters.pillike),
920

EnhanceContrast (class in im-
gaug.augmenters.pillike), 922

EnhanceSharpness (class in im-
gaug.augmenters.pillike), 924

Equalize (class in imgaug.augmenters.pillike), 926
equalize() (in module imgaug.augmenters.pillike),

953
equalize_() (in module imgaug.augmenters.pillike),

953
equals() (imgaug.random.RNG method), 399
equals_global_rng() (imgaug.random.RNG

method), 399
estimate_bounding_boxes_norm_type() (in

module imgaug.augmentables.normalization),
471

estimate_heatmaps_norm_type() (in module
imgaug.augmentables.normalization), 471

estimate_keypoints_norm_type() (in module
imgaug.augmentables.normalization), 471

estimate_line_strings_norm_type() (in
module imgaug.augmentables.normalization),
471

estimate_max_number_of_channels() (in
module imgaug.augmenters.meta), 911

estimate_normalization_type() (in module
imgaug.augmentables.normalization), 471

estimate_polygons_norm_type() (in module
imgaug.augmentables.normalization), 471

estimate_segmaps_norm_type() (in module im-
gaug.augmentables.normalization), 471

exponential() (imgaug.random.RNG method), 399
extend() (imgaug.augmentables.bbs.BoundingBox

method), 422
extend_() (imgaug.augmentables.bbs.BoundingBox

method), 422
exterior_almost_equals() (im-

gaug.augmentables.polys.Polygon method),
478

extract_from_image() (im-
gaug.augmentables.bbs.BoundingBox method),
423

extract_from_image() (im-

gaug.augmentables.lines.LineString method),
459

extract_from_image() (im-
gaug.augmentables.polys.Polygon method),
478

F
f() (imgaug.random.RNG method), 399
factor (imgaug.augmenters.blend.BlendAlphaElementwise

attribute), 585
FastSnowyLandscape (class in im-

gaug.augmenters.weather), 1072
fill_from_augmented_normalized_batch()

(imgaug.augmentables.batches.UnnormalizedBatch
method), 415

fill_from_augmented_normalized_batch_()
(imgaug.augmentables.batches.UnnormalizedBatch
method), 415

fill_from_batch_in_augmentation_() (im-
gaug.augmentables.batches.Batch method),
412

fill_from_xy_array_() (im-
gaug.augmentables.bbs.BoundingBoxesOnImage
method), 430

fill_from_xy_array_() (im-
gaug.augmentables.kps.KeypointsOnImage
method), 447

fill_from_xy_array_() (im-
gaug.augmentables.lines.LineStringsOnImage
method), 468

fill_from_xy_array_() (im-
gaug.augmentables.polys.PolygonsOnImage
method), 487

fill_from_xyxy_array_() (im-
gaug.augmentables.bbs.BoundingBoxesOnImage
method), 430

filter_blur() (in module im-
gaug.augmenters.pillike), 954

filter_contour() (in module im-
gaug.augmenters.pillike), 954

filter_detail() (in module im-
gaug.augmenters.pillike), 955

filter_edge_enhance() (in module im-
gaug.augmenters.pillike), 955

filter_edge_enhance_more() (in module im-
gaug.augmenters.pillike), 956

filter_emboss() (in module im-
gaug.augmenters.pillike), 957

filter_find_edges() (in module im-
gaug.augmenters.pillike), 957

filter_sharpen() (in module im-
gaug.augmenters.pillike), 958

filter_smooth() (in module im-
gaug.augmenters.pillike), 958

1104 Index

imgaug Documentation, Release 0.3.0

filter_smooth_more() (in module im-
gaug.augmenters.pillike), 959

FilterBlur (class in imgaug.augmenters.pillike), 928
FilterContour (class in imgaug.augmenters.pillike),

930
FilterDetail (class in imgaug.augmenters.pillike),

931
FilterEdgeEnhance (class in im-

gaug.augmenters.pillike), 933
FilterEdgeEnhanceMore (class in im-

gaug.augmenters.pillike), 935
FilterEmboss (class in imgaug.augmenters.pillike),

937
FilterFindEdges (class in im-

gaug.augmenters.pillike), 939
FilterSharpen (class in imgaug.augmenters.pillike),

940
FilterSmooth (class in imgaug.augmenters.pillike),

942
FilterSmoothMore (class in im-

gaug.augmenters.pillike), 944
find_augmenters() (im-

gaug.augmenters.meta.Augmenter method),
875

find_augmenters_by_name() (im-
gaug.augmenters.meta.Augmenter method),
876

find_augmenters_by_names() (im-
gaug.augmenters.meta.Augmenter method),
876

find_closest_point_index() (im-
gaug.augmentables.polys.Polygon method),
479

find_first_nonempty() (in module im-
gaug.augmentables.normalization), 471

find_intersections_with() (im-
gaug.augmentables.lines.LineString method),
460

flatten() (in module imgaug.imgaug), 352
Fliplr (class in imgaug.augmenters.flip), 750
fliplr() (in module imgaug.augmenters.flip), 754
Flipud (class in imgaug.augmenters.flip), 752
flipud() (in module imgaug.augmenters.flip), 755
Fog (class in imgaug.augmenters.imgcorruptlike), 820
Fog (class in imgaug.augmenters.weather), 1075
force_np_float_dtype() (in module im-

gaug.parameters), 389
ForceSign (class in imgaug.parameters), 371
forward_random_state() (in module im-

gaug.imgaug), 352
FrequencyNoise (class in imgaug.parameters), 371
FrequencyNoiseAlpha() (in module im-

gaug.augmenters.blend), 615
from_0to1() (imgaug.augmentables.heatmaps.HeatmapsOnImage

static method), 437
from_coords_array() (im-

gaug.augmentables.kps.KeypointsOnImage
static method), 447

from_distance_maps() (im-
gaug.augmentables.kps.KeypointsOnImage
static method), 447

from_keypoint_image() (im-
gaug.augmentables.kps.KeypointsOnImage
static method), 448

from_point_soup() (im-
gaug.augmentables.bbs.BoundingBox class
method), 423

from_point_soups() (im-
gaug.augmentables.bbs.BoundingBoxesOnImage
class method), 430

from_shapely() (im-
gaug.augmentables.polys.MultiPolygon static
method), 472

from_shapely() (im-
gaug.augmentables.polys.Polygon static
method), 479

from_uint8() (imgaug.augmentables.heatmaps.HeatmapsOnImage
static method), 437

from_xy_array() (im-
gaug.augmentables.kps.KeypointsOnImage
class method), 448

from_xy_arrays() (im-
gaug.augmentables.lines.LineStringsOnImage
class method), 468

from_xyxy_array() (im-
gaug.augmentables.bbs.BoundingBoxesOnImage
class method), 431

FromLowerResolution (class in im-
gaug.parameters), 373

Frost (class in imgaug.augmenters.imgcorruptlike),
821

G
gamma() (imgaug.random.RNG method), 399
GammaContrast (class in im-

gaug.augmenters.contrast), 713
gate_dtypes() (in module imgaug.dtypes), 393
GaussianBlur (class in imgaug.augmenters.blur),

632
GaussianBlur (class in im-

gaug.augmenters.imgcorruptlike), 823
GaussianNoise (class in im-

gaug.augmenters.imgcorruptlike), 825
generate_jigsaw_destinations() (in module

imgaug.augmenters.geometric), 810
generate_maps() (im-

gaug.augmenters.weather.CloudLayer
method), 1070

Index 1105

imgaug Documentation, Release 0.3.0

generate_mask() (im-
gaug.augmenters.blend.BoundingBoxesMaskGen
class method), 613

generate_mask() (im-
gaug.augmenters.blend.CheckerboardMaskGen
class method), 614

generate_mask() (im-
gaug.augmenters.blend.HorizontalLinearGradientMaskGen
class method), 616

generate_mask() (im-
gaug.augmenters.blend.RegularGridMaskGen
class method), 618

generate_mask() (im-
gaug.augmenters.blend.SegMapClassIdsMaskGen
class method), 620

generate_mask() (im-
gaug.augmenters.blend.SomeColorsMaskGen
class method), 622

generate_mask() (im-
gaug.augmenters.blend.VerticalLinearGradientMaskGen
class method), 624

generate_seed_() (imgaug.random.RNG method),
399

generate_seed_() (in module imgaug.random), 405
generate_seeds_() (imgaug.random.RNG

method), 400
generate_seeds_() (in module imgaug.random),

405
generate_similar_points_manhattan() (im-

gaug.augmentables.kps.Keypoint method), 442
geometric() (imgaug.random.RNG method), 400
get_all_children() (im-

gaug.augmenters.meta.Augmenter method),
876

get_arr() (imgaug.augmentables.heatmaps.HeatmapsOnImage
method), 437

get_arr() (imgaug.augmentables.segmaps.SegmentationMapsOnImage
method), 493

get_arr_int() (im-
gaug.augmentables.segmaps.SegmentationMapsOnImage
method), 493

get_batch() (imgaug.multicore.BackgroundAugmenter
method), 390

get_children_lists() (im-
gaug.augmenters.blend.BlendAlpha method),
576

get_children_lists() (im-
gaug.augmenters.blend.BlendAlphaMask
method), 595

get_children_lists() (im-
gaug.augmenters.color.WithBrightnessChannels
method), 692

get_children_lists() (im-
gaug.augmenters.color.WithColorspace

method), 694
get_children_lists() (im-

gaug.augmenters.color.WithHueAndSaturation
method), 697

get_children_lists() (im-
gaug.augmenters.geometric.WithPolarWarping
method), 809

get_children_lists() (im-
gaug.augmenters.meta.Augmenter method),
876

get_children_lists() (im-
gaug.augmenters.meta.Sequential method),
902

get_children_lists() (im-
gaug.augmenters.meta.SomeOf method),
906

get_children_lists() (im-
gaug.augmenters.meta.Sometimes method),
908

get_children_lists() (im-
gaug.augmenters.meta.WithChannels method),
910

get_children_lists() (im-
gaug.augmenters.size.KeepSizeByResize
method), 1041

get_column_names() (im-
gaug.augmentables.batches.Batch method),
412

get_column_names() (im-
gaug.augmentables.batches.UnnormalizedBatch
method), 415

get_coords_array() (im-
gaug.augmentables.kps.KeypointsOnImage
method), 449

get_corruption_names() (in module im-
gaug.augmenters.imgcorruptlike), 855

get_generator_state() (in module im-
gaug.random), 405

get_global_rng() (in module imgaug.random), 405
get_minimal_dtype() (in module imgaug.dtypes),

393
get_parameters() (im-

gaug.augmenters.arithmetic.Add method),
500

get_parameters() (im-
gaug.augmenters.arithmetic.AddElementwise
method), 502

get_parameters() (im-
gaug.augmenters.arithmetic.Cutout method),
528

get_parameters() (im-
gaug.augmenters.arithmetic.Dropout2d
method), 533

get_parameters() (im-

1106 Index

imgaug Documentation, Release 0.3.0

gaug.augmenters.arithmetic.Invert method),
538

get_parameters() (im-
gaug.augmenters.arithmetic.JpegCompression
method), 540

get_parameters() (im-
gaug.augmenters.arithmetic.Multiply method),
543

get_parameters() (im-
gaug.augmenters.arithmetic.MultiplyElementwise
method), 545

get_parameters() (im-
gaug.augmenters.arithmetic.ReplaceElementwise
method), 550

get_parameters() (im-
gaug.augmenters.arithmetic.TotalDropout
method), 559

get_parameters() (im-
gaug.augmenters.artistic.Cartoon method),
571

get_parameters() (im-
gaug.augmenters.blend.BlendAlpha method),
576

get_parameters() (im-
gaug.augmenters.blend.BlendAlphaMask
method), 595

get_parameters() (im-
gaug.augmenters.blur.AverageBlur method),
629

get_parameters() (im-
gaug.augmenters.blur.BilateralBlur method),
632

get_parameters() (im-
gaug.augmenters.blur.GaussianBlur method),
634

get_parameters() (im-
gaug.augmenters.blur.MeanShiftBlur method),
636

get_parameters() (im-
gaug.augmenters.blur.MedianBlur method),
639

get_parameters() (im-
gaug.augmenters.collections.RandAugment
method), 648

get_parameters() (im-
gaug.augmenters.color.AddToHueAndSaturation
method), 656

get_parameters() (im-
gaug.augmenters.color.ChangeColorspace
method), 662

get_parameters() (im-
gaug.augmenters.color.ChangeColorTemperature
method), 660

get_parameters() (im-

gaug.augmenters.color.WithBrightnessChannels
method), 692

get_parameters() (im-
gaug.augmenters.color.WithColorspace
method), 694

get_parameters() (im-
gaug.augmenters.color.WithHueAndSaturation
method), 697

get_parameters() (im-
gaug.augmenters.contrast.AllChannelsCLAHE
method), 707

get_parameters() (im-
gaug.augmenters.contrast.AllChannelsHistogramEqualization
method), 709

get_parameters() (im-
gaug.augmenters.contrast.CLAHE method),
713

get_parameters() (im-
gaug.augmenters.contrast.HistogramEqualization
method), 718

get_parameters() (im-
gaug.augmenters.convolutional.Convolve
method), 732

get_parameters() (im-
gaug.augmenters.debug.SaveDebugImageEveryNBatches
method), 743

get_parameters() (im-
gaug.augmenters.edges.Canny method),
749

get_parameters() (imgaug.augmenters.flip.Fliplr
method), 752

get_parameters() (imgaug.augmenters.flip.Flipud
method), 754

get_parameters() (im-
gaug.augmenters.geometric.Affine method),
766

get_parameters() (im-
gaug.augmenters.geometric.AffineCv2
method), 772

get_parameters() (im-
gaug.augmenters.geometric.ElasticTransformation
method), 777

get_parameters() (im-
gaug.augmenters.geometric.Jigsaw method),
780

get_parameters() (im-
gaug.augmenters.geometric.PerspectiveTransform
method), 784

get_parameters() (im-
gaug.augmenters.geometric.PiecewiseAffine
method), 787

get_parameters() (im-
gaug.augmenters.geometric.Rot90 method),
790

Index 1107

imgaug Documentation, Release 0.3.0

get_parameters() (im-
gaug.augmenters.geometric.WithPolarWarping
method), 809

get_parameters() (im-
gaug.augmenters.meta.Augmenter method),
877

get_parameters() (im-
gaug.augmenters.meta.ChannelShuffle
method), 884

get_parameters() (im-
gaug.augmenters.meta.ClipCBAsToImagePlanes
method), 886

get_parameters() (im-
gaug.augmenters.meta.Identity method),
888

get_parameters() (im-
gaug.augmenters.meta.Lambda method),
892

get_parameters() (im-
gaug.augmenters.meta.RemoveCBAsByOutOfImageFraction
method), 899

get_parameters() (im-
gaug.augmenters.meta.Sequential method),
902

get_parameters() (im-
gaug.augmenters.meta.SomeOf method),
906

get_parameters() (im-
gaug.augmenters.meta.Sometimes method),
908

get_parameters() (im-
gaug.augmenters.meta.WithChannels method),
910

get_parameters() (im-
gaug.augmenters.pillike.Affine method),
916

get_parameters() (im-
gaug.augmenters.pillike.Equalize method),
928

get_parameters() (im-
gaug.augmenters.segmentation.Superpixels
method), 990

get_parameters() (im-
gaug.augmenters.segmentation.Voronoi
method), 997

get_parameters() (im-
gaug.augmenters.size.CropAndPad method),
1026

get_parameters() (im-
gaug.augmenters.size.CropToAspectRatio
method), 1028

get_parameters() (im-
gaug.augmenters.size.CropToFixedSize
method), 1031

get_parameters() (im-
gaug.augmenters.size.CropToMultiplesOf
method), 1034

get_parameters() (im-
gaug.augmenters.size.CropToPowersOf
method), 1036

get_parameters() (im-
gaug.augmenters.size.KeepSizeByResize
method), 1041

get_parameters() (im-
gaug.augmenters.size.PadToAspectRatio
method), 1047

get_parameters() (im-
gaug.augmenters.size.PadToFixedSize method),
1050

get_parameters() (im-
gaug.augmenters.size.PadToMultiplesOf
method), 1052

get_parameters() (im-
gaug.augmenters.size.PadToPowersOf
method), 1054

get_parameters() (imgaug.augmenters.size.Resize
method), 1060

get_parameters() (im-
gaug.augmenters.weather.CloudLayer
method), 1070

get_parameters() (im-
gaug.augmenters.weather.FastSnowyLandscape
method), 1075

get_parameters() (im-
gaug.augmenters.weather.SnowflakesLayer
method), 1091

get_pointwise_inside_image_mask() (im-
gaug.augmentables.lines.LineString method),
460

get_value_range_of_dtype() (in module im-
gaug.dtypes), 393

GlassBlur (class in im-
gaug.augmenters.imgcorruptlike), 827

GRAY (imgaug.augmenters.color.ChangeColorspace at-
tribute), 662

Grayscale (class in imgaug.augmenters.color), 662
gumbel() (imgaug.random.RNG method), 400

H
handle_categorical_string_param() (in

module imgaug.parameters), 389
handle_children_list() (in module im-

gaug.augmenters.meta), 911
handle_continuous_param() (in module im-

gaug.parameters), 389
handle_discrete_kernel_size_param() (in

module imgaug.parameters), 389

1108 Index

imgaug Documentation, Release 0.3.0

handle_discrete_param() (in module im-
gaug.parameters), 389

handle_probability_param() (in module im-
gaug.parameters), 389

heatmaps (imgaug.augmentables.batches.Batch at-
tribute), 412

HeatmapsOnImage (class in im-
gaug.augmentables.heatmaps), 434

HeatmapsOnImage() (in module imgaug.imgaug),
343

height (imgaug.augmentables.bbs.BoundingBox
attribute), 423

height (imgaug.augmentables.bbs.BoundingBoxesOnImage
attribute), 431

height (imgaug.augmentables.kps.KeypointsOnImage
attribute), 449

height (imgaug.augmentables.lines.LineString at-
tribute), 460

height (imgaug.augmentables.polys.Polygon attribute),
479

HistogramEqualization (class in im-
gaug.augmenters.contrast), 715

HLS (imgaug.augmenters.color.ChangeColorspace at-
tribute), 662

HLS (imgaug.augmenters.contrast.CLAHE attribute),
713

HLS (imgaug.augmenters.contrast.HistogramEqualization
attribute), 718

HooksHeatmaps (class in imgaug.imgaug), 343
HooksImages (class in imgaug.imgaug), 344
HooksKeypoints (class in imgaug.imgaug), 346
HorizontalFlip() (in module im-

gaug.augmenters.flip), 754
HorizontalLinearGradientMaskGen (class in

imgaug.augmenters.blend), 615
HSV (imgaug.augmenters.color.ChangeColorspace at-

tribute), 662
HSV (imgaug.augmenters.contrast.CLAHE attribute),

713
HSV (imgaug.augmenters.contrast.HistogramEqualization

attribute), 718
hypergeometric() (imgaug.random.RNG method),

400

I
IAugmentable (class in imgaug.augmentables.base),

409
IBatchwiseMaskGenerator (class in im-

gaug.augmenters.blend), 616
IBinaryImageColorizer (class in im-

gaug.augmenters.edges), 749
Identity (class in imgaug.augmenters.meta), 886
images (imgaug.augmentables.batches.Batch attribute),

412

imap_batches() (imgaug.multicore.Pool method),
392

imap_batches_unordered() (im-
gaug.multicore.Pool method), 392

imgaug.augmentables.base (module), 409
imgaug.augmentables.batches (module), 409
imgaug.augmentables.bbs (module), 416
imgaug.augmentables.heatmaps (module), 434
imgaug.augmentables.kps (module), 439
imgaug.augmentables.lines (module), 452
imgaug.augmentables.normalization (mod-

ule), 471
imgaug.augmentables.polys (module), 472
imgaug.augmentables.segmaps (module), 491
imgaug.augmentables.utils (module), 494
imgaug.augmenters.arithmetic (module), 497
imgaug.augmenters.artistic (module), 568
imgaug.augmenters.base (module), 572
imgaug.augmenters.blend (module), 572
imgaug.augmenters.blur (module), 626
imgaug.augmenters.collections (module),

645
imgaug.augmenters.color (module), 648
imgaug.augmenters.contrast (module), 703
imgaug.augmenters.convolutional (module),

729
imgaug.augmenters.debug (module), 741
imgaug.augmenters.edges (module), 745
imgaug.augmenters.flip (module), 750
imgaug.augmenters.geometric (module), 756
imgaug.augmenters.imgcorruptlike (mod-

ule), 810
imgaug.augmenters.meta (module), 855
imgaug.augmenters.pillike (module), 912
imgaug.augmenters.pooling (module), 962
imgaug.augmenters.segmentation (module),

974
imgaug.augmenters.size (module), 998
imgaug.augmenters.weather (module), 1065
imgaug.dtypes (module), 393
imgaug.imgaug (module), 343
imgaug.multicore (module), 389
imgaug.parameters (module), 362
imgaug.random (module), 394
imgaug.validation (module), 408
ImpulseNoise (class in im-

gaug.augmenters.arithmetic), 533
ImpulseNoise (class in im-

gaug.augmenters.imgcorruptlike), 829
imresize_many_images() (in module im-

gaug.imgaug), 352
imresize_single_image() (in module im-

gaug.imgaug), 354
imshow() (in module imgaug.imgaug), 354

Index 1109

imgaug Documentation, Release 0.3.0

InColorspace() (in module im-
gaug.augmenters.color), 665

increase_array_resolutions_() (in module
imgaug.dtypes), 393

increase_itemsize_of_dtype() (in module im-
gaug.dtypes), 394

integers() (imgaug.random.RNG method), 400
interpolate_point_pair() (in module im-

gaug.augmentables.utils), 495
interpolate_points() (in module im-

gaug.augmentables.utils), 495
interpolate_points_by_max_distance() (in

module imgaug.augmentables.utils), 495
intersection() (im-

gaug.augmentables.bbs.BoundingBox method),
424

Invert (class in imgaug.augmenters.arithmetic), 535
invert() (imgaug.augmentables.heatmaps.HeatmapsOnImage

method), 438
invert() (in module imgaug.augmenters.arithmetic),

562
invert_() (in module imgaug.augmenters.arithmetic),

563
invert_convert_cbaois_to_kpsois_() (in

module imgaug.augmentables.utils), 496
invert_normalize_bounding_boxes() (in

module imgaug.augmentables.normalization),
471

invert_normalize_heatmaps() (in module im-
gaug.augmentables.normalization), 471

invert_normalize_images() (in module im-
gaug.augmentables.normalization), 471

invert_normalize_keypoints() (in module im-
gaug.augmentables.normalization), 471

invert_normalize_line_strings() (in mod-
ule imgaug.augmentables.normalization), 471

invert_normalize_polygons() (in module im-
gaug.augmentables.normalization), 471

invert_normalize_segmentation_maps() (in
module imgaug.augmentables.normalization),
472

invert_reduce_to_nonempty() (in module im-
gaug.augmenters.meta), 911

invert_to_keypoints_on_image_() (im-
gaug.augmentables.bbs.BoundingBoxesOnImage
method), 431

invert_to_keypoints_on_image_() (im-
gaug.augmentables.kps.KeypointsOnImage
method), 449

invert_to_keypoints_on_image_() (im-
gaug.augmentables.lines.LineStringsOnImage
method), 468

invert_to_keypoints_on_image_() (im-
gaug.augmentables.polys.PolygonsOnImage

method), 487
InvertMaskGen (class in imgaug.augmenters.blend),

617
iou() (imgaug.augmentables.bbs.BoundingBox

method), 424
IPointsSampler (class in im-

gaug.augmenters.segmentation), 975
is_activated() (imgaug.imgaug.HooksImages

method), 345
is_callable() (in module imgaug.imgaug), 355
is_float_array() (in module imgaug.imgaug), 355
is_fully_within_image() (im-

gaug.augmentables.bbs.BoundingBox method),
424

is_fully_within_image() (im-
gaug.augmentables.lines.LineString method),
460

is_fully_within_image() (im-
gaug.augmentables.polys.Polygon method),
479

is_generator() (in module imgaug.imgaug), 355
is_generator_equal_to() (in module im-

gaug.random), 406
is_global_rng() (imgaug.random.RNG method),

400
is_integer_array() (in module imgaug.imgaug),

355
is_iterable() (in module imgaug.imgaug), 355
is_iterable_of() (in module imgaug.validation),

409
is_np_array() (in module imgaug.imgaug), 355
is_np_scalar() (in module imgaug.imgaug), 355
is_out_of_image() (im-

gaug.augmentables.bbs.BoundingBox method),
424

is_out_of_image() (im-
gaug.augmentables.kps.Keypoint method),
442

is_out_of_image() (im-
gaug.augmentables.lines.LineString method),
460

is_out_of_image() (im-
gaug.augmentables.polys.Polygon method),
479

is_partly_within_image() (im-
gaug.augmentables.bbs.BoundingBox method),
425

is_partly_within_image() (im-
gaug.augmentables.lines.LineString method),
461

is_partly_within_image() (im-
gaug.augmentables.polys.Polygon method),
480

is_propagating() (imgaug.imgaug.HooksImages

1110 Index

imgaug Documentation, Release 0.3.0

method), 345
is_single_bool() (in module imgaug.imgaug), 355
is_single_float() (in module imgaug.imgaug),

356
is_single_integer() (in module imgaug.imgaug),

356
is_single_number() (in module imgaug.imgaug),

356
is_string() (in module imgaug.imgaug), 356
is_valid (imgaug.augmentables.polys.Polygon at-

tribute), 480
items (imgaug.augmentables.bbs.BoundingBoxesOnImage

attribute), 431
items (imgaug.augmentables.kps.KeypointsOnImage

attribute), 449
items (imgaug.augmentables.lines.LineStringsOnImage

attribute), 468
items (imgaug.augmentables.polys.PolygonsOnImage

attribute), 487
IterativeNoiseAggregator (class in im-

gaug.parameters), 374

J
Jigsaw (class in imgaug.augmenters.geometric), 777
join() (imgaug.multicore.Pool method), 392
JpegCompression (class in im-

gaug.augmenters.arithmetic), 538
JpegCompression (class in im-

gaug.augmenters.imgcorruptlike), 831

K
KeepSizeByResize (class in im-

gaug.augmenters.size), 1038
Keypoint (class in imgaug.augmentables.kps), 439
Keypoint() (in module imgaug.imgaug), 346
KEYPOINT_AUG_ALPHA_THRESH (im-

gaug.augmenters.geometric.ElasticTransformation
attribute), 777

KEYPOINT_AUG_SIGMA_THRESH (im-
gaug.augmenters.geometric.ElasticTransformation
attribute), 777

keypoints (imgaug.augmentables.batches.Batch at-
tribute), 412

KeypointsOnImage (class in im-
gaug.augmentables.kps), 444

KeypointsOnImage() (in module imgaug.imgaug),
346

KMeansColorQuantization (class in im-
gaug.augmenters.color), 665

L
Lab (imgaug.augmenters.color.ChangeColorspace at-

tribute), 662

Lab (imgaug.augmenters.contrast.CLAHE attribute),
713

Lab (imgaug.augmenters.contrast.HistogramEqualization
attribute), 718

Lambda (class in imgaug.augmenters.meta), 888
Laplace (class in imgaug.parameters), 375
laplace() (imgaug.random.RNG method), 400
length (imgaug.augmentables.lines.LineString at-

tribute), 461
LinearContrast (class in im-

gaug.augmenters.contrast), 718
LineString (class in imgaug.augmentables.lines), 452
LineStringsOnImage (class in im-

gaug.augmentables.lines), 464
localize_random_state() (im-

gaug.augmenters.meta.Augmenter method),
877

localize_random_state_() (im-
gaug.augmenters.meta.Augmenter method),
877

LogContrast (class in imgaug.augmenters.contrast),
721

logistic() (imgaug.random.RNG method), 400
lognormal() (imgaug.random.RNG method), 400
logseries() (imgaug.random.RNG method), 400
Luv (imgaug.augmenters.color.ChangeColorspace at-

tribute), 662

M
map_batches() (imgaug.multicore.Pool method), 392
map_batches_async() (imgaug.multicore.Pool

method), 393
max_pool() (imgaug.augmentables.heatmaps.HeatmapsOnImage

method), 438
max_pool() (in module imgaug.imgaug), 356
MaxPooling (class in imgaug.augmenters.pooling),

965
MeanShiftBlur (class in imgaug.augmenters.blur),

634
median_pool() (in module imgaug.imgaug), 357
MedianBlur (class in imgaug.augmenters.blur), 636
MedianPooling (class in im-

gaug.augmenters.pooling), 968
min_pool() (in module imgaug.imgaug), 357
MinPooling (class in imgaug.augmenters.pooling),

971
MotionBlur (class in imgaug.augmenters.blur), 639
MotionBlur (class in im-

gaug.augmenters.imgcorruptlike), 833
multinomial() (imgaug.random.RNG method), 400
Multiply (class in imgaug.augmenters.arithmetic),

540
Multiply (class in imgaug.parameters), 376

Index 1111

imgaug Documentation, Release 0.3.0

multiply_elementwise() (in module im-
gaug.augmenters.arithmetic), 564

multiply_scalar() (in module im-
gaug.augmenters.arithmetic), 565

MultiplyAndAddToBrightness (class in im-
gaug.augmenters.color), 668

MultiplyBrightness (class in im-
gaug.augmenters.color), 670

MultiplyElementwise (class in im-
gaug.augmenters.arithmetic), 543

MultiplyHue (class in imgaug.augmenters.color), 672
MultiplyHueAndSaturation (class in im-

gaug.augmenters.color), 675
MultiplySaturation (class in im-

gaug.augmenters.color), 678
MultiPolygon (class in imgaug.augmentables.polys),

472
MultiPolygon() (in module imgaug.imgaug), 346
multivariate_normal() (imgaug.random.RNG

method), 400

N
n_colors (imgaug.augmenters.color.KMeansColorQuantization

attribute), 668
n_colors (imgaug.augmenters.color.UniformColorQuantization

attribute), 686
nb_cols (imgaug.augmenters.blend.CheckerboardMaskGen

attribute), 614
NB_NEIGHBOURING_KEYPOINTS (im-

gaug.augmenters.geometric.ElasticTransformation
attribute), 777

nb_rows (imgaug.augmenters.blend.CheckerboardMaskGen
attribute), 614

Negative() (in module imgaug.parameters), 377
negative_binomial() (imgaug.random.RNG

method), 400
NEIGHBOURING_KEYPOINTS_DISTANCE (im-

gaug.augmenters.geometric.ElasticTransformation
attribute), 777

new_random_state() (in module imgaug.imgaug),
358

NO_RESIZE (imgaug.augmenters.size.KeepSizeByResize
attribute), 1041

noncentral_chisquare() (imgaug.random.RNG
method), 400

noncentral_f() (imgaug.random.RNG method), 400
Noop (class in imgaug.augmenters.meta), 892
Normal (class in imgaug.parameters), 378
normal() (imgaug.random.RNG method), 401
normalize_bounding_boxes() (in module im-

gaug.augmentables.normalization), 472
normalize_dtype() (in module imgaug.dtypes), 394
normalize_dtypes() (in module imgaug.dtypes),

394

normalize_generator() (in module im-
gaug.random), 406

normalize_generator_() (in module im-
gaug.random), 406

normalize_heatmaps() (in module im-
gaug.augmentables.normalization), 472

normalize_images() (in module im-
gaug.augmentables.normalization), 472

normalize_keypoints() (in module im-
gaug.augmentables.normalization), 472

normalize_line_strings() (in module im-
gaug.augmentables.normalization), 472

normalize_polygons() (in module im-
gaug.augmentables.normalization), 472

normalize_random_state() (in module im-
gaug.imgaug), 358

normalize_segmentation_maps() (in module
imgaug.augmentables.normalization), 472

normalize_shape() (in module im-
gaug.augmentables.utils), 496

O
on() (imgaug.augmentables.bbs.BoundingBoxesOnImage

method), 431
on() (imgaug.augmentables.kps.KeypointsOnImage

method), 449
on() (imgaug.augmentables.lines.LineStringsOnImage

method), 468
on() (imgaug.augmentables.polys.PolygonsOnImage

method), 487
on_() (imgaug.augmentables.bbs.BoundingBoxesOnImage

method), 432
on_() (imgaug.augmentables.kps.KeypointsOnImage

method), 449
on_() (imgaug.augmentables.lines.LineStringsOnImage

method), 469
on_() (imgaug.augmentables.polys.PolygonsOnImage

method), 488
OneOf (class in imgaug.augmenters.meta), 894

P
Pad (class in imgaug.augmenters.size), 1041
pad() (imgaug.augmentables.heatmaps.HeatmapsOnImage

method), 438
pad() (imgaug.augmentables.segmaps.SegmentationMapsOnImage

method), 493
pad() (in module imgaug.augmenters.size), 1063
pad() (in module imgaug.imgaug), 358
pad_to_aspect_ratio() (im-

gaug.augmentables.heatmaps.HeatmapsOnImage
method), 438

pad_to_aspect_ratio() (im-
gaug.augmentables.segmaps.SegmentationMapsOnImage
method), 494

1112 Index

imgaug Documentation, Release 0.3.0

pad_to_aspect_ratio() (in module im-
gaug.augmenters.size), 1064

pad_to_aspect_ratio() (in module im-
gaug.imgaug), 358

pad_to_multiples_of() (in module im-
gaug.augmenters.size), 1065

pad_to_multiples_of() (in module im-
gaug.imgaug), 358

PadToAspectRatio (class in im-
gaug.augmenters.size), 1045

PadToFixedSize (class in imgaug.augmenters.size),
1047

PadToMultiplesOf (class in im-
gaug.augmenters.size), 1050

PadToPowersOf (class in imgaug.augmenters.size),
1052

PadToSquare (class in imgaug.augmenters.size), 1054
pareto() (imgaug.random.RNG method), 401
Pepper (class in imgaug.augmenters.arithmetic), 545
permutation() (imgaug.random.RNG method), 401
PerspectiveTransform (class in im-

gaug.augmenters.geometric), 780
PiecewiseAffine (class in im-

gaug.augmenters.geometric), 784
Pixelate (class in im-

gaug.augmenters.imgcorruptlike), 835
Poisson (class in imgaug.parameters), 379
poisson() (imgaug.random.RNG method), 401
polyfill_integers() (in module imgaug.random),

407
polyfill_random() (in module imgaug.random),

407
Polygon (class in imgaug.augmentables.polys), 472
Polygon() (in module imgaug.imgaug), 346
PolygonsOnImage (class in im-

gaug.augmentables.polys), 483
PolygonsOnImage() (in module imgaug.imgaug),

346
Pool (class in imgaug.multicore), 391
pool (imgaug.multicore.Pool attribute), 393
pool() (imgaug.augmenters.meta.Augmenter method),

877
pool() (in module imgaug.imgaug), 358
Positive() (in module imgaug.parameters), 379
Posterize (class in imgaug.augmenters.color), 680
Posterize (class in imgaug.augmenters.pillike), 946
posterize() (in module imgaug.augmenters.color),

699
posterize() (in module imgaug.augmenters.pillike),

960
posterize_() (in module im-

gaug.augmenters.pillike), 960
postprocess() (imgaug.imgaug.HooksImages

method), 345

Power (class in imgaug.parameters), 380
power() (imgaug.random.RNG method), 401
preprocess() (imgaug.imgaug.HooksImages

method), 345
project() (imgaug.augmentables.bbs.BoundingBox

method), 425
project() (imgaug.augmentables.kps.Keypoint

method), 443
project() (imgaug.augmentables.lines.LineString

method), 461
project() (imgaug.augmentables.polys.Polygon

method), 480
project_() (imgaug.augmentables.bbs.BoundingBox

method), 425
project_() (imgaug.augmentables.kps.Keypoint

method), 443
project_() (imgaug.augmentables.lines.LineString

method), 461
project_() (imgaug.augmentables.polys.Polygon

method), 480
project_coords() (in module im-

gaug.augmentables.utils), 496
project_coords_() (in module im-

gaug.augmentables.utils), 497
promote_array_dtypes_() (in module im-

gaug.dtypes), 394

Q
quantize_colors_kmeans() (in module im-

gaug.augmenters.color), 700
quantize_colors_uniform() (in module im-

gaug.augmenters.color), 700
quantize_kmeans() (in module im-

gaug.augmenters.color), 700
quantize_uniform() (in module im-

gaug.augmenters.color), 701
quantize_uniform_() (in module im-

gaug.augmenters.color), 701
quantize_uniform_to_n_bits() (in module im-

gaug.augmenters.color), 702
quantize_uniform_to_n_bits_() (in module

imgaug.augmenters.color), 703
quokka() (in module imgaug.imgaug), 359
quokka_bounding_boxes() (in module im-

gaug.imgaug), 360
quokka_heatmap() (in module imgaug.imgaug), 360
quokka_keypoints() (in module imgaug.imgaug),

360
quokka_polygons() (in module imgaug.imgaug),

360
quokka_segmentation_map() (in module im-

gaug.imgaug), 361
quokka_square() (in module imgaug.imgaug), 361

Index 1113

imgaug Documentation, Release 0.3.0

R
Rain (class in imgaug.augmenters.weather), 1077
RainLayer (class in imgaug.augmenters.weather),

1080
rand() (imgaug.random.RNG method), 401
RandAugment (class in im-

gaug.augmenters.collections), 645
randint() (imgaug.random.RNG method), 401
randn() (imgaug.random.RNG method), 401
random() (imgaug.random.RNG method), 401
random_integers() (imgaug.random.RNG

method), 401
random_sample() (imgaug.random.RNG method),

402
RandomColorsBinaryImageColorizer (class in

imgaug.augmenters.edges), 749
RandomSign (class in imgaug.parameters), 381
rayleigh() (imgaug.random.RNG method), 402
recover_psois_() (in module im-

gaug.augmentables.polys), 490
reduce_to_nonempty() (in module im-

gaug.augmenters.meta), 911
RegularGridMaskGen (class in im-

gaug.augmenters.blend), 617
RegularGridPointsSampler (class in im-

gaug.augmenters.segmentation), 976
RegularGridVoronoi (class in im-

gaug.augmenters.segmentation), 977
RelativeRegularGridPointsSampler (class in

imgaug.augmenters.segmentation), 980
RelativeRegularGridVoronoi (class in im-

gaug.augmenters.segmentation), 982
remove_augmenters() (im-

gaug.augmenters.meta.Augmenter method),
878

remove_augmenters_() (im-
gaug.augmenters.meta.Augmenter method),
879

remove_augmenters_inplace() (im-
gaug.augmenters.meta.Augmenter method),
880

remove_out_of_image() (im-
gaug.augmentables.bbs.BoundingBoxesOnImage
method), 432

remove_out_of_image() (im-
gaug.augmentables.lines.LineStringsOnImage
method), 469

remove_out_of_image() (im-
gaug.augmentables.polys.PolygonsOnImage
method), 488

remove_out_of_image_() (im-
gaug.augmentables.bbs.BoundingBoxesOnImage
method), 432

remove_out_of_image_() (im-

gaug.augmentables.lines.LineStringsOnImage
method), 469

remove_out_of_image_() (im-
gaug.augmentables.polys.PolygonsOnImage
method), 488

remove_out_of_image_fraction() (im-
gaug.augmentables.bbs.BoundingBoxesOnImage
method), 432

remove_out_of_image_fraction() (im-
gaug.augmentables.kps.KeypointsOnImage
method), 449

remove_out_of_image_fraction() (im-
gaug.augmentables.lines.LineStringsOnImage
method), 469

remove_out_of_image_fraction() (im-
gaug.augmentables.polys.PolygonsOnImage
method), 488

remove_out_of_image_fraction_() (im-
gaug.augmentables.bbs.BoundingBoxesOnImage
method), 433

remove_out_of_image_fraction_() (im-
gaug.augmentables.kps.KeypointsOnImage
method), 450

remove_out_of_image_fraction_() (im-
gaug.augmentables.lines.LineStringsOnImage
method), 469

remove_out_of_image_fraction_() (im-
gaug.augmentables.polys.PolygonsOnImage
method), 489

RemoveCBAsByOutOfImageFraction (class in
imgaug.augmenters.meta), 896

RemoveSaturation (class in im-
gaug.augmenters.color), 681

replace_elementwise_() (in module im-
gaug.augmenters.arithmetic), 566

ReplaceElementwise (class in im-
gaug.augmenters.arithmetic), 547

reseed() (imgaug.augmenters.meta.Augmenter
method), 880

reset_cache_() (imgaug.random.RNG method), 402
reset_generator_cache_() (in module im-

gaug.random), 407
Resize (class in imgaug.augmenters.size), 1057
resize() (imgaug.augmentables.heatmaps.HeatmapsOnImage

method), 439
resize() (imgaug.augmentables.segmaps.SegmentationMapsOnImage

method), 494
restore_dtype_and_merge() (in module im-

gaug.augmentables.normalization), 472
restore_dtypes_() (in module imgaug.dtypes), 394
RGB (imgaug.augmenters.color.ChangeColorspace at-

tribute), 662
RGB (imgaug.augmenters.contrast.CLAHE attribute),

713

1114 Index

imgaug Documentation, Release 0.3.0

RGB (imgaug.augmenters.contrast.HistogramEqualization
attribute), 718

RNG (class in imgaug.random), 394
Rot90 (class in imgaug.augmenters.geometric), 787
Rotate (class in imgaug.augmenters.geometric), 790

S
Salt (class in imgaug.augmenters.arithmetic), 550
SaltAndPepper (class in im-

gaug.augmenters.arithmetic), 552
SAME_AS_IMAGES (im-

gaug.augmenters.size.KeepSizeByResize
attribute), 1041

sample_points() (im-
gaug.augmenters.segmentation.DropoutPointsSampler
method), 975

sample_points() (im-
gaug.augmenters.segmentation.IPointsSampler
method), 975

sample_points() (im-
gaug.augmenters.segmentation.RegularGridPointsSampler
method), 977

sample_points() (im-
gaug.augmenters.segmentation.RelativeRegularGridPointsSampler
method), 981

sample_points() (im-
gaug.augmenters.segmentation.SubsamplingPointsSampler
method), 986

sample_points() (im-
gaug.augmenters.segmentation.UniformPointsSampler
method), 991

Saturate (class in im-
gaug.augmenters.imgcorruptlike), 837

SaveDebugImageEveryNBatches (class in im-
gaug.augmenters.debug), 741

scale() (imgaug.augmentables.heatmaps.HeatmapsOnImage
method), 439

scale() (imgaug.augmentables.segmaps.SegmentationMapsOnImage
method), 494

Scale() (in module imgaug.augmenters.size), 1060
ScaleX (class in imgaug.augmenters.geometric), 792
ScaleY (class in imgaug.augmenters.geometric), 795
seed() (in module imgaug.imgaug), 361
seed() (in module imgaug.random), 407
seed_() (imgaug.augmenters.meta.Augmenter

method), 880
SegMapClassIdsMaskGen (class in im-

gaug.augmenters.blend), 619
segment_voronoi() (in module im-

gaug.augmenters.segmentation), 997
segmentation_maps (im-

gaug.augmentables.batches.Batch attribute),
412

SegmentationMapOnImage() (in module im-
gaug.augmentables.segmaps), 491

SegmentationMapsOnImage (class in im-
gaug.augmentables.segmaps), 491

SegmentationMapsOnImage() (in module im-
gaug.imgaug), 346

Sequential (class in imgaug.augmenters.meta), 899
set_generator_state_() (in module im-

gaug.random), 408
set_state_() (imgaug.random.RNG method), 402
Sharpen (class in imgaug.augmenters.convolutional),

739
ShearX (class in imgaug.augmenters.geometric), 797
ShearY (class in imgaug.augmenters.geometric), 799
shift() (imgaug.augmentables.bbs.BoundingBox

method), 425
shift() (imgaug.augmentables.bbs.BoundingBoxesOnImage

method), 433
shift() (imgaug.augmentables.kps.Keypoint method),

443
shift() (imgaug.augmentables.kps.KeypointsOnImage

method), 450
shift() (imgaug.augmentables.lines.LineString

method), 462
shift() (imgaug.augmentables.lines.LineStringsOnImage

method), 470
shift() (imgaug.augmentables.polys.Polygon

method), 481
shift() (imgaug.augmentables.polys.PolygonsOnImage

method), 489
shift_() (imgaug.augmentables.bbs.BoundingBox

method), 426
shift_() (imgaug.augmentables.bbs.BoundingBoxesOnImage

method), 433
shift_() (imgaug.augmentables.kps.Keypoint

method), 443
shift_() (imgaug.augmentables.kps.KeypointsOnImage

method), 450
shift_() (imgaug.augmentables.lines.LineString

method), 462
shift_() (imgaug.augmentables.lines.LineStringsOnImage

method), 470
shift_() (imgaug.augmentables.polys.Polygon

method), 481
shift_() (imgaug.augmentables.polys.PolygonsOnImage

method), 489
ShotNoise (class in im-

gaug.augmenters.imgcorruptlike), 839
show_distributions_grid() (in module im-

gaug.parameters), 389
show_grid() (imgaug.augmenters.meta.Augmenter

method), 881
show_grid() (in module imgaug.imgaug), 361
shuffle() (imgaug.random.RNG method), 402

Index 1115

imgaug Documentation, Release 0.3.0

shuffle_channels() (in module im-
gaug.augmenters.meta), 911

Sigmoid (class in imgaug.parameters), 381
SigmoidContrast (class in im-

gaug.augmenters.contrast), 723
SimplexNoise (class in imgaug.parameters), 383
SimplexNoiseAlpha() (in module im-

gaug.augmenters.blend), 620
Snow (class in imgaug.augmenters.imgcorruptlike), 841
Snowflakes (class in imgaug.augmenters.weather),

1083
SnowflakesLayer (class in im-

gaug.augmenters.weather), 1087
Solarize (class in imgaug.augmenters.arithmetic),

554
Solarize (class in imgaug.augmenters.pillike), 947
solarize() (in module im-

gaug.augmenters.arithmetic), 567
solarize() (in module imgaug.augmenters.pillike),

960
solarize_() (in module im-

gaug.augmenters.arithmetic), 567
solarize_() (in module imgaug.augmenters.pillike),

961
SomeColorsMaskGen (class in im-

gaug.augmenters.blend), 620
SomeOf (class in imgaug.augmenters.meta), 902
Sometimes (class in imgaug.augmenters.meta), 906
Spatter (class in imgaug.augmenters.imgcorruptlike),

843
SpeckleNoise (class in im-

gaug.augmenters.imgcorruptlike), 845
standard_cauchy() (imgaug.random.RNG

method), 402
standard_exponential() (imgaug.random.RNG

method), 402
standard_gamma() (imgaug.random.RNG method),

402
standard_normal() (imgaug.random.RNG

method), 402
standard_t() (imgaug.random.RNG method), 402
state (imgaug.random.RNG attribute), 402
StochasticParameter (class in im-

gaug.parameters), 384
StochasticParameterMaskGen (class in im-

gaug.augmenters.blend), 623
stylize_cartoon() (in module im-

gaug.augmenters.artistic), 571
subdivide() (imgaug.augmentables.lines.LineString

method), 462
subdivide() (imgaug.augmentables.polys.Polygon

method), 481
subdivide() (imgaug.augmentables.polys.PolygonsOnImage

method), 489

subdivide_() (imgaug.augmentables.polys.Polygon
method), 482

subdivide_() (imgaug.augmentables.polys.PolygonsOnImage
method), 490

SubsamplingPointsSampler (class in im-
gaug.augmenters.segmentation), 986

Subtract (class in imgaug.parameters), 385
Superpixels (class in im-

gaug.augmenters.segmentation), 986
supports_new_numpy_rng_style() (in module

imgaug.random), 408
SuspiciousMultiImageShapeWarning, 572
SuspiciousSingleImageShapeWarning, 572

T
temporary_numpy_seed (class in imgaug.random),

408
terminate() (imgaug.multicore.BackgroundAugmenter

method), 390
terminate() (imgaug.multicore.BatchLoader

method), 391
terminate() (imgaug.multicore.Pool method), 393
to_batch_in_augmentation() (im-

gaug.augmentables.batches.Batch method),
412

to_bounding_box() (im-
gaug.augmentables.lines.LineString method),
463

to_bounding_box() (im-
gaug.augmentables.polys.Polygon method),
482

to_deterministic() (im-
gaug.augmenters.meta.Augmenter method),
881

to_distance_maps() (im-
gaug.augmentables.kps.KeypointsOnImage
method), 450

to_heatmap() (imgaug.augmentables.lines.LineString
method), 463

to_keypoint_image() (im-
gaug.augmentables.kps.KeypointsOnImage
method), 451

to_keypoints() (im-
gaug.augmentables.bbs.BoundingBox method),
426

to_keypoints() (im-
gaug.augmentables.lines.LineString method),
463

to_keypoints() (im-
gaug.augmentables.polys.Polygon method),
482

to_keypoints_on_image() (im-
gaug.augmentables.bbs.BoundingBoxesOnImage
method), 434

1116 Index

imgaug Documentation, Release 0.3.0

to_keypoints_on_image() (im-
gaug.augmentables.kps.KeypointsOnImage
method), 451

to_keypoints_on_image() (im-
gaug.augmentables.lines.LineStringsOnImage
method), 470

to_keypoints_on_image() (im-
gaug.augmentables.polys.PolygonsOnImage
method), 490

to_line_string() (im-
gaug.augmentables.polys.Polygon method),
482

to_normalized_batch() (im-
gaug.augmentables.batches.Batch method),
412

to_normalized_batch() (im-
gaug.augmentables.batches.UnnormalizedBatch
method), 416

to_polygon() (imgaug.augmentables.bbs.BoundingBox
method), 426

to_polygon() (imgaug.augmentables.lines.LineString
method), 463

to_polygons_on_image() (im-
gaug.augmentables.bbs.BoundingBoxesOnImage
method), 434

to_segmentation_map() (im-
gaug.augmentables.lines.LineString method),
463

to_shapely_line_string() (im-
gaug.augmentables.polys.Polygon method),
482

to_shapely_polygon() (im-
gaug.augmentables.polys.Polygon method),
482

to_uint8() (imgaug.augmentables.heatmaps.HeatmapsOnImage
method), 439

to_xy_array() (im-
gaug.augmentables.bbs.BoundingBoxesOnImage
method), 434

to_xy_array() (im-
gaug.augmentables.kps.KeypointsOnImage
method), 451

to_xy_array() (im-
gaug.augmentables.lines.LineStringsOnImage
method), 471

to_xy_array() (im-
gaug.augmentables.polys.PolygonsOnImage
method), 490

to_xy_arrays() (im-
gaug.augmentables.lines.LineStringsOnImage
method), 471

to_xyxy_array() (im-
gaug.augmentables.bbs.BoundingBoxesOnImage
method), 434

tomaxint() (imgaug.random.RNG method), 403
TotalDropout (class in im-

gaug.augmenters.arithmetic), 557
TranslateX (class in imgaug.augmenters.geometric),

801
TranslateY (class in imgaug.augmenters.geometric),

803
triangular() (imgaug.random.RNG method), 403
TruncatedNormal (class in imgaug.parameters), 386

U
Uniform (class in imgaug.parameters), 387
uniform() (imgaug.random.RNG method), 403
UniformColorQuantization (class in im-

gaug.augmenters.color), 683
UniformColorQuantizationToNBits (class in

imgaug.augmenters.color), 686
UniformPointsSampler (class in im-

gaug.augmenters.segmentation), 990
UniformVoronoi (class in im-

gaug.augmenters.segmentation), 991
union() (imgaug.augmentables.bbs.BoundingBox

method), 426
UnnormalizedBatch (class in im-

gaug.augmentables.batches), 413
use_state_of_() (imgaug.random.RNG method),

403

V
VerticalFlip() (in module im-

gaug.augmenters.flip), 754
VerticalLinearGradientMaskGen (class in im-

gaug.augmenters.blend), 623
vonmises() (imgaug.random.RNG method), 403
Voronoi (class in imgaug.augmenters.segmentation),

994

W
wald() (imgaug.random.RNG method), 403
warn() (in module imgaug.imgaug), 362
warn_deprecated() (in module imgaug.imgaug),

362
warp_affine() (in module im-

gaug.augmenters.pillike), 961
warpPolarCoords() (im-

gaug.augmenters.geometric.WithPolarWarping
class method), 809

Weibull (class in imgaug.parameters), 388
weibull() (imgaug.random.RNG method), 403
width (imgaug.augmentables.bbs.BoundingBox at-

tribute), 427
width (imgaug.augmentables.bbs.BoundingBoxesOnImage

attribute), 434

Index 1117

imgaug Documentation, Release 0.3.0

width (imgaug.augmentables.kps.KeypointsOnImage
attribute), 451

width (imgaug.augmentables.lines.LineString at-
tribute), 464

width (imgaug.augmentables.polys.Polygon attribute),
482

WithBrightnessChannels (class in im-
gaug.augmenters.color), 690

WithChannels (class in imgaug.augmenters.meta),
908

WithColorspace (class in imgaug.augmenters.color),
692

WithHueAndSaturation (class in im-
gaug.augmenters.color), 694

WithPolarWarping (class in im-
gaug.augmenters.geometric), 805

X
x1_int (imgaug.augmentables.bbs.BoundingBox

attribute), 427
x2_int (imgaug.augmentables.bbs.BoundingBox

attribute), 427
x_int (imgaug.augmentables.kps.Keypoint attribute),

444
xx (imgaug.augmentables.lines.LineString attribute),

464
xx (imgaug.augmentables.polys.Polygon attribute), 483
xx_int (imgaug.augmentables.lines.LineString at-

tribute), 464
xx_int (imgaug.augmentables.polys.Polygon attribute),

483
xy (imgaug.augmentables.kps.Keypoint attribute), 444
xy_int (imgaug.augmentables.kps.Keypoint attribute),

444

Y
y1_int (imgaug.augmentables.bbs.BoundingBox

attribute), 427
y2_int (imgaug.augmentables.bbs.BoundingBox

attribute), 427
y_int (imgaug.augmentables.kps.Keypoint attribute),

444
YCrCb (imgaug.augmenters.color.ChangeColorspace at-

tribute), 662
yy (imgaug.augmentables.lines.LineString attribute),

464
yy (imgaug.augmentables.polys.Polygon attribute), 483
yy_int (imgaug.augmentables.lines.LineString at-

tribute), 464
yy_int (imgaug.augmentables.polys.Polygon attribute),

483

Z
zipf() (imgaug.random.RNG method), 403

ZoomBlur (class in im-
gaug.augmenters.imgcorruptlike), 847

1118 Index

	Installation
	Installation in Anaconda
	Installation in pip
	Uninstall

	Examples: Basics
	A standard use case
	A simple and common augmentation sequence
	Heavy Augmentations

	Examples: Keypoints
	Notebook
	A simple example

	Examples: Bounding Boxes
	Notebook
	A simple example
	Dealing with bounding boxes outside of the image
	Shifting/Moving Bounding Boxes
	Projection of BBs Onto Rescaled Images
	Computing Intersections, Unions and IoUs

	Examples: Heatmaps
	Notebook
	A simple example
	Multiple sub-heatmaps per heatmaps object
	Accessing the heatmap array
	Resizing heatmaps
	Padding heatmaps

	Examples: Segmentation Maps and Masks
	Notebook
	A simple example
	Using boolean masks
	Accessing the segmentation map array
	Resizing and padding

	Stochastic Parameters
	Introduction
	Continuous Probability Distributions
	Discrete Probability Distributions
	Arithmetic
	Special Parameters
	Noise Parameters

	Blending/Overlaying images
	Introduction
	Imagewise Constant Alphas Values
	BlendAlphaSimplexNoise
	FrequencyNoiseAlpha
	IterativeNoiseAggregator
	Sigmoid

	Overview of Augmenters
	augmenters.meta
	augmenters.arithmetic
	augmenters.artistic
	augmenters.blend
	augmenters.blur
	augmenters.collections
	augmenters.color
	augmenters.contrast
	augmenters.convolutional
	augmenters.debug
	augmenters.edges
	augmenters.flip
	augmenters.geometric
	augmenters.imgcorruptlike
	augmenters.pillike
	augmenters.pooling
	augmenters.segmentation
	augmenters.size
	augmenters.weather

	Performance
	Results Overview
	Images
	Heatmaps
	Keypoints and Bounding Boxes

	dtype support
	Legend
	imgaug helper functions
	imgaug.augmenters.meta
	imgaug.augmenters.arithmetic
	imgaug.augmenters.blend
	imgaug.augmenters.blur
	imgaug.augmenters.collections
	imgaug.augmenters.color
	imgaug.augmenters.contrast
	imgaug.augmenters.convolutional
	imgaug.augmenters.debug
	imgaug.augmenters.edges
	imgaug.augmenters.flip
	imgaug.augmenters.geometric
	imgaug.augmenters.imgcorruptlike
	imgaug.augmenters.pillike
	imgaug.augmenters.segmentation
	imgaug.augmenters.size
	imgaug.augmenters.weather

	Jupyter Notebooks
	API
	imgaug
	imgaug.parameters
	imgaug.multicore
	imgaug.dtypes
	imgaug.random
	imgaug.validation
	imgaug.augmentables.base
	imgaug.augmentables.batches
	imgaug.augmentables.bbs
	imgaug.augmentables.heatmaps
	imgaug.augmentables.kps
	imgaug.augmentables.lines
	imgaug.augmentables.normalization
	imgaug.augmentables.polys
	imgaug.augmentables.segmaps
	imgaug.augmentables.utils
	imgaug.augmenters.arithmetic
	imgaug.augmenters.artistic
	imgaug.augmenters.base
	imgaug.augmenters.blend
	imgaug.augmenters.blur
	imgaug.augmenters.collections
	imgaug.augmenters.color
	imgaug.augmenters.contrast
	imgaug.augmenters.convolutional
	imgaug.augmenters.debug
	imgaug.augmenters.edges
	imgaug.augmenters.flip
	imgaug.augmenters.geometric
	imgaug.augmenters.imgcorruptlike
	imgaug.augmenters.meta
	imgaug.augmenters.pillike
	imgaug.augmenters.pooling
	imgaug.augmenters.segmentation
	imgaug.augmenters.size
	imgaug.augmenters.weather

	Indices and tables
	Python Module Index
	Index

